
ARTICLE OPEN

ZNF92, an unexplored transcription factor with remarkably
distinct breast cancer over-expression associated with
prognosis and cell-of-origin
Mohammad Kamran 1,3, Udayan Bhattacharya1,3, Mohamed Omar1, Luigi Marchionni 1 and Tan A. Ince 1,2✉

Tumor phenotype is shaped both by transforming genomic alterations and the normal cell-of-origin. We identified a cell-of-origin
associated prognostic gene expression signature, ET-9, that correlates with remarkably shorter overall and relapse free breast cancer
survival, 8.7 and 6.2 years respectively. The genes associated with the ET-9 signature are regulated by histone deacetylase 7 (HDAC7) partly
through ZNF92, a previously unexplored transcription factor with a single PubMed citation since its cloning in 1990s. Remarkably, ZNF92 is
distinctively over-expressed in breast cancer compared to other tumor types, on a par with the breast cancer specificity of the estrogen
receptor. Importantly, ET-9 signature appears to be independent of proliferation, and correlates with outcome in lymph-node positive,
HER2+, post-chemotherapy and triple-negative breast cancers. These features distinguish ET-9 from existing breast cancer prognostic
signatures that are generally related to proliferation and correlate with outcome in lymph-node negative, ER-positive, HER2-negative breast
cancers. Our results suggest that ET-9 could be also utilized as a predictive signature to select patients for HDAC inhibitor treatment.
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INTRODUCTION
A recent pan-cancer multi-omics study concluded that cell-of-origin
patterns dominate the molecular classification of 10,000 tumors
from 33 types of cancer1. While all the cells in the body share the
same DNA, the different tissue and cell types are created from the
same genome by epigenetic changes involving up to a third of the
entire epigenome2,3. Consequently, the normal cell-of-origin epige-
nomic profile continues to shape the tumor phenotype through
interactions with transforming genetic alterations4,5. It has been
shown that cell-origin based classification of human tumors
significantly improves the taxonomy and biological understanding
of breast, ovarian, pancreatic, gastric, and kidney cancers, as well as
melanoma, retinoblastoma, and lymphoma6–15.
Many components of cellular physiology, such as gene

expression, signaling, metabolism and proliferation display
features of adaptive complex systems that are known to be
non-linear and sensitive to initial conditions, i.e., small differences
in the initial conditions may produce vastly different out-
comes16–19. As such, it stands to reason that the normal cell-of-
origin represent the most proximal and dominant initial condition
for malignant transformation.
Previously, we reported an example of the cellular initial

condition sensitivity in a human breast cancer model20. While
many studies suggest that the cell-of-origin plays a role in
determining tumor phenotype21–28, translating these results into
actionable mechanisms had been difficult. We exploited a method
developed by Hahn and Weinberg et al., who created the first
human tumor model using completely defined genetic ele-
ments29. This approach allows ruling-out genetic background
differences and secondary mutations as a source of phenotypic
heterogeneity20; hence, it is particularly suited to explore
epigenomic mechanisms4,5.
In brief, we used identical genetic elements to transform two

different normal cell-of-origins (CO-B and CO-H) isolated from the

same donor20. Implantation of these isogenic cells into mice
revealed that while the CO-B derived BPLER cells formed invasive
and metastatic tumors, the CO-H derived HMLER cells formed non-
metastatic indolent tumors (Fig. 1a)20. Since the publication of
these observations, several studies reported similar results
confirming that transformation of different breast cell-of-origins
results in distinct breast cancer phenotypes21–23.
The direct inheritance of pre-existing cell-of-origin features is a

familiar observation where “tumor biology will mimic the physiology
of normal cell development at the time of initiation and this is
preserved at least partly onwards”30. For example, since the normal
blood cells already travel across the body with ease, one does not
use the term metastasis to describe the behavior of hematopoietic
malignancies. In this case the malignant hallmark is a direct
inheritance from the normal cell-of-origin.
However, reducing the cell-of-origin impact to pre-existing

features excludes emergent properties associated with complex
adaptive systems31,32. Some features may arise through a cell type
specific interaction of the transformation process with the internal
circuitry of the cell-of-origin. As this wiring diagram is different
among various cell types, the same mutations may produce
various malignant properties in some cells but not in others.
We hypothesized that certain epigenomic changes may be an

emergent mechanism of propagating the cell-of-origin specific tumor
phenotype33,34. After exploring many potential candidates, we
discovered that HDAC1 and HDAC7 are upregulated during
transformation in BPLER cells but not in isogenic HMLER cells4, and
showed that HDAC7 is downstream of HDAC1/3 in regulating super-
enhancer (SE) associated oncogenes through regulation of Histone 3
lysine 27 acetylation (H3K27ac)5. These results suggested that HDAC1/
7 co-regulated genes, particularly those associated with super-
enhancers in a cell-context dependent manner, may be associated
with the metastatic phenotype5.
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Since reporting these results, the role of HDAC7 in malignant
phenotype has been corroborated by other laboratories in ovarian35,
gastric36, lung37, colorectal38, salivary39, urothelial40, nasopharyn-
geal41 and triple-negative breast cancers (TNBC)42 in association
with poor patient outcome, drug resistance and metastasis.
In this study we demonstrate that the downstream co-targets of

HDAC1/7 include ZNF92, an unexplored transcription factor, with a
single citation in the last three decades43. Our results indicate that
the HDAC1-HDAC7-ZNF92 axis may be a compelling example of a
cell context dependent emergent phenotype associated with
breast cancer metastasis and survival.

RESULTS
HDAC1 and HDAC7 co-regulated genes
HDAC1 and HDAC7 each regulate up to 5000 genes in different
breast cancer cells5, making the analysis of their downstream
targets challenging. However, we previously discovered that

HDAC1 is upstream of HDAC7, augmenting its expression, which
in turn enhances H3K27ac near super-enhancers (SEs) (Fig. 1b).
Since H3K27ac is a marker of transcriptional activation, we
reasoned that among the thousands of HDAC targets, the SE-
associated subset upregulated in BPLER cells may be a particularly
relevant category for metastasis.
Previously, we reported that HDAC1 and HDAC7 individually

upregulate 1512 and 812 genes respectively in breast cancer
cells4. Among these, only a small subset of 125 named genes are
associated with super-enhancers and upregulated by HDAC1 and
HDAC7 simultaneously. Henceforth, we refer to this signature as
125 gene epigenetic tumor signature (ET-125) (Fig. 1c and
Supplementary Table 1)5.
Remarkably, almost half of the ET-125 genes in BPLER cells (56/

125) demonstrate statistically significant correlation with HDAC7
expression in clinical breast cancer samples (Supplementary Table
2). Consistent with this, the mRNA expression heat-map illustrates
the remarkable association of these genes with HDAC7 mRNA

Experimental Model
a

b

c

Clinical correla�on
HDAC7 High HDAC7 Low

Fig. 1 Identification of a cell-of-origin signature. a Two different cell-of-origins, CO-B (BPEC) and CO-H (HMEC), were isolated from the
normal breast of the same donor and transformed using identical genetic elements20. Transformation of CO-B give rise to tumorigenic BPLER
cells with high HDAC1 and HDAC7 expression. Transformation of CO-H give rise to HMLER cells with low HDAC1 and HDAC7 expression4.
When implanted into immunocompromised mice orthotopically, BPLER cells generate invasive and metastatic xenograft tumors. In contrast,
patient matched isogenic HMLER cells form indolent non-metastatic tumors20. b HDAC1/3 upregulates HDAC7, which in turn upregulates 266
super-enhancer (SE) associated genes in BPLER cells, 125 of these genes are also upregulated by HDAC15. c The expression heatmap of 63
HDAC1/7-SE target genes that have a statistically significant correlation with HDAC7 expression in human tumors (see Supplementary Table 2
for more details). The heatmap shows that the vast majority of these genes (56/63) are over-expressed in human breast cancers with high a
HDAC7 expression, consistent with the in vitro results from BPLER cells. The remaining 7 genes have an inverse correlation with HDAC7
in vivo, diverging from the in vitro results. Red= high expression, blue= low expression, (see Supplementary Fig. 1 for a high resolution of the
heatmap). HDAC7 co-expression and heatmap is generated using cBioPortal online tools by analyzing METABRIC data set with complete
samples (n= 1904)58,59, and mRNA expression z-scores relative to diploid samples57.
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expression levels in human breast cancer (Fig. 1b, and Supple-
mentary Fig. 1). Comparison of tissues vs. cultured cells is difficult
due to different proliferation rates and presence of heterologous
cell types in tissues such as fibroblasts, endothelium, immune cells
etc. Therefore, confirmation of the in vitro ET-125 signature in
human tumors to this extent was remarkable, and encouraged
further exploration.

Pathways associated with HDAC7 upregulated genes
The gene set enrichment analysis (GSEA) is a method that can
assist with exploration of biological processes associated with a
particular expression signature44. We used the Molecular Signa-
tures Database (MSigDB) with 32,274 gene sets in nine collections
(C1-8 and H) to explore the pathways that may be associated with
the ET-125 signature using GSEA44. Among the 6290 gene sets in
the MSigDB Curated gene set collection (C2), the HDAC1 targets
(p= 2.66 e−12) and HDAC1/2 targets (hypergeometric
p= 2.37 e−10) are identified by GSEA as the #1 and #4 ranked
gene sets associated with the ET-125 signature45 (hypergeometric
p-value, Supplementary Table 3a). The remarkable correlation
between these independent HDAC signatures reinforces reprodu-
cibility of our results45.
Intriguingly, in the MSigDB Hallmark collection (H, n= 50), the

top ten gene sets associated with the ET-125 signature in GSEA
included epithelial-mesenchymal transition (p= 2.28 e−7), K-Ras
signaling (p= 3.24 e−6), apoptosis (p= 1.52 e−4), Wnt-B-catenin

signaling (p= 3.06 e−4), hypoxia (p= 4.14 e−4) and p53 pathway
(p= 4.14 e−4) (hypergeometric p-value, Supplementary Table 3b).
All of these pathways have been implicated in metastasis and/or
poor cancer outcome; consistent with the differential expression
of HDAC1/7-SE signature between metastatic BPLER vs. non-
metastatic HMLER cells.
Next, we carried out a combined GSEA incorporating six

MSigDB collections (C3-C8) that comprise 16,663 gene sets,
including oncogenic, immunologic, cell type, regulatory and
ontology gene sets. In this analysis, the top ten enriched gene
sets overlapped with a majority of the ET-125 genes (86/125) (Fig.
2a, Supplementary Fig. 2, and Supplementary Table 3c).
Among the 16,663 signatures in MSigDB C3-C8, the genes

containing one or more binding sites for Zinc-finger protein 92
(ZNF92) in their promoter regions (TSS −1000,+100 bp) are
identified as the most significant association with the ET-125
genes (p= 6.5 e−16, Fig. 2a, hypergeometric p-value, Supplemen-
tary Fig. 2).
ZNFs are a large family of transcription factors that include

ZNF92, which was identified in a screen of a human undiffer-
entiated embryonal carcinoma cell line using the KRAB domain of
ZNF8546. Among the 86 genes associated with top ten gene sets
in GSEA of ET-125, 33% have ZNF92 binding sites (29/86). The
remaining gene sets are associated with processes such as
locomotion, adhesion, cell migration and taxis that are biological
phenotypes associated with metastasis (Fig. 2a, Supplementary
Table 3c).

Gene Set Enrichment Analysis
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Fig. 2 ZNF92 expression in human tumors. a Gene Set Enrichment Analysis (GSEA) of HDAC1/7-SE upregulated genes. The top 10 pathways
are depicted in the GSEA heatmap: the blue boxes mark 86 HDAC1/7-SE upregulated genes (rows) in each column that represents a different
gene set in rank order (ZNF92 first column). The p-value range for the top ten gene sets is 1.47e−11 to 6.5e−16 (see Supplementary Table 3
for details). The analysis is carried out using the GSEA online tool. b Human Protein Atlas (HPA) PanCancer expression analysis of ZNF92 RNA-
seq data from 17 cancer types visualized with box plots, shown as median and 25th and 75th percentiles. Points are displayed as outliers if
they are above or below 1.5 times the interquartile range. See Supplementary Table 4 for the complete list of tumor types. c The relative
mRNA expression of ZNF92, Estrogen receptor (ERSR1), HER2 (ERBB2) and MYC in the cBioPortal TCGA PanCancer dataset that includes 37
tumor types with 10,967 samples. See Supplementary Table 5 for the complete list of 37 tumor types. Breast cancer is the third tumor type
from the left. d The relative ZNF92 mRNA expression in tumor, normal and metastatic tissues in the TNMplot database that has RNA-seq data
of TCGA including 730 normal, 9886 tumor and 394 metastatic samples49.
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ZNF92 expression in breast cancer
ZNF92 is almost uniquely over-expressed in breast cancer
compared to all other cancer types in the Human Protein Atlas
(HPA) dataset47 that includes RNA-seq data from 7932 tumor
samples comprising 17 cancer types (Fig. 2b, Supplementary Table
4). This result is also confirmed among the 37 cancer types
represented in the TCGA PanCancer dataset that includes 10,528
tumor samples (Supplementary Table 5)48.
Importantly, ZNF92 over-expression appears as specific for

breast cancer as estrogen receptor (ER) and HER2. In contrast,
most oncogenes are typically over-expressed in multiple tumor
types, similar to MYC (Fig. 2c). Additionally, using TNMplot online
tools, we discovered that ZNF92 expression is increased between
normal breast and breast tumors, with further increase in
metastatic samples (Fig. 2d)49.
Interestingly, several other HDAC1/7-SE upregulated targets,

such as SNPH, CCANG4, PREX1, IGFBP5, IL34 and BCAS4 also
demonstrate remarkable level of breast cancer associated over-
expression, providing additional support for the relevance of the
ET-125 signature (Supplementary Fig. 3).
Even among the ZNF family that has been understudied in

general, ZNF92 stands out as a particularly unexplored transcrip-
tion factor that has never been studied in cancer since its cloning
in 1993, and mentioned only once in association with the
cholesterol-lowering drug atorvastatin43,46. Therefore, discovering
the striking breast cancer specific over-expression of ZNF92 is
rather unexpected.

ET-60 and ET-9 signatures
Within the HDAC1/7-SE upregulated genes (ET-125), we identified
a sixty gene subset enriched for the presence of ZNF92 binding
sites, with a statistically significant correlation with in vivo HDAC7
expression, and association with patient survival. Henceforth, this
subset is referred as ET-60, that includes the majority of ZNF92
targets (n= 22) and the genes correlating with high HDAC7
expression in vivo (n= 30) (Fig. 1c, Supplementary Fig. 4,
Supplementary Table 6). Using the SurvExpress analysis plat-
form50, we found that ET-60 identifies high, medium and low risk
groups with significantly different survival hazard ratio (HR) of 5.76
(CI: 4.0–8.2) that is comparable with the 70-gene signature
(Mammaprint, HR= 4.63, CI: 2.8–6.5), the 50-gene signature
PAM50 (Prosignia, HR: 3.29, CI: 2.4–4.4) and a 25 gene signature
BMPS (HR= 2.64, CI: 2.0–3.4), (Supplementary Fig. 5a–d)51,52. The
ET-60 signature also correlated with metastasis, local relapse and
brain relapse in NKI and SKI (GSE12276), datasets (The HR values
were computed using Cox proportional hazard regression.
Supplementary Fig. 5e, f). These results were similar in maximized
vs. equal risk groups (Supplementary Fig. 6).
It has been suggested that signatures with fewer genes tend to

have lesser false associations, as it was reported that even random
signatures of 100 genes can associate with outcome53. Interest-
ingly, 23% of published breast cancer signatures showed a weaker
association with outcome than the median of the random
signatures of the same size53,54. Therefore, we used combined
k-top scoring pairs (k-TSPs)55,56, leave-one-out single gene
removal (SGR) and single gene significance analysis to identify a
nine-gene subset of ET-60, henceforth referred as ET-9 (Table 1,
Supplementary Fig. 8). Using cBioPortal analysis platform we
examined the ET-9 signature in two datasets, the TCGA PanCancer
Atlas Breast Invasive Carcinoma (PCA_BIC) and the METABRIC, with
>20 years of follow up data from 1084 and 1904 patients
respectively57–59. In the TCGA PCA_BIC the ET-9 genes are over-
expressed in all subtypes of breast cancer (Fig. 3a), and ET-9
alteration is associated with progression free (p= 2.31e−3, Log
Rank test), disease-specific (p= 1.56e−5, Log Rank test), and 8.7
years shorter overall survival (median 9.3 vs. 18 yrs., p= 1.63e−4,
Log Rank test), (Fig. 3b–d)57. Importantly, these results are

independent of clinical variables including age, ethnicity, disease
stage, and radiation therapy (Supplementary Table 7). We
confirmed these results in the METABRIC dataset58,59 where ET-9
signature is associated with a 6.2 year shorter relapse-free survival
(14.9 vs. 21.1 yrs., p= 6.12e−3, Log Rank test) and 2.78 year
shorter overall survival (p= 5.07e−3, Log Rank test), (Fig. 3c, d)57.
None of the other signatures examined are associated with
significant survival in both TCGA and METABRIC datasets
(Supplementary Table 8).
Next, we confirmed these results in three additional datasets

using the ServExpress analysis platform50, where the ET-9
expression signature identified high, medium and low risk groups
with significantly different overall survival in TCGA_BRCA_2016
dataset (HR= 3.04), comparable with Oncotype60, Endopredict61

and another 12 gene signature62. Consistent with the derivation of
ET-9 and ET-60 in a metastatic model, both signatures correlate
with metastasis in the NKI dataset and brain relapse in the
GSE12276 dataset (Fig. 4 and Supplementary Fig. 4).

Tumor subtype, stage and proliferation signature
Multigene signatures generate valuable prognostic information for
the subset of breast cancer patients where clinical, histopatholo-
gical and immunohistochemical markers do not provide adequate
guidance63.
Currently, the Oncotype, Progsignia, Mammaprint and Endo-

predict signatures are recommended generally for early-stage, ER-
positive, HER2-negative, and lymph node negative breast
cancers64,65. In addition, the Mammaprint signature is recom-
mended for breast cancers with up to 3 metastatic lymph nodes
(N1)66,67. Accordingly, further development of molecular prog-
nostic tests for the remaining patient populations such as ER-
negative, HER2-positive and late stage metastatic or treated breast
cancers would be beneficial60,61.
We examined ET-9 signature using K-M plotter68 and show that

high ET-9 expression is associated with shorter survival in lymph
node positive (HR= 1.6, CI 1.3–2.1, p= 3.8e−5), HER2 positive
(HR= 2.2, CI 1.4–3.5, p= 2.3e−4), post-chemotherapy (HR= 2.7, CI
1.6–4.5, p= 2.5e−5,) and triple-negative breast cancers (HR= 3.9,
CI 1.9–7.9, p= 3.1e−5). The HR values were computed using Cox
proportional hazard regression. (Fig. 5a–d). These results were
similar for ET-60 (Supplementary Fig. 5), and suggest these
signatures may have an additive or complimentary utility with
other prognostic signatures (Fig. 5e, f, Supplementary Fig. 7e, f)69.
It is worth mentioning that these results were not sensitive to
changing cut-off points (Supplementary Fig. 9) and the ET-125, ET-
60 and ET-9 signatures were comparable in their prognostic
power, particularly for basal-like, lymph-node positive and
chemotherapy treated patients where Oncotype Dx was not
prognostic (Supplementary Fig. 10).

Table 1. The list of genes in the ET-9 signature.

Entrez ID ET-9 signature Description

9289 ADGRG1
(GPR56)

Adhesion G protein-coupled receptor G1

84929 FIBCD1 Fibrinogen C domain containing 1

81544 GDPD5 Glycerophosphodiester phosphodiesterase
domain containing 5

56241 SUSD2 Sushi domain containing 2

27092 CACNG4 Calcium voltage-gated channel auxiliary
subunit gamma 4

6376 CX3CL1 C-X3-C motif chemokine ligand 1

3488 IGFBP5 insulin like growth factor binding protein 5

4135 MAP6 microtubule associated protein 6

26112 CCDC69 coiled-coil domain containing 69
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One common feature of most breast cancer prognostic tests is
their apparent association with proliferation signatures (Supple-
mentary Table 9)52. It was reported that proliferation associated
genes are over-represented in 22 out of 24 breast prognostic
signatures70, which is partially redundant with histological grading
that incorporates mitotic counts71,72. Consistent with this, removal
of proliferation associated genes (n= 131) in 47 published breast
cancer prognostic signatures, reduced their association with
outcome decreased dramatically in another study53.
We found no overlap between ET-9 and ET-60 with the 131

gene proliferation signature53. Therefore, there was no reduction
in HR with this adjustment. These results suggest that there are
opportunities to improve prognostic signatures independent of
proliferation.
Lastly, we demonstrate that normal human breast luminal

epithelium is composed of two subtypes of cells; those that are
ZNF92 protein positive and others that are ZNF92 negative (Fig.
6a). Consistent with this cell-origin pattern, we observed that
some human breast cancers are strongly ZNF92 protein positive,
and others are almost entirely ZNF92 negative (Fig. 6a). All the
breast cancer cell lines we tested indicate that ZNF92 protein is
co-expressed with HDAC7 in the nucleus (Fig. 6b). Consistent with
the derivation of the ET-125 signature in a differential screen of
patient matched metastatic BPLER vs. non-metastatic HMLER cells,
we found that BPLER cells express higher levels of ZNF92 (Fig. 6c).
In addition, we found that knock-down of ZNF92 inhibits cell
proliferation (Fig. 6d, e) and cell migration (Supplementary Fig.
11). We also found that the higher expression levels of the twenty-
nine ET-125 genes that contain ZNF92 binding sites correlate with
overall and relapse-free survival in HER2+, Luminal-B, TNBC, and
basal-like breast cancers independent of grade and treatment (Fig.
6f–h, Supplementary Fig. 12).

These data indicate that the subset of poorly-differentiated
high-grade breast cancers with elevated ZNF92 signature are
almost two fold more likely to relapse compared to other high
grade breast cancers with lower ZNF92 signature (HR= 1.9,
p= 0.0006) (Supplementary Fig. 12). Likewise, even among
patients who received systemic chemotherapy, the subset of
tumors with higher ZNF92 signature expression were 2.8-fold
more likely to relapse, compared to those with a lower
ZNF92 signature (p= 0.000024). The HR values were computed
using Cox proportional hazard regression (Supplementary Fig. 12).

DISCUSSION
Some of the genes in the ET-9 signature have been previously
associated with breast cancer outcome. The over-expression of
insulin like growth factor binding protein 5 (IGFBP5) correlates
with poor prognosis73 and lymph node metastasis74. In addition,
genetic variations in IGFBP5 are associated with increased breast
cancer risk in African-American patients75.
The C-X3-C Motif Chemokine Ligand 1 (CX3CL1 or Fractalkine) is

a multifunctional inflammatory chemokine. While the transmem-
brane form of CX3CL1 is an adhesion molecule, the soluble form
functions as a chemotactic cytokine. CX3CL1 is associated with
metastasis and poor prognosis in breast cancer76–78.
The normal L-type voltage-gated calcium channel gamma

subunit (CACNG4) regulates the trafficking and gating of AMPA-
selective glutamate receptors. In breast cancer, CACNG4 is
upregulated in lymph node metastasis and associated with poor
prognosis79. Experimentally, CACNG4 has been associated with
cell motility, transformation and metastasis79.
The adhesion G-protein–coupled receptor G1 (ADGRG1/GPR56)

is associated with cell-cell and cell-matrix interactions, and
implicated in bone metastasis in breast cancer80. The Sushi

Basal HER2 LumA LumB NSubtype

ET-9 Progression Free Survival

ET-9 Overall SurvivalET-9 TCGA Patient # Median months survival  (95% CI) p-Value
Survival Type Total Altered Unaltered Altered Unaltered Years
Overall 1084 379 705 112.1 (100.7 -NA) 216.7 (129.5 -NA) 8.72 1.64E-04
Progression Free 1082 379 703 146.5 (113.8 -NA) NA 2.31E-03
Disease-specific 1063 371 692 113.8 (112.1 -NA) NA 1.56E-05

ET-9 Metabric Patient # Median months survival  (95% CI) p-Value
Survival Type Total Altered Unaltered Altered Unaltered Years
Overall 1904 571 1333 131.3 (119.0 - 154.0) 164.6 (152.0 - 175.9) 2.78 5.07E-03

Relapse Free 1903 571 1332 178.3 (139.9 -NA) 253.4 (203.8 -NA) 6.26 6.12E-03

a

b

c

d

Fig. 3 ET-9 expression and breast cancer survival. a The expression heatmap of ET-9 genes in the TCGA Breast Invasive Carcinoma (BIC) RNA
SeqV2 dataset, including 1084 patient samples. The subtype classification is provided above the heatmap; basal-like (purple) HER2+ (red),
Luminal A (blue), Luminal B (yellow), normal-like (green). b The relative survival statistics of breast cancer patients with altered ET-9 expression
in the TCGA_BIC (n= 1084 patients) and METABRIC (n= 1904 patients) datasets58,59. c Kaplan-Meier chart of ET-9 progression-free survival in
the TCGA_BIC PanCancer dataset. The ET-9 altered (red line) tumors have significantly shorter progression free survival compared to ET-9
unaltered (blue line) tumors (p= 0.00232, Log Rank test). d Kaplan-Meier chart of ET-9 overall survival in the TCGA_BIC PanCancer dataset. The
ET-9 altered (red line) tumors have significantly shorter progression free survival compared to ET-9 unaltered (blue line) tumors (p= 0.000163,
Log Rank test). All the analyses (a–c) were carried out using cBioPortal57.
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Domain Containing 2 (SUSD2) is a cell membrane protein with
adhesion domains that interacts with Galectin-1 to promote breast
cancer immune evasion, angiogenesis, invasion and metastasis81.
The Glycerophosphodiester Phosphodiesterase Domain Contain-
ing 5 (GDPD5) protein is involved in lipid metabolism. It was found
that GDPD5 knock-down inhibits breast cancer cell proliferation,
migration, and invasion82.
While the other ET-9 genes have not been studied in breast

cancer, they have been implicated in other cancers. For example,
overexpression of Fibrinogen C domain containing 1 (FIBCD1),
which is a transmembrane endocytic receptor, correlates with
poor prognosis in gastric and liver cancers83,84. Microtubule
Associated Protein 6 (MAP6) Domain Containing 1 protein is
implicated in lymph node metastasis in prostate cancer85, and the
over-expression of Coiled-Coil Domain Containing 69 (CCDC69),
which is scaffold protein involved in DNA replication and mitotic
spindle formation, is associated with cisplatin-resistance ovarian
cancer cells86.
In sum, the ET-9 signature contains a chemokine, a calcium

channel subunit, a G-protein-coupled receptor, a membrane
adhesion protein, a lipid phosphodiesterase, an endocytic
receptor, a microtubule associated protein and a scaffold protein.
This collection of genes appears different than signatures that are
typically enriched for oncogenes, growth factors, and cell cycle
proteins. While we know that these nine genes are downregulated
with HDAC7 knock-down and three of them are ZNF92 targets
(FIBCD1, GDPD5, and GPR56/ADGRG1), they have not been
extensively studied in cancer; a PubMed search with the keyword
cancer returned less than twenty publications for FIBCD1 (n= 7),
CACNG4 (n= 7), CCDC69 (n= 8), MAP6 (n= 11) and GDPD5
(n= 19). Moreover, it is not known whether enzymatic or non-
enzymatic activities of HDAC7 is involved in the regulation of

these genes. Therefore, understanding the combined function of
these ET-9 genes and their regulation by HDAC7 and ZNF92 will
require further investigation.
In this study we describe a cell-of-origin emergent phenotype in

human breast cancers with a significant impact on patient
survival. Our hypothesis-based approach, focusing on downstream
targets of HDAC1/7-SE (ET-125), resulted in gene expression
signatures that do not overlap with omics-derived or proliferation
signatures. The ET-9 signature is independent of patient age,
ethnicity, disease stage and proliferation, and correlates with
patient outcome in triple-negative breast cancer, HER2+, lymph
node positive, chemotherapy treated, and brain metastatic breast
cancers. In addition, we identified ZNF92, a transcription factor
that has never been studied in cancer, as a marker that is almost
uniquely over-expressed in human breast cancer.
Previously we described a cell-of-origin inherited phenotype

spectrum in human breast tumors with significant impact on
survival12. In brief, in normal human breast tissue we identified
eleven normal cell types each with a distinct methylation
profile11,87,88. Both the marker profile and methylation patterns
of these normal cell types are preserved in human breast
cancers11,87,88. Hence, each human breast tumor resembles one
of the eleven normal cell types that can be grouped into 4 major
subtypes, HR0–HR3, based on vitamin D, androgen, and estrogen
hormone receptor (HR) expression11. Importantly, there is a nearly
seven-fold survival difference between HR0 (ER/AR/VDR negative)
vs. HR3 (ER/AR/VDR positive) tumors, indicating a strong cell-of-
origin influence in human breast cancer11.
Since our initial report, multiple studies showed that cancer

epigenomes are dominated by patterns already present in the
normal cell-of-origin, and correlated with patient survival in
cholangiocarcinoma, leukemia, brain and lung tumors2,3. Likewise,
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BRCA_TCGA Survival

ENDOPREDICT 
BRCA_TCGA Survival
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Fig. 4 ET-9 prognostic groups in three different datasets. The Kaplan-Meier (KM) overall survival charts of human breast cancer generated
using SurvExpress; high risk (red line), medium risk (green line), low risk (blue line) groups, with auto-selection of cut-off values and maximized
risk groups. The relative hazard ratios (HR) were computed using Cox proportional hazard regression analysis50. a KM chart of ET-9 expression
in human breast cancer in BRCA_TCGA 2016 dataset, HR: 3.04 (CI: 2.2–4.1). b KM chart of ET-9 expression in human breast cancer in NKI
dataset, HR: 2.15 (CI: 1.6–2.8). c KM chart of ET-9 expression in human breast cancer in GSE12276 dataset, HR: 10.95 (CI: 3.0–39.6). d KM chart of
the 21-gene Oncotype in BRCA_TCGA 2016 dataset, HR: 2.29 (CI: 1.61–2.97). Two genes TRFC and RPLPO not found in this dataset. e KM chart
of a 12-gene signature (Endopredict) in BRCA_TCGA 2016 dataset, HR: 2.29 (CI 1.8–2.8). f KM chart of a 12-gene signature62 in BRCA_TCGA
2016 dataset, HR: 2.05 (CI 1.6–2.5).
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it was found that cell-of-origin patterns dominate the molecular
classification of 10,000 tumors from 33 types of cancer1.
Cumulatively, these results indicate that both inherited and
emergent cell-of-origin features can have a significant impact on
human breast cancer behavior. The cell-origin associated signa-
tures can be utilized as prognostic tests, as well as predictive tests
to select patients for AR, VDR and HDAC targeted therapies.
The direct analysis of human tissues with omics approaches

have identified clinically relevant prognostic signatures. However,
retroactively assigning a mechanistic meaning to these signatures
is not always possible, it was recently found that that none of the
48 previously published breast cancer prognostic signatures has a
sensible biological interpretation or meaning with respect to
disease etiology89. Moreover, other studies found that there is up
to 60% risk assignment discordance between Oncotype DX,
PAM50 and Mammaprint, classifying the same sample as low risk
in one assay and high risk for another52.
In contrast, experimental models do provide mechanistic

signatures; however, these are not always relevant in vivo. In
light of this, it is worth mentioning that the BPLER model we used
in this study has been validated multiple studies during the past
two decades, indicating that the signatures derived from this
model appear to have clinical relevance4,20,90–98. It may be
possible to improve on this model by blending signatures that
represent distinct hallmarks of cancer such as proliferation,

apoptosis, angiogenesis, inflammation, immune response, and
mutational burden99,100.
Cumulatively, our results indicate that cancer is a complex

system where the behavior of the entire system is more than the
simple sum of its parts. These findings caution against classifica-
tion and treatment of human tumors simply based on genetic
alterations without considering the cell-origin context, particularly
since the same genes produce different phenotypes in different
cells20,101–103.

METHODS
Cell lines
The BPLER and HMLER cells were established previously20 and character-
ized extensively4,20,90–98. The BPLER cells are cultured in the BMI-T medium
(US Biological, cat# 506387.500, or TumoriGenesis Product No: 833)5, and
the HMLER cells are cultured in MEGM medium (Lonza,cat# CC-3150)4,20.
The BPLER and HMLER cells we established were tested for mycoplasma
and deposited to ATCC (American Type Culture Collection, ATCC item #s
CRL-3546 and CRL-3547) and European Collection of Authenticated Cell
Cultures (ECACC, Accession numbers; 20012030, 20012033, 20012038,
20012041, 20012044, and 20012047, https://www.ukbrcn.org/news/new-
accessions-coming-soon-to-the-european-collection-of-authenticated-cell-
cultures/).

ET-9
HER2+
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ET-9
Lymph node posi�ve

ENDOPREDICT 
TNBC

ONCOTYPE
Lymph node posi�ve

ET-9
Chemotherapy
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d e f

Fig. 5 ET-9 in breast cancer subgroups. The Kaplan-Meier (KM) charts of relapse free survival of human breast cancer generated using
Kaplan-Meier plotter [Breast] high risk (red line), low risk (black line). The analysis is carried out by using all probe sets per gene with auto
selection of best cut off values, exclusion of biased arrays, and no data censoring and multivariate analysis. The relative hazard ratios (HR) were
computed using Cox proportional hazard regression analysis68. a KM chart of ET-9 in HER2+ human breast cancer, HR: 2.27 [CI 1.45–3.55],
p= 2.4e−4. b KM chart of ET-9 in triple negative breast cancer (TNBC), HR: 3.95 [CI 1.97–7.94], p= 3.1e−5. c KM chart of ET-9 in lymph node
positive human breast cancer, HR: 1.68 [CI 1.31–2.15], p= 3.8e−5. d KM chart of ET-9 in breast cancer patients with systemic chemotherapy,
HR: 2.79 [CI 1.69–4.58], p= 2.5e−5. e KM chart of 12-gene Endopredict signature in TNBC, HR: 1.43 [CI 0.69–2.94], p= 0.33. f KM chart of
Oncotype DX in lymph node positive human breast cancer, HR: 1.17 [CI 0.9–1.52], p= 0.23.
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Immunohistochemistry
The deparafinized slides were treated with Sodium Citrate Buffer (10mM
Sodium Citrate, 0.05% Tween 20, pH 6.0) at 98 °C for 20min in a scientific
microwave to achieve heat-induced epitope retrieval. Next, these slides
were blocked in 0.3% H2O2 in TBS for 15min. to prevent non-specific
binding. Primary ZNF92 antibody (ab170885) was diluted (1:100) in Dako
antibody diluent, and applied over the tissue overnight at 4 °C in
humidified chamber, and developed with chromogen for 5–10min at
room temperature (Dako K3467 kit).

Immunofluorescence assay
BT20 cells were seeded at 8 well Lab-TekR II Chamber SlideTM glass slide,
24 hours prior to staining. eBioscience™ Foxp3/Transcription Factor
Staining Buffer Set (Life technologies-00–5523–00) was used for staining,
nuclear staining protocol was followed. Anti HDAC7 (ab12174) and anti
ZNF92 mouse (Life technologies-MA524530) antibodies were used in 1:500
dilution overnight at 40 C. Anti-Rabbit-AlexaFlour 647 (Life technologies-
A32733) and Anti-Mouse-AlexaFlour 488 (Life technologies-A11001) were
used in 1:500 dilution for secondary staining at room temperature for
30min. Imaging was performed at Lionheart™ FX Automated Microscope
by BioTek at 40X magnification. The brightness of the entire image was
increased in Fig. 6b, the unprocessed images are provided in the
Supplementary Fig. 13.

ZNF92 knockdown and scratch assay
BT20 cells were seeded in 6-well plates, 24 hours prior to knockdown (KD).
Next day, scratch was made using P1000 pipette tip, followed by KD.
Migration of cells was monitored by taking images at Leica DMI1 inverted
microscope equipped with LEICA MCHD120 camera. Healing/migration
was quantified by ImageJ area tool. 50 nM Control si (Sigma Aldrich-
SIC001), ZNF92 si1, si2 and si3 (Ambion-AM16708-ID238043, 110198,

110199) were used for KD. KD was performed twice, 48 hours apart.
Lipofectamine RNAiMAX Reagent was used as a transfection reagent.
Pooled si (50 nm each) was used for BPLERs. Transfection was performed as
per the recommended protocol.

Western blot analysis
Cell pellets were collected, washed twice with PBS and frozen in −80
freezer prior to lysis. Lysis was performed in 1XRIPA lysis buffer (Millipore
20–188) supplemented with Halt Protease and Phosphatase Inhibitor
cocktail (Thermofisher Scientific 78442), 1 mM PMSF (Millipore Sigma
P7626), 10 mM Sodium OrthoVanadate (Millipore Sigma S6508), 1X
cOmplete, Mini, Protease Inhibitor Cocktail (Roche 11836153001) and 1X
PhosSTOP EASYpack Phosphatase Inhibitor Cocktail (Roche 04906837001).
Cell lysate was prepared in 1X Laemmli sample buffer (Bio-Rad-1610737).
30 micrograms cell lysate was separated in 4–15%-Mini-PROTEAN TGX
Precast Protein Gel (BioRad Laboratories 4561084). Trans-Blot Turbo Mini
PVDF Transfer Packs (BioRad Laboratories 1704156EDU) and Trans-Blot
Turbo Transfer system (BioRad laboratories) was used to perform transfer
of protein. Blots were blocked in 5% skimmed milk (SignaGen Laboratories
SL100317) with 1XTBST (VWR Life Science K873). Detection of protein was
performed by Western blotting using specific antibodies against ZNF92
(ab170885), Vimentin (ab54373), and Beta actin (Sigma A2228). HRP
labeled secondary anti-mouse and anti-rabbit (PIERCE 31430, 31402) were
used to detect bands. SuperSignal West Dura Extended Duration
(Thermofisher Scientific 34076) substrate was used to develop the blots.
The uncropped and unprocessed images are provided in Supplementary
Figs. 14, 15.

Gene set enrichment analysis
The list of gene identifiers is entered in the box provided in the investigate
gene sets tab and Homo sapiens species is selected. Compute overlap is
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Fig. 6 ZNF92 expression and function. a Immunohistochemical stain of formalin fixed paraffin embedded sections probed with ZNF92
antibody. The normal breast demonstrates two subgroups of nuclear ZNF92-positive and ZNF92-negative cells (left panel, scale bar= 20 uM).
In some breast cancers nearly all tumor cells are ZNF92-positive (middle panel) and other tumors are entirely ZNF92-negative (right panel,
scale bar= 100 uM). b Immunofluorescent staining of HDAC7 (red), ZNF92 (green) and nuclear DAPI (blue) in BT20 cells. The merged panel
demonstrates the co-expression of HDAC7 and ZNF92 in the same nuclei. The brightness of the entire digital image was increased in the
single channel panels to visualize the lower cytoplasmic staining and the individual color channels were adjusted in the merged image for
clarity. The uncropped and unprocessed images are provided in Supplementary Fig. 13. cWestern blot analysis of ZNF92 protein expression in
matched pairs of BPLER/HMLER 2, 3 and 4. dWestern blot analysis of ZNF92 protein after siRNA knock-down of ZNF92 expression (ZNF92 si) in
three independent BPLER lines compared to control siRNA (ct si). The uncropped and unprocessed western blot images are provided in
Supplementary Fig. 14. e Bar graphs showing that siRNA knock-down of ZNF92 expression (ZNF92 si) results in statistically significant
reduction (*) in cell numbers in all three independent BPLER lines compared to control siRNA (ct si). f–h KM-plot survival analysis of the 29
genes in ET-125 with a ZNF92 binding site, demonstrating a correlation between high expression of ZNF92 targets and poor overall survival in
all breast cancers (HR= 1.6, p= 0.0002) and high-grade (grade 3) breast cancer (HR= 2.1, p= 0.003), as well as relapse free survival in triple-
negative breast carcinoma (HR= 2.4, p= 0003) The relative hazard ratios (HR) were computed using Cox proportional hazard regression
analysis. See Supplementary Fig. 11 for overall and relapse free survival for other breast cancer cohorts including HER2, Basal-like, Luminal-B,
and chemotherapy treated cohorts.
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selected for the relevant MSigDB collections, with false discovery rate (FDR)
q-value less than 0.05. The p values in GSEA are based on
Hypergeometric test.

Survival analysis
The SurvExpress analysis was carried out selecting; (a) not censored for
survival days, (b) without stratification, (c) heat map by prognostic index,
(d) network none, (e) no imputation, (f) no quantization, (g) advanced
check, (h) attribute plot check, (g) maximized risk groups, and with default
options for other variables. Depending on the analysis we selected two or
three risk groups, determined by prognostic index (risk score) estimated by
beta coefficients multiplied by gene expression values. The risk group
splitting is optimized using an algorithm that decides where the partitions
should be made to maximize the statistical significance of the separation
of risk groups as described. In brief, the ‘Maximize Risk Groups’ option in
SurvExpress uses and algorithm that tests different cut-off points until it
partitions the risk groups with the minimum p‐value. The p values were
computed using Log Rank test, and the relative hazard was computed
using Cox proportional hazard regression analysis50.
The Kaplan-Meier Plotter analysis was carried out selecting the following

parameters; split patients by auto select best cutoff (checked), survival (RFS
or OS); follow up threshold (all), censor at threshold (unchecked), compute
median over entire database (false), probe set option (user selected probe
set), invert HR values below 1 (no). We tested several alternative
approaches available to define comparison cohorts (a) quantile cut-off at
the median, upper, and lower quartiles, (b) trichotomizing (T1 vs. T3 or Q1
vs Q4) which involves assigning the data into three cohorts and then
omitting the middle cohort, or (c) using the best available cut-off value
where each possible cutoff value is tested between the lower and upper
quartiles, and False-Discovery Rate using the Benjamini-Hochberg method
is used to correct for multiple hypothesis testing. The results shown are
with the best available cut-off value. However, it is possible to generate
similar results using the quantile and trichotomizing approaches in some
breast cancer subsets (Supplementary Fig. 9). The p values were computed
using Cox proportional hazard regression analysis and false-discovery rate
was computed using the Benjamini-Hochberg method to correct for
multiple hypothesis testing68.
The following parameters were selected for CBioPortal analysis: (a) Study

(Breast Invasive Carcinoma TCGA PanCancer), genomic profile (mRNA
expression z-scores relative to diploid samples RNA Seq V2 RSEM), patient
set (all samples, n= 1084), gene list (user-defined). (b) Study (Breast Cancer
METABRIC, Nature 2012 & Nat Commun 2016); genomic profile (mRNA
expression z-scores relative to diploid samples, RNA Seq V2 RSEM), patient
set (complete samples, n= 1904), gene list (user-defined). In cBioPortal, the
p-values were computed using Log Rank test, and the q-values were
computed using the Benjamini-Hochberg false discovery rate procedure57.
The TNM Plot dataset includes 56,938 unique multilevel quality

controlled samples: Genechip from GEO: 3691 normal, 29,376 tumor and
453 metastasis, RNA-seq from GTex: 11,215 normal, RNA-seq from TCGA:
730 normal, 9886 tumor and 394 metastasis, RNA-seq from TARGET: 12
normal, 1180 tumor and 1 metastasis49.
Several approaches were used to for the identification of the smallest

prognostic subset of the ET-125 signature. (a) Single gene removal (SGR),
where each gene is categorized as ‘non-altered’ if the expression value of
each gene is between −2 and 2-fold relative to diploid samples, otherwise
it is categorized as ‘altered’. In a step-wise manner, one gene is removed
and the association of the remaining sets of genes with the overall survival
is computed using Kaplan-Meier plot. The set of genes with the lowest p-
value are selected and the steps mentioned above are repeated. (b) K-top
scoring pairs (k-TSPs) analysis was carried out as previously described56. In
brief, the k-TSPs is a rank-based algorithm which selects gene pairs whose
orders changes consistently between the two classes of interest. Hence,
k-TSPs is not sensitive to data preprocessing and normalization. The SGR
and k-TSPs approaches identified CCDC69, CX3CL1, GDPD5, IGFBP5,
CACNG4, FIBCD1, and MAP6 in the Metabric dataset. We found that
SUSD2 and ADGRG1 are prognostic as single markers. We found that
combining these nine genes was able to replicate the prognostic
significance and robustness of larger ET signatures (Supplementary Figs.
8, 10).

TCGA PanCancer analysis
RNA-seq data from 17 cancer types representing 21 cancer subtypes with a
corresponding major cancer type in the Human Pathology Atlas48. The

TCGA RNA-seq data was mapped using the Ensembl gene id available from
TCGA, and the FPKMs (number Fragments Per Kilobase of exon per Million
reads) for each gene were subsequently used for quantification of
expression with a detection threshold of 1 FPKM. RNA cancer tissue
category is calculated based on mRNA expression levels across all 17
cancer tissues and include: cancer tissue enriched, cancer group enriched,
cancer tissue enhanced, expressed in all, mixed and not detected. Normal
distribution across the dataset is visualized with box plots, shown as
median and 25th and 75th percentiles. Points are displayed as outliers if
they are above or below 1.5 times the interquartile range48.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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