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Predicting neoadjuvant chemotherapy benefit using deep
learning from stromal histology in breast cancer
Fengling Li 1,2,6, Yongquan Yang 2,6, Yani Wei1,2, Yuanyuan Zhao3, Jing Fu4, Xiuli Xiao5, Zhongxi Zheng 2✉ and Hong Bu 1,2✉

Neoadjuvant chemotherapy (NAC) is a standard treatment option for locally advanced breast cancer. However, not all patients
benefit from NAC; some even obtain worse outcomes after therapy. Hence, predictors of treatment benefit are crucial for guiding
clinical decision-making. Here, we investigated the predictive potential of breast cancer stromal histology via a deep learning (DL)-
based approach and proposed the tumor-associated stroma score (TS-score) for predicting pathological complete response (pCR)
to NAC with a multicenter dataset. The TS-score was demonstrated to be an independent predictor of pCR, and it not only
outperformed the baseline variables and stromal tumor-infiltrating lymphocytes (sTILs) but also significantly improved the
prediction performance of the baseline variable-based model. Furthermore, we discovered that unlike lymphocytes, collagen and
fibroblasts in the stroma were likely associated with a poor response to NAC. The TS-score has the potential to better stratify breast
cancer patients in NAC settings.
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INTRODUCTION
Neoadjuvant chemotherapy (NAC) is a standard treatment option
for patients with locally advanced breast cancer and some large
operable tumors1,2. In clinical trials, NAC has been shown to
reduce the tumor burden and promote breast-conserving surgery,
with patients who achieved a pathological complete response
(pCR) having a better prognosis3. However, the pathological
response rate varies among patients who receive this treatment
modality and is primarily determined by their molecular
subtype4,5. The heterogeneity of breast cancer in terms of the
response to NAC has sparked renewed interest in predictive
biomarkers, since these biomarkers facilitate clinical decision-
making at the early stage.
Histological images contain a wealth of tumor phenotypic

information and reflect the underlying molecular processes and
disease progression, which can provide intrinsic information on
diseases for the clinic. Subjective evaluation of pathological slides
by well-trained pathologists is the gold standard for disease
diagnosis and classification. However, pathological diagnosis
mainly relies on visible morphological features, while the
abundance of clinically relevant hidden information is currently
not fully exploited. For instance, the Nottingham grading system
provides prognostic and predictive information about breast
cancer through pathologist assessment of histological features,
including nuclear atypia, glandular differentiation, and mitotic
count, but manual assessment can be subjective, is less
reproducible and relies only on limited visible visual features. In
recent studies, digital pathology and artificial intelligence (AI)
techniques, which enable the extraction of hidden and quantita-
tive information directly from histological images, have shown
potential to provide clinically useful indicators6,7. In particular, the
introduction of the convolutional neural network (CNN) has
revolutionized the field of image analysis. Neural networks can
distinguish objects by learning features from the training data and

can effectively solve complex visual tasks8. Previous studies on
digital pathology have used AI-based image analysis methods for
tumor detection9, tumor grading10,11, immunohistochemistry (IHC)
scoring12 and other medical classification tasks13–15, showing
great potential in clinical application. More recently, deep learning
(DL) methods based on medical images were used to develop
novel biomarkers that were found to be predictive of the
prognosis and chemotherapy response of patients16–20.
In a previous study, we proposed an image-derived biomarker

for predicting pCR in breast cancer, which revealed hidden
predictive information from the tumor epithelium20. Nevertheless,
the tumor-associated stroma, also known as the tumor micro-
environment (TME), has high potential for the discovery of novel
biomarkers for predicting disease outcome. The tumor-associated
stroma constitutes a suitable microenvironment for tumor growth,
progression, and metastasis; the stromal phenotypic information
presented on histology reflects the aggregate effect of underlying
tumor biological alterations21. However, the high heterogeneity
and complexity of the TME has hampered research progress on
stroma-derived biomarkers from histological images. With the
employment of AI techniques, several studies have found that
stromal morphological features are predictive of prognosis in
breast cancer18, prostate cancer19, and colorectal cancer17; in
particular, Beck et al. proposed that the quantitative information
extracted from the stroma was fairly predictive of prognosis in
breast cancer18. Nevertheless, few studies have investigated the
potential value of the stroma to predict the treatment response to
chemotherapy. Although some stromal parameters from manual
evaluation, such as tumor-infiltrating lymphocytes (TILs) and the
tumor-stroma ratio, have shown some predictive ability for
pCR22–24, abundant hidden information of the stromal morphol-
ogy still remains to be exploited.
In this study, we aimed to fill this gap by exploring the potential

value of tumor-associated stroma using AI techniques. We
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hypothesized that a stroma-derived biomarker could improve the
prediction of pCR in breast cancer. We used DL-based methods to
propose a stroma-derived biomarker from hematoxylin and eosin
(HE)-stained histological images of breast cancer biopsies and
evaluated the predictive power in four independent, multicenter
datasets.

RESULTS
Clinical characteristics
Figure 1 shows the workflow of patient recruitment. According to
the inclusion and exclusion criteria, we enrolled a total of 1035
patients from four independent institutions: West China Hospital
(WC cohort, 695 patients from 2010.04 to 2021.04), Shanxi Cancer
Hospital (SX cohort, 200 patients from 2015.02 to 2019.10),
Sichuan Province People’s Hospital (SC cohort, 91 patients from
2020.01 to 2021.02), and the Affiliated Hospital of Southwest
Medical University (SW cohort, 49 patients from 2016.08 to
2020.10). The dataset from West China Hospital had the largest
population of eligible patients (N= 695) and was used as the
primary cohort (PC). The clinical characteristics of all patients are
summarized in Table 1 (detailed information is available in
Supplementary Table 4).
The pCR rates among the four cohorts were between 17.5 and

40.7% (Table 1). As shown in Supplementary Table 4, sTILs was
significantly different between the pCR and non-pCR groups in all
four cohorts (P < 0.05). In addition, pCR was associated with HR
status and subtype in all cohorts except V3. Human epidermal
growth factor receptor 2 (HER2) and nuclear grade were
differentially distributed between the two groups in the PC and
in one validation cohort (V2, V1). However, pCR was significantly
correlated with Ki67 and cT only in the PC but not in the other
three validation cohorts. We did not find a significant difference in
age or cN between the pCR and non-pCR groups. Hence, subtype,
nuclear grade, Ki67, and cT were baseline predictors of pCR, while
sTILs was a strongly predictive factor manually evaluated from
tumor-associated stroma.

Automated detection of the stromal compartment
The epithelium-stroma classifier (E-S classifier) was applied to
detect the stromal regions of all tiles cropped from the the region
of interest (ROIs) of each whole-slide image (WSI). A total of 55,078
tiles were generated from 1035 WSIs. A heatmap of the stroma
generated by CNN I is shown in Fig. 2 and Supplementary Fig. 2.
As a result, the E-S classifier achieved the accuracy of 0.806 and
0.827 for stroma identification in the validation and testing sets
(Supplementary Fig. 3 and Table 3), respectively. Furthermore, the
E-S classifier showed high precision values of 0.896 and 0.870,
which indicated that more than 85% of the area identified as
stroma was exactly correct. After manual intervention, 44 stromal
tiles per patient were enrolled on average. All remaining tiles were
used in the following experiments of developing a stroma-derived
predictor.

TS-score construction and validation
The construction pipeline of the TS-score is depicted in Fig. 2. A
total of 44,734 stromal tiles with double certification from the E-S
classifier and human observer were used. The Inception-V4
architecture was trained by learning from the stromal tiles with
given labels of pCR or non-pCR in the PC, and 5-fold cross
validation was used to determine the parameters of CNN II. After
scoring all tiles, the TS-score of a given patient was obtained from
calculating the mean value of the tile level, which reflected the
predictive probability of obtaining pCR based on the tumor
stromal compartment. The receiver operating characteristic (ROC)
curves and areas under the curve (AUCs) of the raw TS-scores in
the PC and three external validation cohorts are shown in Fig. 3.
The TS-score achieved an AUC of 0.729 to predict pCR in the PC
and AUCs of 0.745, 0.673, and 0725 in the V1, V2, and V3 datasets
at the WSI level. Additionally, the TS-score showed stable
performance in HR+ HER2- breast cancer (AUC: PC 0.767, VC1
0.804, VC2 0.784, VC3 1.00), while the patch-level performance of
the TS-score according to the three breast cancer subtypes is also
shown in Fig. 3. Detailed results are available in Supplementary
Tables 5 and 6.

Fig. 1 Patients recruitment and study design. 1035 patients out of 1820 with pretreatment H&E stained slides from four Chinese hospitals
were included in this study for stroma-derived biomarker development and validation.
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The TS-score is independent of clinical variables and improves
the prediction of pCR
To evaluate the independent predictive power of the TS-score for
pCR, we performed multivariate logistic regression analysis
including factors that were potentially correlated with pCR (Table 2
and Supplementary Table 7) in the four datasets; due to the
limited data size of the external validation cohorts, we combined
the three validation cohorts to perform the following analysis. As
shown in Table 2, the TS-score was significantly correlated with
pCR in univariate analysis (P < 0.001), and it remained predictive
when correcting for all other factors, including sTILs, subtype, T
stage, Ki67, and nuclear grade (P < 0.001). Subtype was also
significant (P < 0.001), but sTILs was not (P= 0.766), although sTILs
was indeed a significant predictor in multivariate analysis without
TS-score (P < 0.001). Similar results were observed in the external
validation cohorts, as the TS-score was an independent predictor
of pCR (P= 0.013) (Supplementary Table 7). Furthermore, using
the logistic regression method, we developed factor-based
prediction models of pCR to compare the predictive ability of
the TS-score with other clinic-pathological (CP) factors (Fig. 4a, b).

The TS score-based model yielded the best performance with an
AUC of 0.727 in the PC, which was comparable to the subtype-
based model (AUC= 0.727, P= 0.927) and even outperformed the
sTIL-based model (AUC= 0.651, P < 0.001), and similar results
were found in the validation cohorts. Detailed results are available
in Supplementary Table 8.
Univariate logistic regression analysis revealed that baseline CP

factors, including subtype, nuclear grade, Ki67, and cT, were
significantly predictive of pCR; sTILs and TS-score, stroma-derived
factors, were predictive as well. Therefore, a CP-based model
(CPM) combining subtype, nuclear grade, Ki67, and cT was
constructed using the primary cohort; moreover, a model
combining the factors above and the TS-score (CPTSM) was
developed to evaluate the prediction incremental value of the TS-
score. Additionally, a prediction model combining CP factors and
sTILs (CPTILM) was built for comparison. As shown in Fig. 4c, the
CPTSM yielded an AUC of 0.806 in the PC, while the CPM yielded
an AUC of 0.763 and the CPTILM yielded an AUC of 0.782. Using
the DeLong test, the CPTSM showed a significantly higher AUC
than either the CPM (P < 0.001) or the CPTILM (P= 0.005) (Table 3).

Table 1. Demographic and clinic-pathological characteristics.

PC (n= 695) V1 (n= 200) V2 (n= 91) V3 (n= 49) P

Age at diagnosis <0.001

<50 402 (57.8) 71 (35.5) 37 (40.7) 26 (53.1)

≥50 293 (42.2) 129 (64.5) 54 (59.3) 23 (46.9)

cT (%) <0.001

T1–T2 334 (48.1) 164 (82.0) 57 (62.6) 30 (61.2)

T3–T4 361 (51.9) 36 (18.0) 34 (37.4) 19 (38.8)

cN (%) <0.001

N0 58 (8.3) 35 (17.5) 27 (29.7) 16 (32.7)

N1–N3 637 (91.7) 165 (82.5) 64 (70.3) 33 (67.3)

HR status (%) 0.777

Negative 209 (30.1) 59 (41.8) 24 (26.4) 17 (53.1)

Positive 486 (69.9) 141 (58.2) 67 (73.6) 32 (46.9)

HER2 status (%) <0.001

Negative 479 (68.9) 179 (89.5) 57 (62.6) 27 (55.1)

Positive 216 (31.1) 21 (10.5) 34 (37.4) 22 (44.9)

Subtype (%) <0.001

HR+/HER2− 370 (53.2) 134 (67.0) 44 (48.4) 15 (30.6)

HER2+ 216 (31.1) 20 (10.0) 34 (37.4) 22 (44.9)

TNBC 109 (15.7) 46 (23.0) 13 (14.2) 12 (24.5)

Ki-67 index (%) 0.002

Low (<20%) 100 (14.4) 12 (6.0) 18 (19.8) 7 (14.3)

High (≥20%) 595 (85.6) 188 (94.0) 68 (74.7) 42 (85.7)

Unknown – – 5 (5.5) –

NG (%) <0.001

1/2 486 (69.9) 162 (81.0) 79 (86.8) 42 (85.7)

3 209 (30.1) 38 (19.0) 12 (13.2) 7 (14.3)

sTILs (%) 0.195

Low 397 (57.1) 125 (62.5) 53 (58.2) 20 (40.8)

Moderate 251 (36.1) 64 (32.0) 30 (33.0) 25 (51.0)

High 47 (6.8) 11 (5.5) 8 (8.8) 4 (8.2))

pCR (%) <0.001

Yes 169 (24.3) 35 (17.5) 37 (40.7) 13 (26.5)

No 526 (75.7) 165 (82.5) 54 (59.3) 36 (73.5)

HR hormone receptor, HER2 human epidermal growth factor receptor 2, sTILs stromal tumor-infiltrating lymphocytes, NG nuclear grade, pCR pathological
complete response.
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Similar results were also observed in the external validations; the
CPTSM significantly outperformed the CPM (P= 0.027) and
showed a higher AUC than the CPTILM, which was close to
significance (P= 0.078) (Fig. 4d and Table 3). The results for VC1,
VC2, and VC3 are available in Supplementary Fig. 6 and Table 9.

The TS-score reflects the stromal histological patterns that
correlate with pCR
To obtain an overall understanding of the histological patterns
that contribute to the exact prediction, the distributions of each
tile score in the PC were visualized, and the tiles corresponding to
extremal scores (top 10% and bottom 10%) were extracted for
manual evaluation. These extremal patches (n= 2980) were
classified into three stromal phenotypes, which were the
collagen-dominant type (C type), fibroblast-dominant type (F
type), and lymphocyte-dominant type (L type) [27]; tiles that did
not belong to any of the three types were excluded from the
analysis (Fig. 5c). High TS-score tiles were mainly L-type tiles, while
C-type stromal tiles were few (684/771, 10/771). In contrast, low
TS-score tiles mainly showed rich collagen or partly had a higher
distribution of F-type stroma and an extremely low percentage of
L-type stroma (1447/2209, 484/2209, 7/2209). A significant
difference was shown among the distributions of stromal type
between tiles of the highest 10% and lowest 10% TS-score

(P < 0.001) (Fig. 5a, b), as high scores were mostly predicted based
on lymphocyte-dominant regions and low scores were mostly
predicted based on collagen-dominant stroma.
To further determine the relationship between stromal histolo-

gical patterns and the treatment response to NAC, we also
assessed the stromal type of 1035 HE-stained images among the
four hospitals at the WSI level. In the pCR group, L-type stroma
was dominant (44.1%), while patients with C-type and F-type
stroma were more common in the non-pCR group (36.4 and
35.6%, P < 0.001) (Fig. 5e). Correspondingly, patients with L-type
stroma showed the highest TS scores, followed by those with
F-type stroma, and those with C-type stroma had the lowest TS-
scores (P < 0.001) (Fig. 5d). Additionally, the pCR rates were 14.2,
20.6, and 42.1% in patients with C-type stroma, F-type stroma, and
L-type stroma, respectively (Supplementary Table 10).

DISCUSSION
In this study, we proposed a new stroma-derived biomarker, the
TS-score, and investigated its predictive ability for treatment
response to NAC with a multicenter dataset. Experiments showed
that the TS-score is predictive of pCR independent of subtype,
tumor size, sTILs, nuclear grade, and Ki67, which can provide
complementary information for predicting pCR, outperforming
routine CP biomarkers. According to the histological patterns

Fig. 2 Image processing pipeline to develop a stromal-derived biomarker for predicting pCR. In the pre-processing step, the digitized HE-
stained slides were manually annotated and the ROIs were cropped as tiles (256 × 256 pixels at 10 ×magnification). With processed by the
CNN I (also referring the E-S classifier), stromal pixels within the ROIs were detected and highlighted in red, and the color, red to black,
indicates the probability of stroma from high to low. In the middle-processing step, a well-trained observer reviewed all tiles and removed the
stromal tiles that did not exactly matched with the ground truth. Stroma tiles with identified by both the CNN I and the human observer were
delivered to the CNN II and each tile was assigned with a score indicating the risk of achieving a pCR. In the post-processing step, all tile-level
scores of each WSI were summed and the mean value was calculated and named TS-score, which was deemed as a DL-based biomarker
derived from the stromal compartment and reflected the risk of pCR for breast cancer.
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reflected by the TS-score, interestingly, we discovered that stroma
with collagen and fibroblast dominance was likely associated with
an inadequate response to NAC, which was contrary to the
lymphocyte-dominant stroma. We also assessed the stromal type
on WSIs and further identified this relationship between stromal
histological patterns and pCR at the patient level. In summary, the
TS-score, which is directly obtained from routine HE-stained
images, can serve as a potential candidate to improve the
prediction of pCR in breast cancer.
Our study investigated the DL-based prediction of pCR to NAC

in breast cancer, a disease with the highest incidence in females
and with wide variations in the treatment response to NAC25.
Treatment planning for breast cancer is dependent on several
factors, such as clinical stage and molecular subtype. However,
due to their limited predictive ability, the field of breast oncology
is currently awaiting features that can better distinguish
chemotherapy sensitivity and chemotherapy resistance. In our
study, the TS-score outperformed the baseline predictors in
predicting pCR and performed as well as molecular subtype in the
primary and external validation cohorts, despite using only a very
small portion of each histological image. Remarkably, the TS-score
even outperformed sTILs even though both are stromal histolo-
gical predictors of pCR. Given that histological assessment of sTILs
has been limited by considerable intra- and interobserver
variability, the TS-score can effectively extract the predictive

information from histological images via a highly reproducible and
quantitative approach that compensates for the defect of sTILs.
Additional investigations of the independence of the TS-score
revealed that it can provide complementary information to the
baseline factors for predicting pCR, and the comparisons of
models demonstrated that the addition of the TS-score can
improve the prediction performance with statistical significance,
which is meaningful because improving the prediction perfor-
mance can facilitate favorable patient care in NAC settings.
In breast cancer, the potential ability of tumor-associated

stroma was investigated via manual pathological evalua-
tion22–24,26, molecular biological assays27,28, and digital pathologi-
cal techniques18,29, showing that the stroma could facilitate
disease classification and outcome prediction. However, to our
knowledge, the potential information in the stromal compartment
has not been mined to predict pCR by DL techniques. Therefore,
our study constitutes a precedent for objectively assessing hidden
information from the stroma and proposing a stroma-derived
biomarker to improve the prediction of pCR in breast cancer.
Conventionally, pathological diagnosis is based largely on the
histological appearance and molecular characteristics of epithelial
cells, while stromal alterations are often subtle and difficult to
characterize and quantify by manual evaluation. Moreover, the
tumor stroma is highly heterogeneous and complex in breast
cancer, which could be challenging for ROI selection and

Fig. 3 ROC curves of TS-score in the four hospitals. a–d Show the WSI-level and patch-level performance of TS-score in the total dataset
among the four centers; e–h show the WSI-level performance of TS-score in different breast cancer subtypes, and i–l show the patch-level
performance of TS-score in different breast cancer subtypes.

F. Li et al.

5

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2022)   124 



automated identification of the tumor stroma. Hence, manual
annotation was required in our study to select representative
regions, as in a previous study in prostate cancer19. Unlike
automated detection for tumor epithelium20, stroma identification

is a more difficult task; hence, we employed state-of-the-art
algorithms and used a larger sample size to construct an improved
model to detect the stromal pixels within ROIs. Unlike Kather and
colleagues17, who quantified the various components of the

Table 2. Univariate and multivariate analysis of TS-score correlating with pCR in primary cohort.

Factors Univariate analysis Multivariate analysisa Multivariate analysisb

OR(95% CI) P OR(95% CI) P OR(95% CI) P

TS-score – <0.001 – – – <0.001

Subtypes – <0.001 – <0.001 – <0.001

HR+/HER2− 1 – 1 – 1 –

HER2+ 9.28 (5.91–14.6) <0.001 7.47 (4.66–12.0) <0.001 7.73 (4.76–12.5) <0.001

TNBC 5.21 (3.04–8.93) <0.001 3.73 (2.10–6.62) <0.001 3.33 (1.86–5.97) <0.001

sTILs – <0.001 – <0.001 – 0.766

Low 1 – 1 – 1 –

Moderate 7.58 (4.00–14.4) <0.001 1.76 (1.16–2.69) 0.009 1.03 (0.64–1.66) 0.905

High 2.78 (1.47–5.25) 0.002 4.58 (2.20–9.54) <0.001 1.36 (0.57–3.27) 0.490

cT 0.61 (0.43–0.86) 0.005 0.73 (0.49–1.10) 0.130 0.77 (0.51–1.16) 0.204

Ki67 2.63 (1.40–4.94) 0.003 1.40 (0.69–2.81) 0.348 1.19 (0.58–2.46) 0.636

NG 2.59 (1.80–3.70) <0.001 1.37 (0.91–2.07) 0.137 1.21 (0.79–1.85) 0.372

Multivariate analysis arefers to the multivariate analysis excluding TS-score; Multivariate analysis brefers to the multivariate analysis including the TS-score.
TS-score tumor-stroma score, HR hormone receptor, HER2 human epidermal growth factor receptor 2, sTILs stromal tumor-infiltrating lymphocytes, NG
nuclear grade.

Fig. 4 ROC curves of the marker-based models. The top row shows the performance of the single marker-based models for predicting pCR
in the primary cohort (a) and the three external validations (b). The bottom row shows the performance of the baseline marker-based model
(CPM), the baseline marker and sTILs-based model (CPTILM), and the baseline marker and TS-score-based model (CPTSM) for predicting pCR in
three three external validations (c, d).
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stroma in colorectal cancer and combined them into a stroma
score, the CNN II in our study learned directly from the stromal
compartment, integrating the predictive information into a
biomarker: the TS-score. Compared to their study, an end-to-end
approach to extract information is likely simpler and more likely to
discover the hidden interaction patterns between different
components despite the weakened interpretability.
Another important aspect of the TS-score is its interpretability.

As in all studies using DL-based methods, one question always
arises: what exactly does the output score represent? Essentially,
many DL-based models are complicated neural networks that may
have tens to thousands of layers30, making it challenging to
interpret their predictions in a way that humans can understand.
This is crucial, however, as these will be widely used and
supported only when the underlying decision process can be
understood. In fact, we have tried to present more explanations
for the predictions of our DL approach from the pathological
perspective, similar to the study of Courtiol et al14. Primarily, by
visually examining the predictions of our DL approach, we
discovered that the predictions of our DL-based approach seems
to be able to reflect some stroma-histological patterns which have
been shown to be correlated with the prognosis of breast cancer
in a previous study31. Subsequently, on the basis of this discovery,
we further tried to interpret the predictions of our DL-based
approach with existing pathological knowledge, which revealed
that the output score (TS-score) of our DL-based approach shows
diversity in different stromal types both on patch level and WSI
level. Finally, referring to the revealed diversity of TS-score in
various stromal types, we conducted statistical analyses and
manual assessments based on stroma-histological types. The
results have shown to be correlated with treatment response in
breast cancer (Fig. 5), which proves that the predictions of our DL-
based approach not only reflect some existing prior pathological
knowledge22,23 but also can provide new insights, which may not
be noticed before, for predicting treatment response to NAC from
stroma histology. For instance, the explanations suggested that
breast cancer with collagen and fibroblast-dominant stroma may
have a high risk of failing to achieve pCR, but these histological
patterns have not yet been widely acknowledged as character-
istics of chemo-resistance behavior or taken into account in
pathological evaluation paradigms. Therefore, even though the
offered explanations for the predictions of our DL method from
the pathological side in this study are far from being complete
theoretical explanations, they have strengthened our confidence
in DL techniques for medical decision-making.
In fact, AI technique-based image analysis has broad applica-

tions in modern medicine. In radiology, some DL-based inventions

have already been approved by the FDA32,33. Compared to these
imaging modalities, histological images contain more abundant
information and provide the gold standard for diagnosis;
combining AI techniques has promising prospects for clinical
use. The clinical translation of digital pathology, however, is still in
its infancy. To advance clinical applications, large amounts of
training data and robust multicenter validation are needed, while
many current studies are hampered by these limitations. In the
present study, we addressed these limitations: four independent
datasets of more than one thousand cases were used to establish
and validate the CNN-based TS-score as a predictive biomarker in
breast cancer. With this approach, we showed that the DL-based
stromal score improved the prediction of pCR in breast cancer.
Furthermore, by validating it in three external datasets, we
confirmed the predictive potential of this approach. Therefore, we
presented a novel candidate for NAC response prediction, which
could be combined with existing predictors to better stratify
patients and facilitate clinical decision-making.
The study had some limitations. Although 1035 breast cancer

patients were recruited from four hospitals, the size of the
validation dataset was limited, with two validation cohorts
including fewer than 100 patients. Furthermore, we only
included retrospective data, and this study needs to be validated
prospectively.
Despite these limitations, our study is the first to show the

potential ability of the breast cancer stromal compartment in pCR
prediction via a DL-based approach. Furthermore, the findings of
this study provide some insight into the different characteristics of
the TME between pCR and non-pCR breast cancer patients. Future
work will need to replicate and validate these findings in larger
cohorts and prospective clinical trials. In addition, we will continue
our studies on the spatial patterns between the tumor epithelium
and stroma to further explore the potential of breast cancer
histology.

METHODS
Study design
Based on a multicenter study of 1035 breast cancer patients from
four independent Chinese hospitals, a new biomarker, called TS-
score, directly derived from the tumor stromal compartment,
was proposed to predict the treatment response to NAC in
patients with primary invasive breast cancer. Histopathological
assessment of the resected breast specimens after surgery was
used as the reference standard, and the TS-score was compared
with baseline CP variables and manually evaluated TILs derived
from the tumor stroma. The predictive incremental value of the
TS-score for predicting pCR was also evaluated using the CP
variable-based model as the reference baseline. In addition, we
explored the potential histological patterns of the breast cancer
stroma that the TS-score characterized. Our study was approved
by the ethics committee of each participating hospital and
abided by the Declaration of Helsinki before using tissue samples
for scientific research purposes only. The requirement to obtain
informed consent from the participants was waived by the ethics
committee.

Patients
The inclusion criteria were as follows: (1) patients with primary
invasive ductal breast cancer; (2) patients without distant
metastasis; (3) patients receiving four, six, or eight cycles of
anthracycline and/or taxane-based NAC regimens, and patients
with HER2+ diseases who underwent targeted HER2 therapy (NAC
regimens are detailed in Supplementary Table 2); and (4) patients
who had undergone surgical treatment after NAC. On the other
hand, patients with HE-stained slides of poor quality, including
tissue-processing artifacts such as bubbles, discoloration, and

Table 3. AUCs of models for pCR prediction in the primary and
validation cohorts.

CPTSM (95% CI) CPTILM (95% CI) CPM (95% CI)

PC 0.806 (0.78–0.83) 0.782 (0.73–0.83) 0.763 (0.72–0.81)

p value1 <0.001 0.04 1

p value2 0.005 1 –

VCs 0.788 (0.783–0.793) 0.762 (0.756–0.768) 0.747 (0.742–0.752)

p value1 0.027 0.180 1

p value2 0.078 1 –

p value refers to Delong test for the differences of AUCs between different
metrics in different cohorts; p value1 refers the comparisons with the CPM
while p value2 refers the comparisons with CPTILM.
AUC area under receiver operating characteristic curve, pCR pathological
complete response, CPM clinicopathology-based model, CPTILM clinico-
pathology and sTILs based model, CPTSM clinicopathology and TS-score
based model.

F. Li et al.

7

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2022)   124 



soiling caused by long storage time and low tissue volume, were
excluded from our study. In total, 1035 eligible patients were
enrolled, and a detailed recruitment flowchart is shown in Fig. 1
and the criteria were in Supplementary Table 1. The dataset with
the largest population was assigned as PC for developing the
image-derived predictor, and the other three cohorts were used as
validation cohorts (V1–V3).
Our study approved by the ethical committee of West China

Hospital, Sichuan University (No.764 in 2021), and abided with the
Declaration of Helsinki before using tissue samples for scientifc
researches purpose only. The other three hospitals, including
Shanxi Cancer Hospital, Sichuan Province People’s Hospital, and
the Affiliated Hospital of Southwest Medical University have
accepted the decision of the ethical committee of West China
Hospital, Sichuan University. The written informed consent was
waived by the ethical committee for this retrospective study

Data and image acquisition
Histological sections and CP data were obtained from the
corresponding hospitals and delivered to the central laboratory
for a unified process. Sections of HE-stained, formalin-fixed,
paraffin-embedded breast cancer biopsies were manually
reviewed to exclude cases with tissue-processing artifacts or poor
staining. Eligible sections were digitally scanned at
40 ×magnification using a Hamamatsu scanner (NanoZoomer-XR
C12002, Hamamatsu, Japan). Clinical variables, such as age at
diagnosis, tumor size, and clinical lymph node status, were
gathered from the medical records at each institution, and
pathological indicators, including ER, PR, HER2, and Ki67 results,
were collected from the pathological diagnostic reports. No less
than 1% of positive cells for ER/PR IHC examination was defined as
ER/PR positive, and ER- and/or PR-positive breast cancer was
classified into HR+ disease. For HER2 status, IHC 3+ and/or
amplification by fluorescence in situ hybridization (FISH) were

regarded as positive; otherwise, IHC 0/1+ and IHC 2+ with no
amplification by FISH indicated HER2-negative (HER2−) disease.
According to ref. 34, 20% was set as the cutoff point for Ki67, which
grouped the patients into a high expression cohort and a low
expression cohort. The pathological response to NAC was
reviewed at the center laboratory, and the patients were classified
into a pCR group and a non-pCR group at each hospital. Here, pCR
referred to the elimination of invasive tumor cells at the primary
breast site (ypT0).

Pathological evaluation
Stromal TILs (sTILs) was assessed following the international
recommendation guidelines35. In brief, all stromal mononuclear
cells within the tumor border, including lymphocytes and plasma
cells but not macrophages and neutrophils, were counted, and the
percentage of sTILs was estimated as a semi-quantitative
continuous parameter indicating the density of sTILs. In addition,
sTILs was categorized into three grades: low (≤10%), moderate
(11–39%), and high (≥40%)35. Nuclear grade was assessed based
on the Nottingham grading system. Additionally, stromal type
classification was performed at the patch level and WSI level by
two well-trained observers following the criteria described in
previous studies31. According to the main component of the
stroma, patches/WSIs were classified into the C type, F type, and L
type; cases that did not fall into one of the three categories were
categorized as the unclassified type. The sTILs, nuclear grade, and
stromal type were evaluated on the digital images by two
independent observers at the center laboratory, and inconsistent
cases were reviewed to reach a consensus.

ROI annotation
We developed a customized image processing pipeline consisting
of three main steps: annotation of ROI, training, and employment
of E-S classifier, and TS-score development (Fig. 2).

Fig. 5 TS-score reflects the stromal histological patterns associated with the pCR. The underlying histological patterns of TS-score
characterizing at the patch-level (a, b) and WSI-level (c–e). a Tiles with extremal TS-scores associated with pCR and non-pCR were extracted to
be reviewed by a pathologist. Scale bars, 233 μm. b The distribution of tiles with different stromal type between extremal high TS-score and
low TS-score group. c Examples of different stromal type: collagen-dominant stromal (C type), fibroblast-dominant stroma (F type),
lymphocyte-dominant stroma (L type). Scale bars, 100 μm. d The distributions of TS-scores among the three stromal type evaluated at WSI-
level. e The different percentage of the three stromal type between pCR and non-pCR group.
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In this study, we aimed to investigate the predictive potentials
of tumor stroma in breast cancer. Unlike the tumor epithelium
which contains only tumor cells, stroma is a complex tumor
microenvironment that includes not only cells like lymphocytes,
fibroblasts, endothelia cells but also non-cellular components
forming the extracellular matrix. As tumor stroma is of high
heterogeneity across a WSI, ROI selection was of vital importance
for investigating the stroma compartment.
Therefore, representative literature related to tumor stromal

assessments were reviewed. In some investigations of the tumor
stroma, they proposed their standard of the investigated regions.
For instance, the tumor-stroma ratio was assessed in some
studies36–40; in their illustrations, fields were scored where both
stroma and tumor were present and tumor cells were seen on all
sides of the microscopic image field (north east south west).
Similarly, in the study of the correlation between the stromal
organization and pathological response to NAC, Dekker et al.
thought that only stromal tissues surrounded by tumor cells in
each corners were included to the analysis26. Moreover, the study
of the prognostic value of the stroma morphology in prostate
cancer, the stroma regions identified in the representative tumor
regions selected by pathologists were used for the experiments19,
similar to the study of Beck et al18. Based on the above reference
and the recommended guidelines of tumor-infiltrating lympho-
cyte35, we assumed that only the stroma surrounded by the tumor
cells within the representative tumor regions contained predictive
information. Representative tumor regions containing tumor
stroma were manually annotated on each WSI, ensuring that the
stroma inside the ROIs was near the tumor and surrounded by
tumor cells19,26,36. Images from ROIs were preprocessed and
cropped into 233 × 233 μm squares (256 × 256 pixels at
10 ×magnification) called “tiles”.

Training and employment of the E-S classifier
For the training data, two annotation strategies for tumor
epithelium were used by a well-trained pathological observer to
better train the model while using less manual efforts41, which
were as follows: (1) 105 WSIs were roughly annotated to produce
noisy sample one (NS_1), detail descriptions as follows: annotate
the tumor cells inside the black rectangle regions in yellow,
ensuing that all tumor cells were included in the annotations and
allowing some false annotations (mainly referring the stroma was
inside the epithelium annotations) (see Supplementary Fig. 1); (2)
20 WSIs were precisely but partially annotated to produce noisy
sample two (NS_2), detail descriptions as follows: annotate the
tumor cells inside the black rectangle regions in yellow, ensuring
all the annotated areas were exactly the tumor epithelium and no
need to annotate all the tumor cells (indicating that some tumor
cells could be missed for annotations) (see Supplementary Fig. 1).
NS_1 contains 992 pairs of images and corresponding noisy

labels and NS_2 contains 142 pairs of images and corresponding
noisy labels. We also prepared a knowledge base (KB) which
contains a list of semantic descriptions for tumor segmentation
task in pre-treatment HE-stained biopsied images (Supplementary
Fig. 2). The prepared NS_1, NS_2 and KB were employed to train
an image semantic segmentation model for the task of identifying
the tumor stroma. Images were cropped into 256 × 256 pixels
(width × height) at 10 ×magnification (called “tile”/patch)41.
We employed one-step abductive multi-target learning with

diverse noisy samples (OSAMTL-DNS) to learn the labeled noise
samples more effectively41, as shown in Supplementary Fig. 2.
OSAMTL-DNS inherited the original one-step abductive multi-
target learning (OSAMTL)42 and extended it to handle different
noise samples. OSAMTL-DNS consists of three main sections: one-
step abductive logical reasoning with diverse noisy samples
(OSALR-DNS), target rearrangement, and multi-target learning.

More details of the implementations of OSAMTL-DNS are provided
in ref. 41.

OSALR-DNS
With the given NS_1, NS_2, and KB, OSALR-DNS, which consists of
four sub-steps, abduces multiple targets containing information
were consistent with the domain knowledge about the true target
of the tumor segmentation task in pre-treatment H&E-stained
biopsy images (as shown the green section in the Supplementary
Fig. 2)

Target rearrangement
The target rearrangement step takes the multiple targets
produced by OSALR-DNS as input and produce ordered multiple
targets that are corresponding to each of the two given NS_1 and
NS_2 (as shown in the blue section in Supplementary Fig. 2).

Multi-target learning
On the basis of the rearranged targets t ̃ (the binary image of the
blue frame in Supplementary Fig. 2) and the target prediction t
(the binary image of the red frame in Supplementary Fig. 2) of the
DCNN architecture, we employ cross entropy (CE) to implement
the multi-target learning procedure by Eq. (1)

L t;et;CE
� � ¼ 1

n

Xn

j¼1
α1CE tj ;etj;1

� �þ α2CE tj;etj;2
� �� �

s:t: α1 þ α2 ¼ 1

(1)

To optimized the parameters of the DCNN architecture, we
employ stochastic gradient descent (SGD) to implement the
objective by Eq. (2)

mini L t;et;CE
� �

; SGD
� �

(2)

(as shown in the red section in Supplementary Fig. 2)
With the three procedures done, a E-S classifier for identifying

tumor stroma (regions out of belonging to epithelium were
deemed as the tumor stroma in the ROIs) was developed.
Based on the training process, an E-S classifier was generated,

which could be employed to identify the tumor stroma regions
inside the ROIs (as shown the inference part in Fig. 2S). The test set
of 19 WSIs were accurately annotated by the pathology expert to
produce a relatively noisy-free dataset (RNFS) (also called ground-
truth). RNFS contains 158 pairs of images and corresponding
accurate labels, among which 79 pairs are for validation and 79
pairs are for testing. We employed the validation set to select the
best segmentation model and used the testing set to evaluate the
generalization of the selected model. The performance of E-S
classifier (CNN I) in the validation and testing set was shown in the
Supplementary Table 2. Furthermore, Supplementary Fig. 3 shows
the confusion matrix of the E-S classifier for identifying the stroma.

The development of TS-score
Among the total of 1035 WSIs, 55,078 tiles were cropped from the
ROIs. The E-S classifier was used to identify the stroma inside the
ROIs. To check the stroma tiles prepared for the following
experiments were in the correct classification, a well-trained
human observer carefully reviewed all tiles with regions predicted
as epithelium or stroma by CNN I (E-S classifier). Meanwhile, IHC
sections of CK5/6 and P63 were used as the reference standard if
necessary. Tiles containing misclassified stroma, blank regions,
and necrosis (see Supplementary Fig. 4) were removed. Finally,
10,344 tiles were excluded and the rest 44,734 were remained.
To develop a stroma-based biomarker for predicting pCR,

Inception-V4 was selected as the base DL architecture43. Weighted
cross-entropy44 and stochastic gradient descent (SGD)45 were
used in optimization. Moreover, we used the fast ensemble DL
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strategy to further boost the optimization of the prediction part of
CNN II46–48. After scoring all tiles, an averaged value from all the
tiles of each WSI was calculated as the TS-score, which reflected
the probability of obtaining pCR for an individual patient (Fig. 2
and Supplementary Fig. 5).

Statistical analysis
Comparisons among cohorts and between the pCR and non-pCR
groups were made with the Pearson χ2 test or Fisher’s test for
qualitative variables (Table 1 and Supplementary Table 4), while
the t test or Mann–Whitney U test was used for continuous
variables (Fig. 5). Univariate and multivariate logistic regression
methods were used to investigate the correlations between
factors and pCR in the PC and VCs. AUCs and 95% confidence
interval (95% CI) were used to evaluate the prediction perfor-
mance, and the DeLong test was used to compare the difference
between AUCs49. The AUC of bootstrap analysis (100 repetitions)
was calculated to estimate the CI in the validations, while 5-fold
cross validation was used in the PC. All statistical analyses were
two-sided, and a P value less than 0.05 indicated statistical
significance. The statistical analyses were performed using SPSS
software, version 25.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Data used and/or analyzed during the current study are available from the
corresponding author on reasonable request.

CODE AVAILABILITY
Python implementation of the TS-score pipeline is maintained in GitHub repository:
https://github.com/YongQuanYang/TS-Score.

Received: 17 May 2022; Accepted: 21 October 2022;

REFERENCES
1. Derks, M. G. M. & van de Velde, C. J. H. Neoadjuvant chemotherapy in breast

cancer: More than just downsizing. Lancet Oncol. 19, 2–3 (2018).
2. von Minckwitz, G. et al. Response-guided neoadjuvant chemotherapy for breast

cancer. J. Clin. Oncol. 31, 3623–3630 (2013).
3. Cortazar, P. et al. Pathological complete response and long-term clinical benefit

in breast cancer: The CTNeoBC pooled analysis. Lancet 384, 164–172 (2014).
4. Cain, H. et al. Neoadjuvant therapy in early breast cancer: Treatment considera-

tions and common debates in practice. Clin. Oncol. (R. Coll. Radiologists (Gt. Br.))
29, 642–652 (2017).

5. Haque, W. et al. Response rates and pathologic complete response by breast
cancer molecular subtype following neoadjuvant chemotherapy. Breast Cancer
Res. Treat. 170, 559–567 (2018).

6. Echle, A. et al. Deep learning in cancer pathology: A new generation of clinical
biomarkers. Br. J. Cancer 124, 686–696 (2020).

7. Acs, B., Rantalainen, M. & Hartman, J. Artificial intelligence as the next step
towards precision pathology. J. Intern. Med. 288, 62–81 (2020).

8. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale
image recognition. Preprint at https://arxiv.org/abs/1409.1556 (2014).

9. Ehteshami Bejnordi, B. et al. Diagnostic assessment of deep learning algorithms
for detection of lymph node metastases in women with breast cancer. Jama 318,
2199–2210 (2017).

10. Bulten, W. et al. Automated deep-learning system for Gleason grading of prostate
cancer using biopsies: A diagnostic study. Lancet Oncol. 21, 233–241 (2020).

11. Campanella, G. et al. Clinical-grade computational pathology using weakly
supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019).

12. Akbar, S., Jordan, L. B., Purdie, C. A., Thompson, A. M. & McKenna, S. J. Comparing
computer-generated and pathologist-generated tumour segmentations for

immunohistochemical scoring of breast tissue microarrays. Br. J. Cancer 113,
1075–1080 (2015).

13. Coudray, N. et al. Classification and mutation prediction from non-small cell lung
cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).

14. Courtiol, P. et al. Deep learning-based classification of mesothelioma improves
prediction of patient outcome. Nat. Med. 25, 1519–1525 (2019).

15. Woerl, A. C. et al. Deep learning predicts molecular subtype of muscle-invasive
bladder cancer from conventional histopathological slides. Eur. Urol. 78, 256–264
(2020).

16. Zhang, F. et al. Predicting treatment response to neoadjuvant chemor-
adiotherapy in local advanced rectal cancer by biopsy digital pathology image
features. Clin. Transl. Med. https://doi.org/10.1002/ctm2.110 (2020).

17. Kather, J. N. et al. Predicting survival from colorectal cancer histology slides using
deep learning: A retrospective multicenter study. PLoS Med. 16, e1002730 (2019).

18. Beck, A. H. et al. Systematic analysis of breast cancer morphology uncovers
stromal features associated with survival. Sci. Transl. Med. 3, 108ra113 (2011).

19. Bhargava, H. K. et al. Computationally derived image signature of stromal mor-
phology is prognostic of prostate cancer recurrence following prostatectomy in
African American patients. Clin. Cancer Res. 26, 1915–1923 (2020).

20. Li, F. et al. Deep learning-based predictive biomarker of pathological complete
response to neoadjuvant chemotherapy from histological images in breast
cancer. J. Transl. Med. 19, 348 (2021).

21. Conklin, M. W. & Keely, P. J. Why the stroma matters in breast cancer: Insights into
breast cancer patient outcomes through the examination of stromal biomarkers.
Cell Adhes. Migr. 6, 249–260 (2012).

22. Denkert, C. et al. Tumour-infiltrating lymphocytes and prognosis in different
subtypes of breast cancer: a pooled analysis of 3771 patients treated with
neoadjuvant therapy. Lancet Oncol. 19, 40–50 (2018).

23. Denkert, C. et al. Tumor-associated lymphocytes as an independent predictor of
response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 28,
105–113 (2010).

24. Hagenaars, S. C. et al. Tumor-stroma ratio is associated with Miller-Payne score
and pathological response to neoadjuvant chemotherapy in HER2-negative early
breast cancer. Int. J. Cancer 149, 1181–1188 (2021).

25. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA: Cancer
J. Clin. 72, 7–33 (2022).

26. Dekker, T. J. et al. Disorganised stroma determined on pre-treatment breast
cancer biopsies is associated with poor response to neoadjuvant chemotherapy:
Results from the NEOZOTAC trial. Mol. Oncol. 9, 1120–1128 (2015).

27. Farmer, P. et al. A stroma-related gene signature predicts resistance to neoad-
juvant chemotherapy in breast cancer. Nat. Med. 15, 68–74 (2009).

28. Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer.
Nat. Med. 14, 518–527 (2008).

29. Ehteshami Bejnordi, B. et al. Using deep convolutional neural networks to identify
and classify tumor-associated stroma in diagnostic breast biopsies. Mod. Pathol.
31, 1502–1512 (2018).

30. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
31. Ahn, S. et al. The prognostic significance of tumor-associated stroma in invasive

breast carcinoma. Tumour Biol.: J. Int. Soc. Oncodev. Biol. Med. 33, 1573–1580
(2012).

32. Ardila, D. et al. End-to-end lung cancer screening with three-dimensional deep
learning on low-dose chest computed tomography. Nat. Med. 25, 954–961
(2019).

33. Luo, H. et al. Real-time artificial intelligence for detection of upper gastro-
intestinal cancer by endoscopy: A multicentre, case-control, diagnostic study.
Lancet Oncol. 20, 1645–1654 (2019).

34. Goldhirsch, A. et al. Personalizing the treatment of women with early breast
cancer: Highlights of the St Gallen International Expert Consensus on the Primary
Therapy of Early Breast Cancer 2013. Ann. Oncol. 24, 2206–2223 (2013).

35. Salgado, R. et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast
cancer: Recommendations by an International TILs Working Group 2014. Ann.
Oncol. 26, 259–271 (2015).

36. de Kruijf, E. M. et al. Tumor-stroma ratio in the primary tumor is a prognostic
factor in early breast cancer patients, especially in triple-negative carcinoma
patients. Breast Cancer Res. Treat. 125, 687–696 (2011).

37. Dekker, T. J. et al. Prognostic significance of the tumor-stroma ratio: Validation
study in node-negative premenopausal breast cancer patients from the EORTC
perioperative chemotherapy (POP) trial (10854). Breast Cancer Res. Treat. 139,
371–379 (2013).

38. Vangangelt, K. M. H. et al. Prognostic value of tumor-stroma ratio combined with
the immune status of tumors in invasive breast carcinoma. Breast Cancer Res.
Treat. 168, 601–612 (2018).

39. Vangangelt, K. M. H. et al. The prognostic value of the tumor-stroma ratio is most
discriminative in patients with grade III or triple-negative breast cancer. Int. J.
Cancer 146, 2296–2304 (2020).

F. Li et al.

10

npj Breast Cancer (2022)   124 Published in partnership with the Breast Cancer Research Foundation

https://github.com/YongQuanYang/TS-Score
https://arxiv.org/abs/1409.1556
https://doi.org/10.1002/ctm2.110


40. Mesker, W. E. et al. The carcinoma-stromal ratio of colon carcinoma is an inde-
pendent factor for survival compared to lymph node status and tumor stage. Cell
Oncol. 29, 387–398 (2007).

41. Yang, Y. One-step abductive multi-target learning with diverse noisy samples.
Preprint at https://arxiv.org/abs/2110.10325 (2021).

42. Yang, Y., Yang, Y., Chen, J., Zheng, J. & Zheng, Z. Handling noisy labels via one-
step abductive multi-target learning. Preprint at https://arxiv.org/abs/2011.14956
(2020).

43. Szegedy, C. et al. Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning[J]. Proceedings of the AAAI Conference on Artificial
Intelligence 31 (2017).

44. Aurelio, Y. S., de Almeida, G. M., de Castro, C. L. & Braga, A. P. Learning from
imbalanced data sets with weighted cross-entropy function. Neural Process. Lett.
50, 1937–1949 (2019).

45. Theodoridis, S. Machine Learning (ed Theodoridis, S.) 161–231 (Academic Press,
2015).

46. Yang, Y. et al. Local minima found in the subparameter space can be effective for
ensembles of deep convolutional neural networks. Pattern Recognit. 109, 107582
(2020).

47. Yongquan, Y., Haijun, L., Ning, C., Yang, W. & Zhongxi, Z. FTBME: Feature transferring
based multi-model ensemble. Multimed. Tools Appl. 79, 18767–18799 (2020).

48. Yang, Y., Lv, H. & Chen N. A survey on ensemble learning under the era of deep
learning[J]. Artif. Intell. Rev. 1–45 https://doi.org/10.1007/s10462-022-10283-5 (2022).

49. DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under
two or more correlated receiver operating characteristic curves: A nonparametric
approach. Biometrics 44, 837–845 (1988).

ACKNOWLEDGEMENTS
This work was supported by the 1·3·5 project for disciplines of excellence
(ZYGD18012); the Technological Innovation Project of Chengdu New Industrial
Technology Research Institute (2017-CY02–00026-GX).

AUTHOR CONTRIBUTIONS
F.L., Y.Y., H.B., and Z.Z. designed and supervised this project. F.L., Y.W., Y.Z., J.F., and
X.X. collected the data used in this study. Y.Y. and F.L. completed the data analysis

and interpretation. F.L. wrote the initial paper. Y.Y., Z.Z., and H.B. edited the paper. All
authors discussed the results and approved the paper.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41523-022-00491-1.

Correspondence and requests for materials should be addressed to Zhongxi Zheng
or Hong Bu.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

F. Li et al.

11

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2022)   124 

https://arxiv.org/abs/2110.10325
https://arxiv.org/abs/2011.14956
https://doi.org/10.1007/s10462-022-10283-5
https://doi.org/10.1038/s41523-022-00491-1
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Predicting neoadjuvant chemotherapy benefit using deep learning from stromal histology in breast cancer
	Introduction
	Results
	Clinical characteristics
	Automated detection of the stromal compartment
	TS-score construction and validation
	The TS-score is independent of clinical variables and improves the prediction of pCR
	The TS-score reflects the stromal histological patterns that correlate with pCR

	Discussion
	Methods
	Study design
	Patients
	Data and image acquisition
	Pathological evaluation
	ROI annotation
	Training and employment of the E-S classifier
	OSALR-DNS
	Target rearrangement
	Multi-target learning
	The development of TS-score
	Statistical analysis
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




