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Mechanostimulation of breast myoepithelial cells induces
functional changes associated with DCIS progression to
invasion
Mary-Kate Hayward 1, Michael D. Allen 1, Jennifer J. Gomm1, Iain Goulding1, Clare L. Thompson2, Martin M. Knight2,
John F. Marshall1 and J. Louise Jones 1✉

Women with ductal carcinoma in situ (DCIS) have an increased risk of progression to invasive breast cancer. Although not all
women with DCIS will progress to invasion, all are treated as such, emphasising the need to identify prognostic biomarkers. We
have previously shown that altered myoepithelial cells in DCIS predict disease progression and recurrence. By analysing DCIS duct
size in sections of human breast tumour samples, we identified an associated upregulation of integrin β6 and an increase in
periductal fibronectin deposition with increased DCIS duct size that associated with the progression of DCIS to invasion. Our
modelling of the mechanical stretching myoepithelial cells undergo during DCIS progression confirmed the upregulation of
integrin β6 and fibronectin expression in isolated primary and cell line models of normal myoepithelial cells. Our studies reveal that
this mechanostimulated DCIS myoepithelial cell phenotype enhances invasion in a TGFβ-mediated upregulation of MMP13.
Immunohistochemical analysis identified that MMP13 was specifically upregulated in DCIS, and it was associated with progression
to invasion. These findings implicate tissue mechanics in altering the myoepithelial cell phenotype in DCIS, and that these
alterations may be used to stratify DCIS patients into low and high risk for invasive progression.
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INTRODUCTION
For the majority of invasive breast cancers, progression follows
transition through the pre-invasive stage of ductal carcinoma
in situ (DCIS)1. In DCIS, tumour cells proliferate within the lumen of
the duct and are retained by a near-continuous myoepithelial cell
layer, which lies in contact with the basement membrane (BM).
Progression is marked by tumour cells breaching the myoepithe-
lial cell-BM interface and invading into the surrounding stroma.
Prior to the establishment of screening mammography, DCIS
accounted for <2% of all diagnosed breast cancers, but through
screening programmes DCIS now accounts for ~25% of all breast
cancer diagnoses2–4. Despite the increased detection and treat-
ment of DCIS, there has not been a concurrent decrease in
invasive breast cancer (IBC) diagnosis5, suggesting that many
cases of DCIS are overtreated that would not progress during a
woman’s lifetime. Indeed, in several small series where DCIS was
left untreated, owing to misdiagnosis, only ~40% progressed to
invasive disease over 30 years6–8. Thus, there is an urgent clinical
need to identify markers that will predict the progression of DCIS
in order to better direct therapeutic intervention9.
Molecular approaches have been used extensively for decades

to identify such markers that may predict DCIS progression, with
most studies focusing on the comparison of tumour epithelial cells
from DCIS with their invasive counterpart. Genomic profiling and
gene expression analysis has not revealed any specific alterations
associated with the progression to invasion10–15, and suggests
DCIS exhibits a high level of similarity to IBC, supporting DCIS as a
precursor to invasion16. More recent studies using advanced
molecular approaches confirm this similarity, but also demonstrate
through variations in clonal patterns that the mechanism of
progression of DCIS is likely very diverse17. The lack of a clear

‘invasion signature’ led to a focus on the breast. microenviron-
ment, comprising the myoepithelial, stromal and immune cells,
implying key roles for them in the progression to invasive disease.
In particular, the presence of a myoepithelial cell layer is
characteristic of DCIS, and disruption to this interface is a hallmark
of invasive progression. Myoepithelial cells play essential roles in
mammary gland development and function, such that they
maintain luminal epithelial cell polarity and induce ductal
branching and differentiation during mammary gland develop-
ment18–21. Studies have indicated that myoepithelial cells play a
role in tumour suppression19,22,23 by secretion of protease
inhibitors and downregulation of matrix metalloproteases (MMPs)
that have inhibitory effects on tumour cell growth, invasion and
angiogenesis24–28. In addition, tumour cells adjacent to a focally
disrupted myoepithelial cell layer display gene expression
changes associated with invasive properties, higher proliferation
rates and associate with leukocyte infiltration29–32. Due to these
tumour suppressive roles, myoepithelial cells are considered
gatekeepers to tumour progression.
Whereas normal myoepithelial cells have been demonstrated to

be tumour suppressive, several studies have identified that DCIS
myoepithelial cells exhibit an altered phenotype, and are
suggested to switch to a tumour promoter function18,32–35. We
previously showed that DCIS myoepithelial cells exhibit de novo
expression of integrin β6, which is predictive of DCIS progression
to invasion and disease recurrence. Such that, integrin β6-positive
DCIS cases recurred more rapidly than integrin β6-negative DCIS
cases, at 2.3 years compared to 11.4 years, respectively36. In
culture and in vivo studies identified that myoepithelial cell
expression of integrin β6 enhanced breast tumour cell invasion
through TGFβ-mediated upregulation of MMP936. In support of
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our previous work, others have demonstrated, using in vitro
studies, that tumour-associated myoepithelial cells secrete TGFβ
to promote the invasive progression of DCIS cells due to
enhancing epithelial-to-mesenchymal transition and basal-like
phenotypes through activation of the TGFβ/SMAD signalling
pathway37,38. However, the mechanisms inducing such alterations
to DCIS myoepithelial cells are largely unknown.
Here, we show that mimicking the mechanical stretching of

myoepithelial cells in DCIS duct expansion induces a DCIS
myoepithelial cell phenotype associated with invasive progres-
sion. We demonstrate expression of myoepithelial cell integrin β6
and periductal fibronectin in DCIS associates with a higher
propensity to progress to invasive breast cancer. Using primary
and cell line models, we identify that integrin β6-positive
myoepithelial cells promote the deposition of fibronectin.
Together, myoepithelial cell integrin β6 and fibronectin promote
the activation of TGFβ signalling to induce the secretion of BM-
degrading proteases MMP9 and MMP13 that facilitate breast
tumour cell invasion. Furthermore, we show that this DCIS
myoepithelial cell phenotype is induced by mechanostimulation
in a TGFβ-dependent manner. The findings indicate that
mechanostimulation-mediated alterations to DCIS myoepithelial
cell function contribute to invasion and that these biomarkers may
be used to stratify patients for risk of DCIS progression.

RESULTS
DCIS progression is accompanied by increased myoepithelial
cell expression of integrin β6 and periductal fibronectin
deposition
Tissue fibrosis is a feature of breast cancers that associates with
tumour progression. Fibrotic breast tumours display increased
abundance of ECM proteins and remodelling enzymes and
elevated integrin signalling39–41. We previously showed that
myoepithelial cell expression of integrin β6 promotes the invasion
of breast tumour cells through TGFβ-driven upregulation of the
ECM remodelling enzyme, MMP936. In a study comparing gene
expression profiles in human breast tissue samples, DCIS showed a
significant upregulation of ECM/integrin-related gene categories
compared to normal breast (Fig. 1a)42. Plotting fold change versus
p-values of the gene expression data illustrates several upregu-
lated ECM proteins and downregulated BM proteins from the
GO_Extracellular_Matrix_Structural_Constituent category in inva-
sive ductal carcinoma (IDC) compared to DCIS (Fig. 1b). In
particular, FN1 was one of the most evident and consistent ECM
alterations in IDC, which led us to speculate fibronectin as a driver
of DCIS progression. To investigate whether a causal role exists
between ECM remodelling, myoepithelial integrin signalling and
DCIS progression, we first assessed the duct-by-duct expression of
myoepithelial cell integrin β6 and periductal fibronectin in serial
sections of DCIS tissues without (pure DCIS) and with (DCIS/IDC)
invasive disease, as well as adjacent normal breast tissue (Fig. 1c,
Supplementary Table 1). Haematoxylin and eosin (H&E) staining
confirmed the presence of normal and DCIS ducts within these
tissues, and the presence of invasion in DCIS/IDC tissues was used
as a marker of DCIS progression (Fig. 1d). Normal and DCIS ducts
show an intact myoepithelial cell layer, as shown by SMA
immunohistochemistry (Fig. 1e). Immunohistochemical staining
for myoepithelial integrin β6 revealed that the adjacent normal
breast ducts had no expression, whereas DCIS ducts in all patients
exhibited some expression of myoepithelial integrin β6 (Fig. 1f, h).
The percent of positive DCIS ducts for myoepithelial integrin β6
was higher in high-grade pure DCIS (45%) compared with non-
high grade pure DCIS (27%), and increased further in DCIS/IDC
(68%), consistent with our previous reports that myoepithelial
integrin β6 associates with DCIS progression to invasion (Fig. 1f, h
and Supplementary Table 2)36. Immunohistochemical staining for

periductal fibronectin revealed that the adjacent normal breast
ducts had little expression (6%), whereas the percent of positive
DCIS ducts was higher in DCIS/IDC (87%) compared with pure
DCIS (68%), with no difference between non-high and high-grade
pure DCIS (Fig. 1g, i and Supplementary Table 3). Matched duct
scoring established a correlation between myoepithelial integrin
β6 and periductal fibronectin expression (Fig. 1j and Supplemen-
tary Table 4). We also confirmed using the gene expression profile
study of human breast tissue samples, a progressive increase in
both ITGB6 and FN1 mRNA levels with DCIS progression to IDC
(Fig. 1k, l). The data implicate a relationship between integrin β6-
positive myoepithelial cells and fibronectin deposition surround-
ing the duct as a function of DCIS progression to invasion.

Integrin β6-positive myoepithelial cells upregulate fibronectin
expression
We next investigated the potential relationship between myoe-
pithelial integrin β6 and fibronectin deposition. For this purpose,
we analysed freshly isolated primary DCIS and normal myoepithe-
lial cells, as well as established myoepithelial cell lines, without
and with the expression of integrin β636. To select appropriate
DCIS samples for further analysis, we first assessed the expression
of integrin β6 using immunohistochemical staining of DCIS breast
tissues with patient-matched DCIS ductal organoid preparations
available (Fig. 2a). Two integrin β6-low and two -high DCIS ductal
organoid samples were then selected. FACS analysis of these
samples confirmed there was an increased frequency of integrin
β6-positive myoepithelial cells in integrin β6-high DCIS compared
to integrin β6-low DCIS (Fig. 2b). Quantitative reverse
transcriptase-PCR (qRT-PCR) analysis revealed higher levels of
FN1 in myoepithelial cells in integrin β6-high DCIS compared to
integrin β6-low DCIS (Fig. 2c). Furthermore, induction of integrin
β6 expression in isolated primary normal myoepithelial cells (β6-
1989 and β6-1492) revealed an increase in fibronectin compared
to the control cell populations (N-1989 and N-1492; Fig. 2d, e).
Similarly, using established myoepithelial cell lines; we identified
higher levels of fibronectin in the integrin β6-positive myoepithe-
lial cell line (β6-1089) compared to the integrin β6-negative
myoepithelial cell line (N-1089; Fig. 2f–h). These findings support
that integrin β6-positive myoepithelial cells stimulate the deposi-
tion of fibronectin into the periductal microenvironment.

Tumour promoting phenotype of integrin β6-positive
myoepithelial cells is enhanced by fibronectin-mediated
activation of TGFβ signalling
Myoepithelial integrin β6 promotes the invasion of breast tumour
cells in a TGFβ-mediated manner, and integrin β6 activation of
TGFβ requires a mechanically resistant fibronectin matrix36,43. This
raises the possibility that integrin β6-positive myoepithelial cells
promote breast tumour cell invasion by stimulating TGFβ in a
fibronectin-dependent manner. We therefore examined whether
fibronectin could modulate the activation of TGFβ in integrin β6-
positive myoepithelial cells, and if this elevated breast tumour cell
invasion. We observed a decrease in integrin β6-positive
myoepithelial cell line (β6-1089) migration and adhesion to
latency-associated peptide (LAP) with fibronectin knockdown
(FNKD) compared to control (CTL) (Fig. 3a, b). qRT-PCR analysis
revealed reduced levels of TGFB1 in integrin β6-positive myoe-
pithelial cell line with fibronectin knockdown compared to control
(Fig. 3c). Immunoblots revealed that the knockdown of fibronectin
in integrin β6-positive myoepithelial cell line reduced the ability of
TGFβ to stimulate phosphorylation of SMAD2 compared to control
(Fig. 3d). These results suggest that fibronectin expression by
integrin β6-positive myoepithelial cells enhances its TGFβ binding
and activating properties.
We next explored whether fibronectin could enhance the

tumour-promoting function of integrin β6-positive myoepithelial
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cells. Invasion assays revealed that the knockdown of fibronectin
in the integrin β6-positive myoepithelial cell line led to a decrease
in breast tumour cell invasion in vitro compared to control (Fig.
3e). Consistently, knockdown of fibronectin in the integrin β6-
positive myoepithelial cell line revealed the broad downregulation
in protease expression, with the most differentially expressed
proteases implicated in promoting breast cancer invasion through
degradation of the BM, including MMP9 and MMP13 (Fig. 3f). qRT-
PCR analysis confirmed reduced levels of MMP9 and MMP13 in
integrin β6-positive myoepithelial cell line following fibronectin
knockdown compared to control (Fig. 3g, h). These findings

suggest that DCIS myoepithelial cells exhibit a tumour-promoting
phenotype mediated by both integrin β6 and fibronectin.

DCIS myoepithelial cells enhance progression to invasion by
increasing the expression of MMP13
MMP13 expression by stromal cells adjacent to DCIS has been
implicated in promoting its progression to invasion44. We next
examined whether myoepithelial MMP13 expression could
promote the progression of DCIS to invasion. We first analysed
our cohort of DCIS tissue samples by immunohistochemical
staining for MMP13. This revealed that the adjacent normal breast
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Fig. 1 Myoepithelial expression of integrin β6 and periductal fibronectin deposition correlates with human DCIS progression. a GSEA of
transcriptional profiles from GEO series GSE21422 showing upregulated extracellular matrix (ECM) remodelling and integrin interaction gene
set terms associated DCIS (n= 9) compared to normal breast (n= 5). b Scatter plot of p-value (-log10) vs. log fold change (logFC) for gene
expression from the GO_extracellular_matrix_constituent gene set for microarray data for IDC (n= 5) compared to DCIS (n= 9). c Cartoon
depicting a normal duct, a DCIS duct without (pure DCIS) and with co-existent invasion (DCIS/IDC). d Haematoxylin and eosin (H&E) staining
of human breast tissue samples featuring adjacent normal ducts, DCIS and DCIS/IDC. Scale bar, 100 μm. e–g Representative images of smooth-
muscle actin (SMA) (e), integrin β6 (f) and fibronectin (g) by immunohistochemical staining in human breast tissue samples featuring adjacent
normal ducts, DCIS and DCIS/IDC. h, i Bar graphs showing the mean and individual percentage of ducts positive for integrin β6 (h) or
fibronectin (i) in adjacent normal (n= 40), DCIS (n= 20) and DCIS/IDC (n= 20) patient samples (error bars, +s.e.m). ****P < 0.0001 (h, ordinary
one-way ANOVA and i, Kruskal–Wallis one-way ANOVA). See Supplementary Table 1 for patient information. j, Scatter plot depicting the linear
regression of the percentage of positive DCIS ducts for integrin αvβ6 (β6) and fibronectin (FN) in serial human tissue sections as in (f,g)
(n= 40). k, l, mRNA expression of ITGB6 and FN1 in normal breast tissues (n= 5), DCIS (n= 9) and IDC (n= 5) (error bars, +s.e.m). *P= 0.019 (k)
and **P= 0.0023 (l) (ordinary one-way ANOVA).
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tissue had no expression, whereas the percentage of positive DCIS
ducts was higher in DCIS/IDC (72%) compared with pure DCIS
(40%), with no difference between non-high and high grade pure
DCIS (Fig. 4a, b and Supplementary Table 5). We also confirmed,
using the gene expression profile study of human breast tissue
samples, a progressive increase in MMP13 mRNA levels with the
progression of DCIS (Fig. 4c). Consistently, qRT-PCR analysis
revealed that levels of MMP13 were increased in all integrin β6-
positive primary and cell line models of myoepithelial cells
examined, compared to their integrin β6-negative counterparts
(Fig. 4d–g). Furthermore, invasion assays revealed that the
knockdown of MMP13 in integrin β6-positive myoepithelial cell
line led to a decrease in breast tumour cell invasion in vitro
compared to control (Fig. 4h). These findings identify MMP13 as a
key protease elevated in DCIS progression, and implicate the
integrin β6-fibronectin-MMP13 axis in the pro-tumourigenic
properties of DCIS myoepithelial cells.

Mechanical stretching of normal myoepithelial cells induces a
DCIS phenotype associated with integrin β6 expression
We next investigated potential mechanisms whereby a DCIS
myoepithelial cell phenotype could be induced. DCIS is char-
acterised by the proliferation of tumour cells within the duct,

which results in the expansion of the duct and as a consequence,
stretching of the myoepithelial cell layer (Fig. 5a, Supplementary
Fig. 1a–e). We assessed DCIS duct size and identified that integrin
β6-positive DCIS ducts (460 μm) on average were larger than
integrin β6-negative DCIS ducts (380 μm) (Fig. 5b, c, Supplemen-
tary Table 6). To mimic the stretching of the myoepithelial cell
layer as seen in DCIS expansion, we applied a 10% static,
equibiaxial stretch to isolated primary and cell line models of
normal myoepithelial cells. Consistent with our tissue study,
mechanical stretching of the normal myoepithelial cell line (N-
1089) led to an increase in the expression of integrin β6 and
fibronectin (Fig. 5d, g, j, m). Isolated primary normal myoepithelial
cells (N-1989 and N-1492) exposed to mechanical stretching
similarly showed a significant increase in integrin β6 and
fibronectin expression (Fig. 5e, h, k, n and f, i, l, o, respectively).
These data suggest that the DCIS myoepithelial cell phenotype
observed here may be regulated, at least in part, by evolving
mechanics in the development of DCIS.
We next explored whether mechanical stretching could induce

the associated tumour-promoting phenotype seen in DCIS
myoepithelial cells. Invasion assays revealed both normal primary
and cell line models of myoepithelial cells exposed to stretch-
enhanced breast tumour cell invasion in vitro, compared to the
unstretched controls (Fig. 6a, Supplementary Fig. 2a, b).
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Consistently, mechanical stretching of all myoepithelial cells
revealed a broad upregulation in protease expression compared
to unstretched controls (Fig. 6b; Supplementary Fig. 2c, d). Indeed,
stretched normal primary and cell line models showed an increase
in MMP9 and MMP13 (Fig. 6b; Supplementary Fig. 2c, d). Gelatin
zymography confirmed elevated MMP9 activity in all of the
stretched primary and cell line models of normal myoepithelial
cells examined, compared to the unstretched controls (Fig. 6c–e).
Furthermore, qRT-PCR analysis confirmed enhanced levels of
MMP9 and MMP13 in all normal myoepithelial cells exposed to
stretch compared to unstretched controls (Fig. 6f–k). These results
show an association between duct expansion and induction of
myoepithelial integrin β6 expression, and functionally link
myoepithelial cell stretch to generation of a pro-tumourigenic
phenotype. These data suggests that evolving tissue mechanics
during DCIS development could induce the tumour-promoting
phenotype of DCIS myoepithelial cells.

DCIS myoepithelial phenotype induced by mechanical
stretching is mediated by TGFβ signalling
We next examined the relationship between mechanostimulation,
TGFβ signalling and induction of the DCIS myoepithelial cell
phenotype. Inhibition of the TGFβRII (RIIAB) with a blocking
antibody in stretched normal myoepithelial cell line (N-1089)
abrogated the upregulation of integrin β6 and fibronectin
compared to control (CTLAB) (Fig. 7a-d). Invasion assays revealed
inhibition of the TGFβRII reduced breast tumour cell invasion
in vitro, compared to control (Fig. 7e). Consistently, qRT-PCR
analysis showed reduced MMP9 and MMP13 levels in these cells
(Fig. 7f, g). These data suggest mechanical stimulation of TGFβ
signalling could be essential in promoting, further, the DCIS

myoepithelial phenotype associated with progression to invasion,
and that these markers may be used to identify patients at higher
risk for invasive progression.

DISCUSSION
Here we demonstrate that physical cues induce a tumour-
promoting phenotype in myoepithelial cells. Our findings support
the critical role played by myoepithelial cells in DCIS progression
and are consistent with our prior data implicating myoepithelial
integrin β6 in driving invasion36. We elaborate upon these prior
studies by identifying a molecular mechanism whereby tissue
mechanics increases myoepithelial integrin β6 and periductal
fibronectin expression through the tension-dependent enhance-
ment of TGFβ signalling that promotes BM-degrading proteases
that facilitate invasive progression. Accordingly, our study
identifies phenotypic changes in myoepithelial cells that may
stratify women who are at higher risk of invasive progression and
are therefore ideal candidates for more aggressive therapies. Our
findings also suggest that treatments aimed at inhibiting DCIS
myoepithelial cell function would constitute novel treatment
modalities and could potentially be used to lower the number of
women undergoing invasive surgery.
Previous work examining DCIS progression has attributed the

transition to invasion to specific features of the breast micro-
environment. Such prior studies have identified genes differen-
tially expressed between DCIS and invasion that encode for cell
adhesion and ECM-related proteins15,42. In support of this, recent
high-dimensional analysis using multiplex ion beam imaging by
time of flight (MIBI-TOF) to examine the histological stages of DCIS
progression identified the most distinctive property delineating
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DCIS from invasive disease was an increase in stromal fibrosis
associated with collagen deposition and remodelling, and cancer-
associated fibroblast frequency and proliferation45. This study
further identified that DCIS recurrence risk is heavily influenced by
myoepithelial morphology and phenotype45. Here, we quantified
higher myoepithelial integrin β6 and periductal fibronectin
expression in DCIS ducts associated with invasive disease in
tissues, supporting the role for perturbed integrin signalling, ECM
remodelling and an altered myoepithelial cell phenotype in
driving DCIS progression. Interestingly, these observed changes in
integrin β6 and fibronectin were more frequently observed in
high-grade DCIS ducts than in non-high grade DCIS ducts, which
could explain their progression to invasion more quickly, although
all grades have equal potential to progress8. Matched duct
analysis in tissues implicated a relationship between myoepithelial
integrin β6 and periductal fibronectin expression. Consistently, our
analysis of isolated primary DCIS and normal myoepithelial cells,
as well as established myoepithelial cell lines, corroborates our
clinical findings, revealing significantly increased fibronectin
expression by integrin β6-positive myoepithelial cells. Together
these data suggest that DCIS myoepithelial cells exhibit an ECM
remodelling phenotype. Using our myoepithelial cell line models,
we implicate a functional relationship between myoepithelial
integrin β6 and fibronectin in driving breast tumour cell invasion
in vitro, through TGFβ-mediated protease activity. Our studies

support the finding that MMP13 is strongly associated with DCIS
progression44, thereby linking this pathway to patient outcome.
Our tissue analysis identified an increased DCIS duct size

associated with myoepithelial integrin β6 positivity. We hypothe-
sized that physical cues in DCIS due to proliferative expansion of
ducts may trigger these phenotypic and functional changes to
myoepithelial cells. Indeed, by modelling the physical tension
seen in myoepithelial cells during DCIS expansion, we identified a
consistent and significant upregulation of integrin β6 and
fibronectin. These changes were associated with the induction
of our observed tumour-promoting phenotype- upregulation of
MMP9 and MMP13. Furthermore, we identified a tension-
dependent requirement of TGFβ signalling that facilitates the
induction of this phenotype in normal myoepithelial cells. These
findings imply that physical cues in DCIS regulate myoepithelial
cell phenotype and function that critically regulates progression
to invasion. In support of mechanical regulation of myoepithelial
cells, we have previously shown that increasing substrate rigidity,
as seen in DCIS progression, resulted in the loss of homeostasis
force generation by integrin β6-positive myoepithelial cells,
which could alter their ability to function as a barrier to invasive
dissemination into the stroma46. Indeed, studies have shown that
myoepithelial cells act as a dynamic barrier to tumour cell
invasion that relies upon their contractility and adhesion47. We
suggest that this function is compromised in integrin β6-positive
myoepithelial cells, that along with their ability to degrade the
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BM, facilitates the breaching of tumour cells into the surrounding
stroma. Our studies highlight the importance of future studies
utilizing mechanical models to investigate mechanisms by which
the myoepithelial cell barrier is lost. In summary, we show here
that tension to myoepithelial cells induces integrin β6 and
fibronectin expression, which in turn activates TGFβ signalling to

stimulate the expression of BM-degrading MMPs that promote
invasion of tumour cells into the stroma. Our findings thus
provide new evidence supporting a mechanism regulating DCIS
myoepithelial cell phenotype that facilitates invasive progression,
and identifies biomarkers that may be used to stratify women
with DCIS.
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METHODS
Gene expression microarray analysis
Array dataset from GEO (Gene Expression Omnibus) database with the
accession ID #GSE21422 was selected to assess expression profile changes
in an independent cohort of human breast tissues. The samples consist of
normal healthy breast (n= 5), DCIS (n= 9) and IDC (n= 5) tissues. Gene
ontology was performed using Gage (version 2.36.0) with gene lists from
MsigDB version 7.2.

Human breast tissue collection and processing
Tissue specimens were donated by women undergoing surgery for DCIS,
and tissues were collected as formalin-fixed and paraffin-embedded (FFPE)
or as fresh tissue for FACS-mediated DCIS myoepithelial cell isolation.
Samples of DCIS without evidence of invasion (pure DCIS; n= 20) and DCIS
with co-existent invasion (DCIS/IDC; n= 20) were selected for immunohis-
tochemical analyses. DCIS was classified as low, intermediate, and high
grade based on nuclear characteristics, and grouped as non-high grade
(low and intermediate) and high grade for analysis. Clinicopathologic
details of tissues analysed by immunohistochemistry are provided in
Supplementary Table 1. Tissue specimens were donated by women
undergoing reduction mammoplasty, and tissues were collected as fresh
tissue for FACS-mediated human normal myoepithelial cell isolation and
subsequent cell culture. All human breast tissues were collected from
consenting patients undergoing surgery at Barts Health NHS Trust London
between 2000 and 2015. Samples were stored and analysed with
deidentified labels to protect patient data in accordance with data under
the terms of the Barts Cancer Institute Breast Tissue Bank (REC no: 15/EE/
0192).

Immunohistochemical staining
Tissue sections were dewaxed in xylene, rehydrated in graded alcohols,
endogenous peroxidases were blocked with 3% H2O2 in methanol, antigen
retrieved in pepsin solution (Life Technologies) and blocked in 5% BSA in
PBS, followed by incubation with primary antibodies specific to SMA (Dako,
1A4, 1:500), integrin β6 (Calbiochem, 442.5C4, 1:800), fibronectin (Sigma,
IST-4, 1:400), MMP13 (abcam, VIIIA2, 1:100) or p63 (abcam, 4A4, 1:50)
overnight at 4 °C. Sections were washed with PBS prior to incubation with
anti-mouse biotinylated F(ab’)2, developed using ABC reagent and DAB
(Vector Laboratories), counterstained with haematoxylin, dehydrated in
graded alcohols and mounted with DPX.

Immunohistochemical analysis
Stained sections were imaged using a 3DHISTECH Panoramic digital slide
scanner and analysed using QuPath (version 0.2.3) open-source software48.
Immunohistochemical analysis was performed on a duct-by-duct basis.
Ducts were numbered and identified as either; normal, benign or DCIS
within each case, by an expert breast pathologist. For expression analysis;
each duct was then scored as negative or positive for integrin β6,
fibronectin and MMP13 in serial sections. For samples stained with
fibronectin, periductal staining was measured, which was defined as a
50 µm region bordering DCIS lesions. For DCIS duct size analysis, only
cross-sectional ducts were included. For cell and nuclear size analysis;
myoepithelial cells positive for SMA or p63 were segmented by semi-
automated detection, and cell and nuclear morphology features were
extracted.

Human DCIS and normal myoepithelial cell isolation
Fresh breast tissues were digested into ductal organoids by manual
chopping followed by digestion with 5% FBS in RPMI containing 1mg/ml
collagenase 1 A (Roche Life Science) and 1mg/ml hyaluronidase (Sigma),
overnight at 37 °C. Ductal organoids were then digested to a single-cell
suspension with 0.05%/0.02% trypsin/EDTA solution (Hyclone) containing
0.4 mg/mL DNase (Roche Life Science) for 15minutes at 37 °C for
subsequent cell isolation. Normal and DCIS myoepithelial cells were
isolated using fluorescence-activated cell sorting (FACS). Cells were
incubated for 45min at 4 °C with the following human-specific primary
antibodies at 1 μg/1 million cells: for normal cell suspensions EpCAM-FITC
(BD Biosciences, EBA-1) and CD10-APC, (BD Biosciences, HI10a) and for
DCIS cell suspensions; EpCAM-PE (BD Biosciences, EBA-1), integrin β4-
Alexa-Fluor 488 (Invitrogen, 422325) and integrin β6-APC (R&D Systems,
437211). Cells were then incubated with 4′,6-diamidino-2-phenylindole
(DAPI) for 4 °C for 10min to distinguish live/dead cells. EpCAM+ cells were
gated out to avoid epithelial contamination, and CD10+ normal
myoepithelial cells or integrin β4+ /β6+DCIS myoepithelial cells were
sorted into RPMI (Sigma) with 10% foetal bovine serum (FBS, Sigma). BD
FACSAria II cell sorters were used to conduct cell sorting using FACSDiva
software (BD Biosciences). Data were analysed using FlowJo software (Tree
Star). Isolated myoepithelial cells were collected and used for primary cell
culture or RNA isolation.

Primary and cell line culture
All cell lines were tested for mycoplasma contamination by PCR-based
method and confirmed negative for mycoplasma before experiments and
were maintained at 37 °C in a humidified 5% CO2 atmosphere. Isolated
normal myoepithelial cells were cultured in HuMEC Ready Medium
(Thermo Fisher Scientific) supplemented with 50 μg/mL bovine pituitary
extract (BPE, Invitrogen), 0.5 μg/mL hydrocortisone, 10 ng/mL EGF, 5 μg/mL
insulin, 0.5 μg/mL fungizone (Invitrogen) and 10 μg/mL gentamicin (Sigma)
and cultured on plates coated with 10 µg/cm2 type I collagen (Corning).
Myoepithelial cell lines; N-1089 and β6-1089 were grown in Nutrient
Mixture Ham’s F-12 (Sigma) supplemented with 10% FBS, 1 μg/mL
hydrocortisone (Sigma), 10 ng/mL Epidermal Growth Factor (EGF, Sigma),
and 10 μg/mL insulin (Sigma). Breast cancer cell lines; MDA-MB-231 and
MCF-7 were obtained from American Type Culture Collection (ATCC),
verified with STR profiling (LGC Standards, Teddington, UK, tracking
number 710081047), and grown in DMEM (Sigma) supplemented with
10% FBS.

DNA and siRNA transfection
Cells were reverse transfected with 10 μg integrin β6 pcDNA3.1 neo, a gift
from Dean Sheppard (Addgene, plasmid 13580), or pcDNA3.1 empty
vector (Invitrogen) using the jetPRIME transfection reagent (PolyPlus). Cells
were reverse transfected with 9 nM fibronectin, MMP13 or non-targeting
control (CTL) siRNA (Dharmacon) using interferin transfection reagent
(Polyplus). Functional assays were carried out 48 hr post-transfection.

TGFβ stimulation
Cells were cultured in serum-free media for 24 h prior to stimulation. Cells
were then washed in PBS to remove residual media and were then
stimulated with 5 ng/mL recombinant human active TGFβ1 (PeproTech) in
serum-free media for 5, 15 and 30min.

Fig. 5 Mechanical stretching normal myoepithelial cells induces integrin β6 expression. a Cartoon depicting duct sizes for a normal duct,
and a DCIS duct without and with integrin β6 expression (not to scale). b Representative images of integrin β6 by immunohistochemical
staining in human breast tissue samples featuring adjacent normal ducts (40 μm), and an integrin β6-negative and β6–positive DCIS duct.
Scale bar, (top) 200 μm and (bottom) 100 μm. c Box and whiskers plot showing DCIS duct sizes with (n= 656) or without (n= 713) integrin β6
expression. Box plot represents the median (central line) and interquartile range (IQR; box), and whiskers represent the maximum and
minimum. **P= 0.0312 (two-tailed t-test). d–f Representative images of integrin β6 (green) and fibronectin (FN, magenta) by
immunofluorescent staining in unstretched (Unstr) or stretched (Str) myoepithelial cell line; N-1089 (d) and primary normal myoepithelial
cells; N-1989 (e) and N-1492 (f). Nuclei were counterstained with DAPI (blue). Scale bar, 20 μm. Images are representative of three experiments.
g–i Immunoblots of integrin β6 and fibronectin (FN) in unstretched or stretched myoepithelial cells generated as in (d–f). HSC70 serves as
loading control. Images are representative of three experiments. j–l Bar graphs showing qRT-PCR analysis for ITGB6 using RNA isolated from
unstretched or stretched myoepithelial cell line; N-1089 (j) and primary normal myoepithelial cells; N-1989 (k) and N-1492 (l) (error bars,
+s.e.m). n= 3 biological replicates, 3 technical replicates; ****P < 0.0001 (j, k) and ***P= 0.0001 (l) (two-tailed t-test). m–o, Bar graphs showing
qRT-PCR analysis for FN1 using RNA isolated from unstretched or stretched myoepithelial cells generated as in (j–l) (error bars, +s.e.m). n= 3
biological replicates, 3 technical replicates; ****P < 0.0001 (two-tailed t-test).
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TGFβRII inhibition
Cells were incubated with 10 μg/mL TGFβRII-blocking antibody (R&D
Systems) or IgG isotype control antibody (Merck Millipore, GC270) in
serum-free media for 20min at 4 °C on a rotating-wheel before plating.
Functional assays were carried out 48 h postantibody treatment.

Conditioned media
Conditioned media (CM) was generated by culturing cells in serum-free
media for 48 h. CM was concentrated 24-fold with centrifugal filters (Fisher)
with 3 K molecular weight cut off (MWCO) at 4000 g for 45min at 4 °C.

Transwell® migration and invasion assays
Motility assays were performed using Transwell® migration inserts (8 μm
pore size, polycarbonate membrane, Corning). For migration assays the
underside of inserts were coated with 0.5 μg/mL recombinant human
latency-associated peptide of TGFβ1 (LAP, R&D Systems) or 0.1% BSA; for
invasion assays the top of each insert was coated with Matrigel (BD
Biosciences) diluted 1:3 in DMEM. Migrating and invading MDA-MB-231
and MCF-7 cells to the lower chamber were counted after 8 h, and 24 or
48 h incubation, respectively, using a CASY counter (Schärfe System). For
migration, total cell count for each sample was calculated by adding the
counts of the upper and lower chambers. Relative cell migration was then
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Fig. 6 Mechanical stretching normal myoepithelial cells activates a tumour promoting phenotype. a Invasion assay for MDA-MB-231 (231)
and MCF-7 cells using conditioned media (CM) isolated from unstretched (Unstr) or stretched (Str) normal myoepithelial cell line; N-1089 (error
bars, +s.e.m). n= 3 biological replicates, 5 technical replicates; ****P < 0.0001 (two-tailed t-test). b Array analysis for proteases using
conditioned media isolated from unstretched or stretched myoepithelial cell line; N-1089 (error bars, +s.e.m). n= 1 biological replicate, 2
technical replicates. c–e Gelatin zymography for MMP9 activity using conditioned media isolated from unstretched or stretched myoepithelial
cell line; N-1089 (c) and primary normal myoepithelial cells; N-1989 (d) and N-1492 (e). Images are representative of three experiments. f–h Bar
graphs showing qRT-PCR analysis for MMP9 using RNA isolated from unstretched or stretched myoepithelial cell line; N-1089 (f) and primary
normal myoepithelial cells; N-1989 (g) and N-1492 (h) (error bars, +s.e.m). n= 3 biological replicates, 3 technical replicates; **P= 0.0035 (f),
***P= 0.0005 (g) and *P= 0.0232 (h) (two-tailed t-test). i–k Bar graphs showing qRT-PCR analysis for MMP13 using RNA isolated from
unstretched or stretched myoepithelial cell line; N-1089 (i) and primary normal myoepithelial cells; N-1989 (j) and N-1492 (k) (error bars,
+s.e.m). n= 3 biological replicates, 3 technical replicates; **P= 0.0017 (i), ***P= 0.0007 (j) and ***P= 0.0009 (k) (two-tailed t-test).
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calculated by using the lower chamber count versus total cell count. For
invasion, for each sample only the lower chamber was counted. Relative
cell invasion was then calculated by normalising to the control.

Adhesion Assay
96-well plates were coated with 0.5 μg/mL recombinant human LAP (R&D
Systems) or 0.1% BSA and incubated for 1 h at 37 °C. Cells were then
seeded and allowed to adhere for 1 hr at 37 °C before fixing in methanol
and staining with 0.1% crystal violet. Stained cells were dissolved with 30%
acetic acid and absorbance read at 550 nm. Background binding to BSA
was subtracted from LAP, and relative adhesion was calculated by
normalising to the control.

Immunoblotting
Total cellular protein was isolated using RIPA buffer (50mM Tris-HCl pH 7.4,
150mM NaCl, 1% IPEGAL CA-630, 0.1% Na-DOC, 1 mM EDTA) supplemen-
ted with protease and phosphatase inhibitor cocktails (EMD Millipore).
Lysates containing equal amounts of protein (30 μg) were electrophoresed
in 6-10% SDS-PAGE gel, electroblotted to nitrocellulose membrane
(Amersham). Membranes were then blocked with 0.1% Tween-20 in TBS
(TBS-T) supplemented with 5% milk for 1 hr prior to incubation with
primary antibodies specific for integrin β6 (Santa Cruz, C-19, 1:500),
fibronectin (FN, Sigma, IST-4, 1:500), phospho-SMAD2 S465/467 (CST,
138D4, 1:500), SMAD2 (CST, 86F7, 1:500) and HSC70 (Santa Cruz, B-6,
1:1000) overnight at 4 °C. Membranes were then washed with TBS-T and
incubated with appropriate species-specific HRP-conjugated secondary
antibodies (Dako, 1:1000). Signals were visualised using Enhanced
Chemiluminescence (ECL) reagents (Amersham) and exposure to film.
Films were developed in a Konica Film Processor (SRX-101A). All blots were
processed in parallel and derive from the same experiment.

Immunofluorescence
Cells were fixed in 4% formaldehyde for 10min and permeabilised with
0.1% Triton X-100 in PBS for 5 min. Cells were then blocked with 5% BSA in
PBS for 10min prior to incubation with primary antibodies specific for
integrin β6 (Merck, 10D5, 1:100) and fibronectin (FN, Sigma, IST-4, 1:100)
overnight at 4 °C. Cells were then washed with PBS and incubated with
goat anti-mouse Alexa-Fluor 488 secondary antibody (Invitrogen, 1:200),
followed by additional washing and then mounted and counterstained
with ProLong Gold Antifade reagent containing 4′,6-diamidino-2-pheny-
lindole (DAPI, Invitrogen). Images were viewed on a Zeiss LSM 710 Meta
microscope.

Quantitative reverse transcriptase-PCR (qRT-PCR) analysis
Total RNA was isolated from cells using the Quick-RNA MiniPrep Kit (Zymo
Research). cDNA was synthesized using Moloney-Murine Leukemia Virus
(M-MLV) reverse transcriptase with random nucleotide primers (Sigma).
Quantitative reverse transcriptase-PCR (qRT-PCR) was performed on cDNA
using SYBR Green Master Mix (Thermo Fisher Scientific) on a StepOnePlus
Real-Time PCR System (Applied Biosystems). Gene expression was
quantified using the following primers: 18 S forward: CACGGGAAACCTC
ACCCGGC; 18 S reverse: AACGGCCATGCACCACCACC; ITGB6 forward:
GAAGGAATGATCACGTACAAG; ITGB6 reverse: AGCAGGGAGTCTTCACAGGT;
FN1 forward: AACAAACACTAATGTTAATTGCCC; FN1 reverse: TCGGGAA
TCTTCTCTGTCAGC; TGFB1 forward: GGAAATTGAGGGCTTTCGCC; TGFB1
reverse: CCGGTAGTGAACCCGTTGAT; MMP9 forward: GAACCAATCTCACC-
GACAGG; MMP9 reverse: GCCACCCGAGTGTAACCATA; MMP13 forward:
TCTACACCTACACCGGCAAA; MMP13 reverse: GGTTGGGGTCTTCATCTCCT.
Fold changes in mRNA expression were calculated by the ΔΔCt method
using 18 S as an endogenous control. Results are expressed as fold change
by normalizing to the controls.
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Fig. 7 TGFβ signalling regulates a mechanically induced tumour promoting phenotype in normal myoepithelial cells. a Representative
images of integrin β6 (green) and fibronectin (FN, magenta) by immunofluorescent staining in stretched normal myoepithelial cell line; N-1089
treated with a control (CTLAB) or TGFβRII (RIIAB) blocking antibody. Nuclei were counterstained with DAPI (blue). Scale bar, 20 μm.
b Immunoblots of integrin β6 and fibronectin in stretched normal myoepithelial cell lines generated as in (a). HSC70 serves as loading control.
Images are representative of three experiments. c, d Bar graphs showing qRT-PCR analysis for ITGB6 (c) and FN1 (d) using RNA isolated from
stretched normal myoepithelial cell lines generated as in (a) (error bars, +s.e.m). n= 3 biological replicates, repeated 3 times; ****P < 0.0001
(two-tailed t-test). e Invasion assay for MDA-MB-231 (231) and MCF-7 cells using conditioned media (CM) isolated from stretched normal
myoepithelial cell lines generated as in (a) (error bars, +s.e.m). n= 3 biological replicates, repeated 4 times; MDA-MB-231 ***P= 0.0001 and
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and **P= 0.0041 (two-tailed t-test).
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Human Proteome Protease Array
Human proteome protease arrays (R&D Systems) were processed
according to the manufacturer’s instructions using concentrated CM
(250 μg). Signals were visualised using ECL reagents and exposure to film.
Films were developed in a Konica Film Processor.

Zymography
Concentrated CM (100 μg) was resolved on a 10% Tris-Glycine gel
supplemented with 0.1% gelatin (Invitrogen). Gels were renatured in a
buffer (2.5% (v/v) Triton X-100), followed by incubation in a developing
buffer (5 mM Tris-Base, 4 mM HCl, 20 mM NaCl, 0.5 mM CaCl2) overnight at
37 °C and visualised with Coomassie R-250 (Thermo Fisher Scientific).
Images of stained gels were captured under illumination using the UVP
Imagestore 5000 (Ultra-Violet Products).

Mechanical Stretch
Cells were seeded in flexible-bottomed BioFlex culture plates coated with
type IV collagen (Dunn Lab), and grown for 72 h. Immediately prior to
stretching, cells were removed from the periphery of the well, and the
media was replaced. Cells were then exposed to a static stretch with 10%
elongation of the flexible surface using a computerised vacuum-operated
instrument (Flexcell strain unit FX-5000 Tension Plus; Flexcell International)
maintained in a cell culture incubator, for 48 h. Unstretched controls cells
were plated on BioFlex culture plates for an equivalent time but were not
subjected to stretch.

Statistical Analysis
GraphPad Prism (version 9.1.2) was used to perform all statistical analyses
and statistical significance was determined using the appropriate tests as
noted in the corresponding figure legends.

DATA AVAILABILITY
The array dataset analysed to assess expression profiles changes in human breast
tissues is available under accession number GSE2142242. All further datasets
generated and analysed in this study are available from the corresponding author
upon reasonable request.
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