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Lipid exposure activates gene expression changes associated
with estrogen receptor negative breast cancer
Shivangi Yadav1, Ranya Virk2, Carolina H. Chung 3, Mariana Bustamante Eduardo 1, David VanDerway2, Duojiao Chen4,
Kirsten Burdett5, Hongyu Gao4, Zexian Zeng6, Manish Ranjan 1, Gannon Cottone1, Xiaoling Xuei 4, Sriram Chandrasekaran 3,7,8,9,
Vadim Backman2, Robert Chatterton10, Seema Ahsan Khan 1✉ and Susan E. Clare 1✉

Improved understanding of local breast biology that favors the development of estrogen receptor negative (ER−) breast cancer
(BC) would foster better prevention strategies. We have previously shown that overexpression of specific lipid metabolism genes is
associated with the development of ER− BC. We now report results of exposure of MCF-10A and MCF-12A cells, and mammary
organoids to representative medium- and long-chain polyunsaturated fatty acids. This exposure caused a dynamic and profound
change in gene expression, accompanied by changes in chromatin packing density, chromatin accessibility, and histone
posttranslational modifications (PTMs). We identified 38 metabolic reactions that showed significantly increased activity, including
reactions related to one-carbon metabolism. Among these reactions are those that produce S-adenosyl-L-methionine for histone
PTMs. Utilizing both an in-vitro model and samples from women at high risk for ER− BC, we show that lipid exposure engenders
gene expression, signaling pathway activation, and histone marks associated with the development of ER− BC.
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INTRODUCTION
Breast cancer is a heterogeneous disease with different molecular
subtypes that are characterized, at a minimum, by the expression
of the estrogen receptor (ER), progesterone receptor (PR), and
Human epidermal growth factor receptor 2 (HER2)/neu1. Although
multiple statistical tools have been developed to quantify breast
cancer risk2, they do not predict breast cancer subtypes. Current
breast cancer prevention with selective estrogen receptor
modulators (SERM) and aromatase inhibitors decreases the risk
of estrogen-receptor (ER) positive breast cancer sub-types, but not
those without ER expression3–5. Thus, determining the etiologic/
biologic factors that favor the development of ER-negative breast
cancer will potentially enable the development of both strategies
to identify women at risk for ER-negative disease as well as
targeted preventive and therapeutic agents.
Given the poor understanding of the genesis of sporadic ER-

negative breast cancer, we set out to study this using the
contralateral, unaffected breast of patients with unilateral breast
cancer as a model. Studies of metachronous contralateral breast
cancer show a similarity in the ER status of the contralateral cancer
to the index primary6–8. Therefore, the contralateral unaffected
breast (CUB) of women undergoing surgical therapy for newly
diagnosed unilateral breast cancer can be employed as a model to
discover potential markers of subtype-specific risk. In a previous
study, we performed Illumina expression arrays on epithelial cells
from the CUB of breast cancer patients and identified a lipid
metabolism (LiMe) gene signature which was enriched in the
CUBs of women with ER- breast cancer9. Among these are genes
that control critical steps in lipid and energy metabolism. We

validated this signature in an independent set of 36 human
samples and re-confirmed the above results in fresh frozen tissues
obtained from a new set of ER+ and ER− breast cancer patients,
each time using laser capture microdissection (LCM) to obtain
epithelial cells from tumor and CUB samples10. Again, we found
significantly higher expression of LiMe genes in CUBs from women
with ER− breast cancer, compared to both CUBS from women
with ER+ breast cancer, and breast epithelium from a control
group of women undergoing reduction mammoplasty. However,
the specific genes comprising this overexpressed set had no
specific function or group of functions in common and did not
suggest specific mechanistic explanations as to why lipid
metabolism pathways would aid ER− breast cancer development.
In the present study, we address possible mechanistic explana-
tions for our previous observations.
Major reprogramming of cellular energetics is one of two

emerging hallmarks of cancer11. Altered lipid metabolism is
posited to be a driver of carcinogenesis in various cancers,
including ovarian12, prostate13,14, liver15 and triple negative breast
cancer16,17. Increased lipid metabolism has also been shown to
serve as a survival signal that enables tumor recurrence and has
been suggested as an Achilles heel for combating breast cancer
progression18. Despite this recognition of the importance of fatty
acid metabolism, its role in the transformation of a normal cell to
the malignant state is largely unknown. Metabolomic studies of
the concentrations of several free fatty acids in primary breast
tumors, including linoleate, palmitate, and oleate, as a function of
breast cancer subtype have revealed significant differences across
the subtypes, with the highest concentrations in basal-like breast
cancer19. Conjugation of long-chain fatty acids to carnitine for
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transport into the mitochondria and subsequent fatty acid
oxidation (FAO) was observed to be highest in basal-like breast
cancers, followed by luminal B ~HER2-enriched, with luminal A
tumors displaying the lowest levels19. Another study, which
utilized Raman spectroscopy to interrogate tissue, revealed that
histologically normal breast tissue centimeters removed from the
breast malignancy have significantly higher polyunsaturated fatty
acid levels compared with normal tissue from cancer-free
subjects20.
The kinetic and thermodynamic properties of the chromatin

modification reactions are commensurate with the dynamic range
of the physiological concentrations of the corresponding inter-
mediates in metabolism21. Therefore, we sought to determine if
the LiMe signature we observed in the CUBs of ER- patients is
associated with chromatin modifications and histone PTMs
secondary to changes in metabolism fostered by exposure to
medium and long-chain fatty acids.

RESULTS
Lipid facilitates transcriptional reprogramming in non-
transformed mammary cells
We established an in vitro model by exposing estrogen and
progesterone receptor (PR) negative MCF-10A cells to octanoate
(OA), a medium chain eight-carbon fatty acid. Due to its small size
and lipophilic nature octanoate does not depend on fatty acid
transport proteins to traverse cell membranes and is readily
oxidized in the mitochondria to form acetyl-CoA22,23. We
performed RNA-seq to determine the effects of octanoate
treatment on gene expression in the MCF-10A cells. RNA-seq
analysis revealed that 24 h of octanoate treatment produces a
transcriptional profile that is completely distinct from vehicle-
treated controls (Fig. 1a, Supplementary Fig. 1A, B). Genes with
initially low expression (negative values of lnðEctrl=Ectrl;avgÞ) are
upregulated (corresponding to positive values of lnðEoct=EctrlÞ)
while genes with initially high expression (positive values of
lnðEctrl=Ectrl;avgÞ) are downregulated upon octanoate treatment
(corresponding to negative values of lnðEoct=EctrlÞ)24. More
specifically, there is a clear trend for initially highly expressed
genes in the control condition to be downregulated upon
octanoate treatment while genes with initial low expression in
the control condition were upregulated. Differential expression
analysis performed using DESeq2 revealed a total of 2132
upregulated and 632 downregulated genes (FDR= 0.01, |logFC|
>1) in the octanoate treated cells (Supplementary Fig. 1C).
Pathway enrichment analysis of the differentially expressed genes
induced by the 5mM octanoate treatment was performed and the
top 25 upregulated and downregulated pathways are shown in
Fig. 1b. Specifically, this analysis revealed that among the top
altered biological processes are second messenger mediated
signaling, the Notch signaling pathway, adenylate cyclase-
activating adrenergic receptor signaling, cell morphogenesis,
and differentiation. In contrast, downregulated genes are involved
in cell cycle processes, transcriptional regulation of tumor
suppressor genes such as p53, and cell cycle checkpoints (Fig.
1b). Additional gene set enrichment analysis (GSEA) investigating
top pathways with coordinated upregulation or downregulation
of genes demonstrated that the top pathways associated with
octanoate treatment included positive regulation of cell morpho-
genesis, a process involved in differentiation, as well as several
oncogenic pathways associated with breast tumorigenesis,
including ERBB, WNT, and NOTCH signaling pathways (Fig. 1c).
Subsequent leading-edge analysis of these top upregulated
signaling pathways- Lipid storage pathways (I), Wnt pathway (II),
Notch signaling (III) and ERBB pathway (IV) shows clear association
of core enrichment genes with octanoate treatment across
replicates (Fig. 1d). Network analysis of octanoate-associated

pathways identified by GSEA analysis revealed linked clusters
involved with the nervous system and a second, separate group of
linked clusters involved with growth factor stimulation, regulation
of the MAPK cascade, and ERBB signaling (Fig. 1e). We validated
the expression of a number of genes that GSEA analysis
determined were significantly upregulated in MCF-10A with
octanoate treatment using real-time qPCR (Fig. 1f). In order to
validate our findings in a second cell line, we chose MCF-12A cells.
Sweeney et al. provide the history of the establishment of this cell
line as well as a demonstration that the cells are non-responsive to
estrogen25. 1645 genes were upregulated and 330 downregulated
(FDR= 0.01) in the octanoate treated MCF-12A. Comparison of
octanoate treated MCF-10A and MCF-12A GSEA reveals consider-
able overlap for Gene Ontology Biological Processes (GOBP,
Supplementary Fig. 2A), Reactome gene sets (R, Supplementary
Fig. 2B), and KEGG gene sets (K, Supplementary Fig. 2C). Similar to
the linked clusters involved with the nervous system seen in the
MCF-10As, the octanoate-treated MCF-12A are enriched for gene
sets of nerve development, synapses and neurotransmitters, and
axons. Additional overlap includes: adenylate cyclase pathways
and cell fate specification (upregulated genes, GOBP), cell cycle
and cell cycle checkpoints (downregulated genes, GOBP), cardiac
conduction, and muscle contraction (R), and MAPK and HEGDE-
HOG signaling (K). Examination of individual genes in the NOTCH
and Wnt pathways listed in Fig. 1d reveals that in MCF-12A cells
exposure to octanoic acid increased the expression of DLL4 by
25.4-fold (p= 1.93E−21, FDR 7.00E−21), that of HEY1 2.07-fold
(p= 7.49E−29, FDR 3.60E−86), NOTCH3 4.75-fold (p= 1.34E−87,
FDR 3.04E−86), WNT11 4.85-fold (p= 4.56E−38, FDR 2.96E−37)
and FZD4 2.29-fold (p= 3.36E−26, FDR 1.24E−25). Thus, treat-
ment with medium chain fatty acids induces significant changes
in transcription.

Evaluating the lipid composition of the serum of ER− and
ER+ BC patients
Next, we investigated whether dietary lipids, which are mainly
long chain fatty acids (LCFAs), have a similar effect on the gene
transcriptional profile to that of MCF-10A cells. In order to
determine the specific lipid(s) to evaluate experimentally, we
sought to determine the differences in the percent composition of
lipid species as a function of ER expression in serum from patients
who had donated CUB samples for our original studies9,10. A
comprehensive lipid profile of these serum samples was
performed by the Northwest Metabolic Research Center at
University of Washington, with measurement of more than 700
lipids. For each of the measurements, the association between the
measured value and ER status was evaluated using regression
models, adjusting for BMI, age, and menopausal status. ER was a
categorical variable used to describe subjects having ER+ or ER−
cancers, or controls undergoing reduction mammoplasty. As the
purpose of this experiment was to identify a lipid for ensuing
experiments, lipid species were ranked for effect size comparing
serum from patients subjects with ER- disease to those with ER+
disease (Supplementary Table 1). There were 28 serum samples
from donors with ER− disease and 28 from ER+ donors. Three of
the top four lipid species with the largest effect size were noted to
contain linoleic acid: cholesterol ester (CE) 18:2, phosphatidyl
choline (PC)16:0/18:2, and triacylglycerol (TAG) 54:6-FA18:2 (Table
1). Linoleic acid as a free fatty acid ranked 11th in the analysis.
Linoleic acid is the most highly consumed polyunsaturated fatty
acid in the human diet26, its presence in serum CE has been
strongly correlated with intake27, and its concentration in adult
adipose tissue has more than doubled in the past half century28.
Therefore, linoleic acid (LA) was included in subsequent studies.
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Octanoic acid and Linoleic acid influence chromatin packing
behavior
The state of chromatin is intimately linked with the regulation of
gene transcription, undergoing dynamic changes between

transcriptionally active and inactive states. Thus, our next step
was to explore the changes in chromatin structure of fatty acid
treated MCF-10A cells by employing partial wave spectroscopic
(PWS) microscopy, which quantifies chromatin packing scaling (D)
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in live cells29. D represents the power-law scaling relationship
between the 1D size of the chromatin polymer i.e., the number of
nucleotides and the 3D space the chromatin polymer occupies.
Recent evidence indicates that higher chromatin packing scaling
is associated with increased intercellular and intra-network
transcriptional heterogeneity as well as increased malignancy
and chemoresistance in cancer cells24,30,31. PWS was used to
evaluate the effect of OA and LA on chromatin packing scaling in
live MCF-10A cells. Images were obtained every 6 h over a 24 h

period. Our results showed significant increases in chromatin
packing scaling upon exposure to lipids suggesting that there is
an increase in the dynamic range of gene expression and
transcriptional gene network heterogeneity (Fig. 2a, b). These
significant changes in chromatin packing behavior also indicate
significant changes in chromatin accessibility, which is directly
associated with chromatin structure32.

ATAC sequencing reveals increased chromatin accessibility in
regulatory regions of genes in the MAPK and cAMP signaling
pathways in lipid treated mammary cells
To acquire more detailed insight into the specific regions of open
chromatin that were made accessible by LA treatment, we
proceeded with ATAC sequencing on LA-treated MCF-10A cells.
We examined the genomic locations of ATAC-seq peaks,
representing open chromatin sites, and discovered 1704 open
chromatin sites. Open chromatin regions were overrepresented
within 1 kb of transcription start sites (TSSs) by 40-fold relative to
the whole genome (Fig. 2c). Further, KEGG pathway analysis
revealed 326 open chromatin regions with a log fold change >=
1.5 and FDR < 0.05 compared to vehicle treated cells. Among the
top pathways that were upregulated significantly upon LA
treatment are MAPK signaling pathway, PI3K-AKT signaling
pathway, and the cAMP adenylate cyclase pathway (Fig. 2d).
Additionally, motif analysis conducted using ‘HOMER’33 showed
that chromatin regions made accessible/inaccessible by LA
treatment have binding motifs for a number of transcription
factors (Fig. 2e). These data reveal that linoleic acid affects
chromatin heterogeneity and increases/decreases the accessibility
of specific regions that include transcription factor binding sites.

Notch pathway genes are overexpressed in patients at high
risk of ER- disease
Next, we sought to determine whether the genes, or sets of
genes/pathways that we identified in our in vitro study were also
differentially expressed in vivo in tissue of patients at risk for ER−
and ER+ breast cancer. We took advantage of RNA from the CUB
of breast cancer cases utilized in our previous studies, which
revealed the association of LiMe genes in the CUBs of women with
unilateral ER- breast cancer9,10. We combined the data from the
RNA and ATAC sequencing experiments and collated a list of 44
genes of interest and 3 housekeeping genes. The list consists of
the genes from the HEDGEHOG, NOTCH, WNT, EMT, PPARγ, and

Fig. 1 Lipid-rich environment enables transcriptional reprogramming in mammary epithelial cells. a Twenty-four hour treatment of MCF-
10A cells with 5 mM octanoate results in a completely distinct transcriptional profile compared to untreated controls. Ectrl is the expression of
genes in the control condition across all 3 control replicates, Ectrl;avg is the average expression for the control condition across all genes and
replicates, Eoct is the expression of genes across all 3 octanoate replicates. Ectrl=Ectrl;avg represents the ratio of expression of a particular gene to

the average expression across all control cells. Thus, a positive value of ln Ectrl
Ectrl;avg

� �
corresponds to genes that are highly expressed in the control

conditions while a negative value of ln Ectrl
Ectrl;avg

� �
corresponds to genes that have an initial lower expression in the control condition. Eoct/Ectrl

represents the ratio of expression of a particular gene for octanoate-treated versus vehicle control-treated cells. Genes with initially low
expression are upregulated while genes with initially high expression are downregulated upon octanoate treatment. b Gene ontology analysis
of differentially expressed genes induced by octanoate treatment. Upregulated and downregulated genes were first identified using DESeq2
(FDR < 0.01, |logFC| > 1) for 5 mM octanoate treated cells compared to vehicle-treated control cells. Pathway enrichment analysis was
performed on identified differentially expressed genes with annotations from online pathway databases (KEGG, Hallmark, Canonical Pathways,
Reactome, BioCarta) and Gene Ontology Biological Processes. Pathway enrichment was ranked by p-value on a −Log10 scale and a selection
from the top 25 pathways associated with upregulated genes (in red) and downregulated genes (in blue) are shown. c GSEA analysis of Gene
Ontology Biological Processes showing top pathways associated with octanoate treatment with FDR < 0.1 related to differentiation, cell
signaling, and metabolic processes. d List of core enrichment genes differentially expressed in treated replicates-T4, T5, T6 versus control
replicates- C1, C2, C3: (I) Lipid storage pathways (II) Wnt pathway (III) Notch pathway (IV) ERBB pathway, each pathway as identified by GSEA
leading edge analysis. Expression values are represented as colors and range from red (high expression) to dark blue (lowest expression).
e Network analysis of pathways associated with the octanoate phenotype in GSEA analysis of Gene Ontology Biological Processes. f qPCR
analysis of genes associated with the NOTCH pathway (mean ± s.d.). Two genes, NOTCH3 and DLL4 show remarkable upregulation upon 5mM
octanoate treatment compared to other identified genes such as NOTCH1. Statistical significance was determined by the unpaired t-test with
Welch’s correction (**P < 0.01, *P < 0.05).

Table 1. Lipid species in the serum of CUB patients ranked by effect
size, ER negative compared to ER positive.

Order Variable ER_Negaitve_Effect_compared_to_ER_Positive

1 CE(18:2) 97.76

2 PC(16:0/18:2) 51.96

3 SM(20:0) 42.09

4 TAG54:6-
FA18:2

28.78

5 SM(22:0) 23.33

6 PC(16:0/18:1) 23.13

7 CE(16:1) 20.32

8 TAG54:5-
FA18:2

16.57

9 SM(22:1) 16.01

10 CE(18:3) 15.51

11 FFA(18:2) 15.37

12 PC(18:0/18:2) 13.77

14 PC(18:1/18:2) 12.38

14 TAG52:4-
FA18:2

11.37

15 TAG54:5-
FA18:1

10.83

Abbreviations: CE cholesterol ester, FFA free fatty acids, PC phosphatidyl-
choline, SM sphingomyelin, TAG triacylglycerol. TAGs have 3 acyl chains,
but it is only possible to measure the length and number of double bonds
of 1 of them. For example, TAG54:6-FA18:2 has 1 chain that is an 18:2 FA
and the other two have a total of 54 carbons and 6 double bonds. The
whole TAG has 72 carbons in the chain (plus 3 from the glycerol backbone)
and a total of 8 double bonds.
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adenylate cyclase pathways (Supplementary File 1). TaqMan low
density arrays were utilized to measure the expression of these
genes in CUBs of ER− and ER+ cases compared with the
reduction controls. The study population included 84 women,

with participants comprised of 28 matched triplets of women with
ER-positive breast cancer, ER-negative breast cancer, and reduc-
tion mammoplasty controls. The three groups were matched by
age, race, and menopausal status as shown in Supplementary

Vehicle Octanoate Vehicle Linoleic acid
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Fig. 3A. As noted in our original publication, ANOVA revealed a
significant difference in BMI across the three groups with BMI in
the reduction mammoplasty control group (30.0 ± 5.8) notably
higher than in ER-negative cases (25.3 ± 6.3, p= 0.015), but not
significantly higher than in the ER-positive group (26.7 ± 5.5, p=
0.136)10. There was no significant difference in HER2 status
between ER-positive and ER-negative cases. The majority of the
selected genes had higher expression in high-risk CUB specimens
than the controls, irrespective of the ER status of the index tumor
(Supplementary Fig. 3B). The comparison between the ER− and
ER+ CUBs revealed that in the ER− CUBS there is increased
expression of genes that function in the Notch pathway: NOTCH1
(1.7-fold, p= 0.002, BH_adjP= 0.07), NOTCH4 (1.5-fold, p= 0.04,
BH_adjP= 0.3), DLL1 (1.2-fold, p= 0.07, BH_adjP= 0.4) and HEY 1
(1.5-fold, p= 0.05, BH_adjP= 0.3), in addition to the SMO gene
(1.5-fold, p= 0.05, BH_adjP= 0.3), which is a key component of
the hedgehog signaling pathway (Fig. 3). Comparing ER− to
control, increased expression was observed for GPR161 (1.7-fold,
p= 0.05, BH_adjP= 0.7), which plays a role in the Hedgehog
pathway via cAMP signaling, and IGF2 (2.8-fold, p= 0.07, BH_
adjP= 0.7), which signals via both the MAPK and PI3K-AKT
pathways. Altogether, these data reveal upregulation in NOTCH
signaling in benign breast tissue samples from women at risk for
ER− disease, suggesting that dysregulation of these pathways
may play a role in the early stages of ER- cancer development.

LA increases the expression of Notch pathway genes and
specific genes involved in fatty acid oxidation in vitro
The increased expression of Notch pathway genes we discovered
in the ER- CUBs, along with the similar findings in MCF-10A cells
exposed to octanoate (described above), led us to test the
hypothesis that long chain fatty acids have similar effects on gene
expression. We, therefore, investigated whether an increased LA
environment influences the expression of Notch pathway genes
and specific genes involved with FAO in vitro. We treated MCF-
10A cells and mammary organoids from reduction mammoplasty
patient samples with LA for 24 h and then quantified changes in
gene expression using RT-qPCR. To begin with, we assayed the
genes involved in the activation of FAO. Upon entering cells, free
fatty acids are converted into fatty acyl-CoA molecules by the
enzymes of the acyl-CoA synthetase (ACS) family34. Notably, acyl-
CoA synthetase long chain (ACSL3) is one of the LiME genes found
to be upregulated in high-risk ER- CUBs samples. Generation of
acetyl-CoA occurs through a cyclical series of reactions in which a
fatty acid is shortened by two carbons per cycle, eventually
generating acetyl co-A. Acetyl co-A is a substrate for ketogenesis,
which is initiated by the mitochondrial enzyme 3-hydroxy-3-
methylglutaryl-CoA synthase 2 (HMGCS2), another of the pre-
viously identified LiMe genes. The mechanism for LCFAs oxidation
is slightly more complex than for MCFAs, as this is regulated
primarily via the enzyme carnitine palmitoyltransferase 1 (CPT1),
the rate-limiting enzyme of FAO which enables transport into the
mitochondria. As shown in Fig. 4a, the expression of HMGCS2,

ACSL3, and CPT1B were increased by LA exposure in MCF-10A cells
and mammary organoids. Additionally, we observed a significant
increase in DLL4 expression followed by HEY1, HEY2, and NOTCH1
in the lipid-treated mammary cells (Fig. 4a). We revisited the ATAC
sequencing data to examine the effect of LA on chromatin
architecture near key genes in the DLL4/NOTCH signaling pathway
and observed increased accessibility around the transcription start
sites of DLL4, NOTCH1, and HEY1 showing significant lowered
chromatin density with p-values of 1.62e−17, 0.017 and 0.03
respectively (Fig. 4b, c).

The NOTCH signaling pathway is activated in vitro by octanoic
acid treatment
Intracellular Notch binds to the transcriptional repressor RBP-Jk in
the nucleus, thereby converting it into an activator and inducing
the expression of downstream target genes. Therefore, to
determine if the NOTCH pathway is activated by OA, we
transfected a RBP-Jk reporter construct into MCF-10A cells. The
LUC/REN ratio is increased 2-fold by exposure to OA (Fig. 5)
indicating that the NOTCH pathway is functionally activated by
the lipid.

Fatty acids drive flux through metabolic reactions resulting in
increased histone methylation
While most of the experiments reported by McDonnell et al. were
performed in AML 12 liver cells, these investigators also
demonstrated increased H3K9 acetylation in octanoate-exposed
MCF7 and MDAMB-231 breast cancer cells35. Therefore, we sought
to determine if these same experimental conditions would lead to
H3K9 acetylation in a non-malignant MCF-10A cells. We exposed
MCF-10A non-transformed ER - breast epithelial cell line to 5 mM
octanoate (OA) for 24 h in medium containing both glucose
(1.441 g/L) and glutamine (0.292 g/L). Western blot analysis
demonstrated that octanoate exposure of MCF-10As resulted in
increased acetylation at both H3K9 and H3K14 (Fig. 6a). To
demonstrate that this was a fatty acid-specific effect, we treated
the cells with 1,4-Cyclohexanedimethanol (1,4-CHDM), an alcohol
with the same formula as octanoate; no acetylation was observed
consequent to the alcohol exposure (Supplementary Fig. 4A). To
validate the specificity of the antibody against the acetylated
histone lysines, we treated MCF-10A cells with sodium butyrate, a
histone deacetylase (HDAC) inhibitor. Sodium butyrate treatment
increased the acetylation of H3K9 and H3K14 as shown in
Supplementary Fig. 4B.
To exhaustively explore the impact of octanoate treatment on

metabolic pathways, we used flux balance analysis (FBA)36. FBA
makes use of genome-scale metabolic network models that
contain all known metabolic reactions in a cell or tissue based on
evidence from the published literature37. Genome-scale metabolic
models have been widely used to predict the metabolic behavior
of various mammalian cell types38–42. Here we used the Recon1
human network model that maps the relationship between 3744
reactions, 2766 metabolites, 1496 metabolic genes, and 2004

Fig. 2 Linoleic acid alters large-scale chromatin packing behavior in MCF-10A cells. a Representative PWS microscopy images of MCF-10A
cell nuclei at 24 h after treatment with vehicle controls and lipids—octanoate and linoleic acid. Scale bars, 10 μm. Chromatin packing scaling
(D) map of nuclei shows an increase in chromatin packing scaling upon lipid treatment as demonstrated by an increase in red regions.
b Changes in average chromatin packing scaling among MCF-10A cells upon treatment with vehicle controls and lipids compared to
untreated cells. Significance was determined using unpaired Kolmogorov–Smirnov t-test (****P < 0.0001, *P < 0.05). Bar graphs show the mean
change in intranuclear D across cell populations for N= 88 cells PBS (vehicle for octanoate), N= 110 cells Octanoate (OA), N= 103 cells BSA
(vehicle for linoleic acid), and N= 94 Linoleic acid (LA). c Enrichment of genomic locations for 1704 open chromatin regions (FDR < 0.05, logFC
> 1) in LA treated MCF-10A cells. The enrichment of peaks in each type of genomic region relative to the whole genome is shown on the y-
axis. Two ATAC-seq libraries were used for the analysis. d Pathway analysis for the regions with increased chromatin accessibility in linoleic
acid-treated cells identified using the KEGG database. e Biplot showing changes in chromatin accessibility for specific regions identified by
HOMER analysis. Motifs with a significant increase in the chromatin accessibility are shown in blue and those with a significant decrease in
accessibility are shown in yellow (FDR < 0.05 and |logFC| > 1).
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NOTCH 4

HEY 1

Fig. 3 Notch pathway is overexpressed in CUB samples of patients at high risk of ER− disease. Expression of genes from various pathways
in matching CUBs from ER-negative, ER-positive patients, and controls. The log2-transformed relative (log2RE) amounts of mRNA expression
normalized to the housekeeping gene and expressed as log22

−(CtX−CtGAPDH) = −(CtX − Ct GAPDH) where Ct is threshold cycle and X is gene
of interest. IGF2 and GPR161 were significantly higher in ER-negative versus control. Genes from the Notch pathway were significantly higher
in ER negative CUBs in comparison to ER positive patients. Mann–Whitney test was used to test the pairwise differences between the samples
(ER+, ER−, Control) * P < 0.05; ** P < 0.01. Boxplots show mean and SEM with whiskers indicating 1–99th percentile.
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metabolic enzymes43. This model was augmented with biochem-
ical reactions corresponding to histone acetylation and methyla-
tion38,44, allowing us to predict the consequences of octanoate-
induced metabolic changes on histone modifications by tracking

the flux through the substrates for the histone modifications.
These models were previously used to predict bulk histone
acetylation levels in various cell lines based on the nuclear flux of
acetyl-coA directed towards histone acetylation44. Similarly, bulk
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histone methylation levels can be predicted based on the nuclear
flux of S-adenosyl-L-methionine (SAM)38. The model predicted
octanoate treatment would result in increased histone methyla-
tion levels, with a more modest increase in histone acetylation
levels (Fig. 6c). As a comparison, we repeated this analysis with
immortalized hepatocyte cells used by McDonnel et al.; they
found a significant increase in histone acetylation after octanoate
treatment35. We calculated metabolic flux in these hepatocytes
using the transcriptomics data from McDonnel et al and found a
much larger increase in histone acetylation after octanoate
treatment (Supplementary Fig. 4E). These results suggest that
the impact of metabolic alterations on histone acetylation is cell-
type specific, as observed in prior studies45,46. Overall, out of the
3759 reactions in the model, we identified 38 that showed
significant increased activity after octanoate treatment (p-value <
0.01; Supplementary Fig. 4C). As expected, reactions involved in
lipid and fatty acid metabolism, specifically triacyl glycerol
synthesis and glycerophospholipid metabolism were upregulated.
Interestingly, among the upregulated reactions were several
reactions related to the one-carbon metabolic pathway, which
links folate, SAM, methionine, glycine, and serine metabolism (Fig.
6f). The reactions catalyzed by methionine adenosyltransferase,
methionine synthase, adenosyl homocysteinase, 5,10-methylene-
tetrahydrofolatereductase, glycine N-methyltransferase, and for-
myltetrahydrofolate dehydrogenase were all predicted to have
increased activity after treatment (p-value < 0.01). These reactions
likely support increased histone methylation by providing one
carbon units. Examining the reaction fluxes/activities in the OA-
treated MCF-12A cells (Fig. 6f), we see differences in one carbon
metabolism and glutathione metabolism similar to what we
observed in the MCF-10A cells.

Lipid exposure eventuates in histone methylation. In order to
profile the specific histone marks significantly changed by the

octanoic and linoleic acid treatment, we performed liquid
chromatography/mass spectrometry on tryptic peptides isolated
from the nuclei of treated and control MCF-10A cells. Increased
methylation in the OA treated cells was observed in various
histone proteins including H3K9me1/2/3, H3.1K27me2/3,
H3.3K36me2/3, H3K79me1/2, and H3K4 (Fig. 6e) together with
increased acetylation of H3K14 and H4K16 (Fig. 6d). Similarly
increased methylation was observed for H3.1: K27me1, H3.3:
K23me1, H3.1: K36me3, H3.3: K36me2, and H3.3: K36me3 in LA
treated cells (Fig. 6e). Notably, the GSEA analysis showed a
significant correlation of H3K27 methylation (NES= 2.47, FDR q-
value= 0.05) and H3K4 methylation (NES= 1.24, FDR q-value=
0.1) with octanoate treatment (Supplementary Fig. 4D) suggesting
this lipid-rich environment eventuates in histone methylation in
mammary epithelial cells.

DISCUSSION
The known determinants of risk for ER-negative breast cancer are
genetic (either specific racial inheritance, germline mutations in
genes such as BRCA1) or systemic/behavioral factors (premeno-
pausal obesity47, absence of a breastfeeding48). In contrast, few if
any local factors in the breast environment serve to identify
women at risk for ER-negative tumors. Local in-breast factors are
of great interest, however, since they may be more specifically
targetable for breast cancer prevention than systemic factors. Of
note, the two strongest risk factors for breast cancer overall (other
than high penetrance germline mutations) are local: atypical
proliferative lesions, and49 extremely dense breast tissue50. This
reasoning motivated us to investigate the local breast biology that
may promote the development of ER-negative rather than ER-
positive breast cancer, using the CUB of women undergoing
surgery for a unilateral primary breast cancer as a model for ER-
specific breast cancer risk7,51. In our initial study, we identified a
highly correlated lipid metabolism (LiMe) gene signature, which
was enriched in the CUBs of women with ER- breast cancer.
To explain the biologic basis for this association, we developed

an in vitro model wherein we exposed MCF-10A and MCF-12A, ER-
negative, non-tumorigenic epithelial cell lines, or breast organoids
derived from reduction mammoplasty samples to an extracellular
milieu rich in medium or long chain fatty acids. This model system
has now enabled us to demonstrate that the exposure of breast
epithelial cells to these fatty acids results in a dynamic and
profound change in gene expression, accompanied by changes in
chromatin packing density, chromatin accessibility, and histone
PTMs. The histone modifications, in turn, are the result of both the
lipid-engendered increased expression of the requisite enzymes
and the increased production of their substrates. Our metabolic
flux analysis revealed the upregulation of several reactions related
to the one-carbon metabolic pathway, which links folate, SAM,
methionine, glycine, and serine metabolism. This insight was not
evident upon analysis of differential gene expression, which is not
surprising as gene expression changes often do not reflect the flux
of metabolic reactions38. The substrates for histone methylation
and acetylation reactions often have cellular concentrations that
are commensurate with enzyme Km values, and thus these
reactions are sensitive and responsive to changes in metabolism21.

Fig. 4 Increased DLL4/Notch signaling is associated with the stimulated fatty acid oxidation. a qPCR data showing increase in lipid
metabolism genes (green) and Notch pathway genes (red) after 24 h linoleate treatment in MCF-10A and mammary organoids (mean ± s.d.).
Organoid I was donated by a postmenopausal 61-year-old with a BMI of 22 and Organoid II by a premenopausal 28-year-old with a BMI of 31.
Statistical significance was determined by the unpaired t-test with Welch’s correction (****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05).
b Chromatin accessibility in the lipid-treated cells around the transcription start site (TSS) of NOTCH1, HEY1, and DLL4 (FDR < 0.001). c Gene
tracks and increase in peaks for the Notch genes in LA treated cells with the exact location on the chromosome. d Leading edge scores for
genes of interest associated with the NOTCH signaling pathway as determined by GSEA leading edge analysis. DLL4, HEY1, HEY2, NOTCH3,
and NOTCH4 were identified as core enrichment genes in the NOTCH pathway.
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Increasing substrate concentration can increase the product of the
reaction even if there is no increase in the expression of the
enzyme. Our proteomics data reveal increased methylation at
H3K27me1 and H3K36me2/3 in cells treated with octanoate in
both MCF-10A and MCF12 A, and H3K4me1 in MCF-10A cells;
GSEA analysis showed that genes with ontologies related to
histone methylation at H3K27 and H3K4 exhibit changes in
expression in the lipid-treated cells.
The goal of our investigation was to develop specific mechan-

istic explanations as to why lipid metabolism pathways would aid
ER− breast cancer development. The data have revealed a
number of possibilities, all of which will have to be explored
further. Mammary stem cell differentiation is a hierarchical
organization, and lineage tracing experiments have determined
that NOTCH1 expression exclusively generates ER− luminal cells52.
A subsequent study by these investigators revealed that during
mammary embryogenesis Notch signaling prevents the genera-
tion of basal precursors, and cells expressing active NOTCH1
exclusively give rise to the ER− (Sca1-/CD133-) lineage at any
developmental stage from mouse embryonic day 13.5 to
postpartum day 353. Even more interesting given our focus on
the origins of ER-negative breast cancer was their observation that
pubertal cells retain plasticity. Ectopic activation of Notch1 in basal
cells at puberty was able to completely switch their identity to ER-
negative luminal cells.

Additional clues regarding the association of our experimental
findings with ER-negative breast cancer comes from GWAS data. A
study that included 21,468 ER-negative cases and 100,594 controls
identified independent associations of ten single nucleotide
polymorphisms (SNPs) with the development of ER− breast
cancer54. Pathway analysis was performed by mapping each SNP
to the nearest gene. This identified several pathways implicated in
susceptibility to ER-negative, but not ER+ breast cancer. Included
among these was the adenylate cyclase (AC) activating pathway.
One of the significantly altered biologic processes that we
identified by RNA sequencing of the octanoic acid-treated cells
is adenylate cyclase-activating adrenergic receptor signaling.
Adenylate cyclase signals via cyclic AMP. Regions of chromatin
with increased accessibility are associated with increased gene
expression; our ATAC-Seq results show that linoleic acid exposure
significantly increased accessibility to genes in the cAMP signaling
pathway. In their discussion of ER− GWAS results, Milne et al.
suggest that stimulation of the beta 2 adrenergic-adenylate
cyclase-cAMP-β-arrestin–Src–ERK pathway may play a role in the
genesis of ER− breast cancer. MetaCore analysis of our RNA-
sequencing data reveals similar pathway activation, however, it is
the beta1 adrenergic receptor that demonstrates increased
expression in the octanoate treated cells. In addition, our ATAC-
seq data showed increased RAP1 signaling pathway accessibility.
Adenylate cyclase signaling also functions via Epac-Rap1-B-raf-
MEK-ERK, with this signaling shown to be responsible for

Fig. 7 Proposed model illustrating the orchestration of lipid-induced molecular changes. Sensors: Senses the fatty acid-rich environment
and perturb cellular metabolism providing the essential substrate for histone modifications and thereby turning on the Mediators- histone
PTMs, which consequently activates the Effectors- Notch, adenylate cyclase, and MAPK-ERK the key protein signaling associated with ER−
breast cancer.
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sustained ERK activation that occurs 10–30min after cAMP
activation55. The MAPK (ERK) pathway can be stimulated by
means other than adrenergic receptor-ligand binding. Activation
of this pathway by overexpression of EGFR+ EGF, c-erbB-2, RAF1,
or MEK in MCF7 cells leads to estrogen-independent growth and
downregulation of ERα expression56. These results suggest that
hyperactivation of the MAPK(ERK) pathway plays a role in the
generation of the ER− phenotype in breast cancer. We observed
MAPK activation in our analysis of differentially expressed genes,
i.e., “positive regulation of the MAPK cascade,” and in the analysis
of regions of chromatin with significantly increased chromatin.
Using stratified LD score regression, a statistical method for

identifying functional enrichment from GWAS summary statistics,
SNPs associated with the H3K4me3 histone mark were deter-
mined to be contributing to the heritability of ER-negative breast
cancer, (2.4-fold, P= 0.0005)54. Increased activity of the one-
carbon pathway is associated with increased H3K4 trimethylation
in stem cells and cancer cell lines38,57. Restriction of methionine
with consequent modulation of SAM and S-Adenosyl-L-
homocysteine (SAH) levels affects methylation at H3K4me3,
H3K27me3, and H3K9me3, with H3K4me3 exhibiting the largest
changes (45). Interestingly, this restriction leads to loss of
H3K4me3 at the promoters of colorectal cancer (CRC)-associated
genes, with resulting decreased expression (p= 0.02, Fisher’s
exact test). A computational model developed to identify the
direct influences on methionine concentrations in humans
suggests that dietary intake explains about 30% of the variation
in methionine concentration, and fats (arachidic acid in this
model) are among the foods contributing to higher methionine
levels57.
In conclusion, we have demonstrated in the present study that

exposure of breast epithelial cells in vitro to fatty acids results in
epigenetic effects that produce dynamic and profound changes in
the expression of genes that have been associated with the
development of ER- breast cancer (Fig. 7). Next steps include
demonstrating that these same changes are observed in vivo. As
mentioned in the introduction, polyunsaturated fatty acids are
present in normal breast tissue. Although we measured lipid
species in the serum of the donors of the CUB specimens, fatty
acids can also be mobilized from adjacent adipose tissue;
adipocytes have been shown to be a reservoir of lipids for breast
cancer stem cells58. We hypothesize that the expression of genes
associated with the development of ER- breast cancer is
consequent to lipid stimulation of one-carbon metabolism with
resultant changes in histone methylation. Important roles for
glycolysis, glutaminolysis, lipogenesis, and mitochondrial activity
have been demonstrated in oncogenesis; the one-carbon pathway
has comparatively received less attention and the insights we
provide here generate new questions regarding lipid metabolism
and ER-negative breast cancer, to be pursued in future
investigations.

MATERIALS AND METHODS
Cell culture
MCF-10A and MCF-12A cell lines were obtained from American Type
Culture Collection (ATCC) and cultured in mammary epithelial cell growth
basal medium with single quots supplements and growth factors (#Lonza
CC-4136). Cells were treated with the medium-chain fatty acid sodium
octanoate (OA; Sigma # C5038) dissolved in PBS; and long-chain fatty acid
Linoleic acid (LA; Sigma # L8134) complexed with fatty acid-free BSA
(Roche 10775835001). Alternatively, Linoleic Acid bound to BSA (LA-BSA;
Sigma # L9530) was used. PBS and BSA were used as the vehicle control in
experiments containing OA and LA, respectively. Cells were counted using
an Invitrogen Countess automated cell counter using the Trypan blue
exclusion method and seeded at the indicated densities. All experiments
were done in complete MEBM media with fatty acids or vehicle.

CUB samples
Patients diagnosed with unilateral breast cancer and undergoing
contralateral prophylactic mastectomy at Prentice Women’s Hospital of
Northwestern Medicine were recruited under an approved protocol
(NU11B04), with exclusions for neoadjuvant treatment, prior endocrine
therapy, or pregnancy/lactation during the prior 2 years. A group of
reduction mammoplasty (RM) patients were also recruited as standard risk
controls. All participants provided written informed consent. The fresh
tissues were frozen and stored in liquid nitrogen. Tissue samples from 56
bilateral mastectomy cases (28 ER+ and 28 ER−) and 28 healthy RM
controls were used in this study. The ER+ cases, ER− cases, and controls
were matched by age, race, and menopausal status.

Mammary organoids preparation
Tissues were collected from women admitted for reduction mammoplasty,
who were recruited under an approved IRB protocol (NU15B07). All
participants provided written informed consent. Breast tissue to be
processed is transferred into a sterile petri dish and chopped into small
pieces using a scalpel. The minced tissue was transferred to a sterile 50ml
tube and 30ml of Kaighn’s Modification media (Gibco #21127022)
containing collagenase from Clostridium histolyticum (Sigma Aldrich,
#C0130) was added, final collagenase concentration is 1 mg/mL. Media
containing collagenase is filtered using a 0.22 μm filter. The Falcon tube is
sealed with parafilm and tissue is gently dissociated on a shaker at 100 rpm
and 37 °C, overnight (16 h). The following day, organoids are collected by
the centrifugation of the suspension at 114 × g for 5 min. The supernatant
is discarded, and the organoid pellet washed two-three times with PBS.
Organoids with a size between 40 and 100 μm are collected and
resuspended in fresh media (3 mL) and added to a six-well plate (Ultra-
Low Attachment Surface plate, Corning # CLS3471). Organoids are allowed
to stabilize for 24 h before use in the experiments.

Fatty acid preparation
Sodium octanoate (OA) was dissolved in PBS. To bind linoleic acid (Sigma #
L8134) to BSA, it was initially dissolved in water to yield a 50mM final
concentration. 0.12 g of BSA was dissolved in 1.2 ml of water resulting a
10% BSA solution. A 0.2 ml aliquot of the Na linoleate solution was
combined with the 10% BSA solution. After 15min of slow stirring at 37 °C,
0.6 ml of water was added to bring the final concentration of Na linoleate
to 5 mMol/L59. Linoleic acid bound to BSA (Sigma # L9530) was dissolved
in water.

Lipid analysis
LC-MS grade methanol, dichloromethane, and ammonium acetate were
purchased from Fisher Scientific (Pittsburgh, PA) and HPLC grade
1-propanol from Sigma-Aldrich (Saint Louis, MO). Milli-Q water was
obtained from an in-house Ultrapure Water System by EMD Millipore
(Billerica, MA). The Lipidyzer isotope labeled internal standards mixture
consisting of 54 isotopes from 13 lipid classes was purchased from Sciex
(Framingham, MA).

Sample preparation
Frozen plasma samples were thawed at room temperature (25 °C) for
30min, vortexed; 25 μL of plasma was transferred to a borosilicate glass
culture tube (16 × 100mm). Next, 0.475mL of water, 1.45 mL of 1:0.45
methanol:dichloromethane, and 25 μL of the isotope labeled internal
standards mixture were added to the tube. The mixture was vortexed for
5 s and incubated at room temperature for 30min. Next, another 0.5 mL of
water and 0.45 mL of dichloromethane were added to the tube, followed
by gentle vortexing for 5 s, and centrifugation at 2500 × g at 15 °C for
10min. The bottom organic layer was transferred to a new tube and 0.9 mL
of dichloromethane was added to the original tube for a second extraction.
The combined extracts were concentrated under nitrogen and recon-
stituted in 0.25 mL of the mobile phase (10mM ammonium acetate in
50:50 methanol:dichloromethane).

Mass spectrometry
Quantitative lipidomics was performed with the Sciex Lipidyzer platform
consisting of Shimadzu Nexera X2 LC-30AD pumps, a Shimadzu Nexera X2
SIL-30AC autosampler, and a Sciex QTRAP® 5500 mass spectrometer
equipped with SelexION® for differential mobility spectrometry (DMS).
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1-propanol was used as the chemical modifier for the DMS. Samples were
introduced to the mass spectrometer by flow injection analysis at 8 μL/min.
Each sample was injected twice, once with the DMS on (PC/PE/LPC/LPE/
SM), and once with the DMS off (CE/CER/DAG/DCER/FFA/HCER/LCER/TAG).
The lipid molecular species were measured using multiple reaction
monitoring (MRM) and positive/negative polarity switching. Positive ion
mode detected lipid classes SM/DAG/CE/CER/DCER/HCER/DCER/TAG and
negative ion mode detected lipid classes LPE/LPC/PC/PE/FFA. A total of
1070 lipids and fatty acids were targeted in the analysis.

Data processing
Data were acquired and processed using Analyst 1.6.3 and Lipidomics
Workflow Manager 1.0.5.0. For statistical analysis, we evaluated the lipid
species enrichments in the ER+, ER−, and control groups. The different
groups were compared in pair-wise and the log-fold changes of lipid
enrichment were derived, along with the effect sizes and p-values inferred
from the regression models using the lipid measurement as an input
variable and group information as the output variable.

Library preparation and RNA sequencing
MCF-10A: RNA was isolated with Qiagen RNeasy Plus Mini Kit (# 74134).
The concentration and quality of total RNA in samples were assessed using
the Agilent 2100 Bioanalyzer. RNA Integrity Number (RIN) of the vehicle
and octanoate sample was 9.9 and 9.8, respectively. Sequencing libraries
were prepared from a total of 100 ng of RNA using KAPA RNA HyperPrep
Kit. Single-Indexed adapters were obtained from KAPA (catalog# KK8701).
Library quality was assessed using the KAPA Library Assay kit. Each indexed
library was quantified and its quality accessed by Qubit and Agilent
Bioanalyzer, and 6 libraries were pooled in equal molarity. 5 μL of 4 nM
pooled libraries were denatured, neutralized and a final concentration of
1.5 pM of pooled libraries was loaded to Illumina NextSeq 500 for 75 bp
single-read sequencing. Approximately 80 M filtered reads per library was
generated. A Phred quality score (Q score) was used to measure the quality
of the sequencing. More than 88% of the sequencing reads reached Q30
(99.9% base call accuracy). Single-end FASTQ reads from RNA-seq
measurements were aligned and mapped to hg38 ENSEMBL genome
using STAR alignment60. Transcriptions per million (TPM) from mapped
reads were estimated using RSEM from the STAR aligned reads61. The
DESeq2 Bioconductor R package62 was employed to determine differen-
tially expressed genes for the octanoate treatment group compared to the
vehicle-treated controls with FDR cutoff= 0.01 and |log2FC| ≥ 2 to identify
a reasonable number of differentially expressed genes, on the order of
several thousands of genes total, for subsequent analysis
MCF-12A: RNA isolation and library preparation as above. The Illumina

NovaSeq 6000 platform was employed for 100 bp paired-end sequencing.
The sequence reads were mapped to the hg38 reference geneome using
STAR (Spliced Transcripts Alignment to a Reference)60. To evaluate the
quality of the RNA-seq data, the number of reads that fall into different
annotated regions (exonic, intronic, splicing junction, intergenic, promoter,
UTR, etc.) of the reference genes was determined with bamUtils63. More
than 83% of the sequencing reads reached Q30. Low quality mapped reads
(including reads mapped to multiple positions) were excluded and
featureCounts64 was used to quantify the gene level expression.
Differential gene expression analysis was performed with edgeR65. In this
workflow, the statistical methodology applied uses negative binomial
generalized linear models with likelihood ratio tests.

Gene ontology analysis of differentially expressed genes
Gene ontology pathway analysis for biological processes was performed
on each set of differentially expressed genes using Metascape66.

GSEA analysis
Raw counts were first estimated using HTSeq from STAR-aligned reads67.
Next, replicates for control cells and treated cells were merged and
normalized using modules from the GenePattern software package68.
GSEA69,70 was performed on these DESeq-normalized reads using
annotations from online databases, including KEGG, Hallmark, Reactome,
BioCarta, and Canonical Pathways. The normalized enrichment score (NES)
of these top 20 pathways associated with the control and the octanoate-
treated condition is shown with nominal p-value = 0.0. Metascape was
employed to perform network analysis on these top 20 pathways
associated with each treatment condition.

ATAC Seq Library preparation and sequencing
1 × 106 cells were pelleted and lysed in ATAC-resuspension buffer71.
Extracted nuclei were processed for TN-5 mediated tagmentation using
the Illumina Tagment DNA Enzyme and buffer kit (Nextera Illumina #
20034210): Transposon reaction mix as 2X TD Buffer-25 µl, Tn5
Transposase-2.5 µl, 1X PBS containing nuclei-16.5 µl, 10% Tween-
20–0.5 µl (Sigma # P9416), 1% Digitonin-0.5 µl (Promega # G9441) and
water at 37 °C, on a thermomixer at 1000 rpm for 30min. Tagmented DNA
was isolated by Nucleospin PCR clean-up (Takara Bio USA, Inc #
740609.250). Libraries were amplified for 8 cycles and purified using
AMPure XP (Agencourt # A63880). Fragment sizes were determined using
106 LabChip GXII Touch HT (PerkinElmer), and 2 × 50 paired-end
sequencing performed on NovaSeq S1 6000 flow cell (Illumina) to yield
100M reads per sample.

ATAC-seq data sequencing and peak calling
Illumina adapter sequences and low-quality base calls were trimmed off
the paired end reads with Trim Galore v0.4.3. Sequence reads were aligned
to human reference genome hg38 using bowtie2 with default settings.
Duplicate reads were discarded with Picard. Reads mapped to mitochon-
drial DNA together with low mapping quality reads were excluded from
further analysis. MACS2 was used to identify the peak regions with options
-f BAMPE -g hs –keep-dup all -B -q 0.0172. Peaks for samples in the same
condition were merged using the function ‘merge’ of bedtools and peaks
for samples in different conditions were intersected using the function of
‘intersect’ of bedtools73.

Differential chromatin accessibility analysis
The number of cutting sites of each sample was counted using the script
dnase_cut_counter.py of pyDNase (version 0.2.4)74. The raw count matrix
was normalized by CPM. R package edgeR (version 3.16.5) was used to
conduct the differential accessibility analysis for all 66,853 common peaks.
Significantly different accessible chromatin regions under different
conditions were defined as the threshold 0.05 for FDR. With the cutoff 1
for the absolute value of fold change, comparing the treatment group with
vehicle control group, we obtained 1704 significantly increased peaks and
3340 significantly decreased peaks.

Motif analysis
Motif analysis was conducted for significantly changed chromatin regions
using ‘findMotifsGenome.pl’ script of HOMER (version 4.9) with default
settings33. The principal component analysis was conducted to detect the
important motifs using the relative enrichment of motifs calculated from
HOMER reports. Biplot was used to visualize the principal component
analysis results.

Genomic distribution of open chromatin regions
We calculated the overall genomic distribution of open chromatin regions,
comparing the treatment to the vehicle75. We used the hg38 refseq genes
annotation from UCSC Genome Browser to define the genomic features.
All TSSs were considered in the analysis if a gene had multiple TSSs. The
formula for reported enrichment is (a/b)/(c/d). a is the number of peaks
overlapping a given genomic feature, b is the number of total peaks, c is
the number of regions corresponding to the feature, and d is the estimated
number of discrete regions in the genome where the peaks and feature
could overlap. Specifically, d is equal to (genome size)/ (mean peak size +
mean feature size), following the implementation in the bedtools fisher
(version 2.26.0).

Pathway analysis for open chromatin regions
For the 326 open chromatin regions with logFC ≥ 1.5 and FDR < 0.05
comparing the treatment with the vehicle, we extracted the target genes
of the 326 chromatin regions. The function ‘enrichKEGG’ from the R
package ‘clusterProfile’76 (version 3.6.0) was used to conduct KEGG
pathway analysis with organism= ”hsa” and adjusted.pval=0.05.

Validation of candidate genes qRT-PCR
Treated cells and organoids were washed with PBS and RNA was isolated
with Qiagen RNeasy plus mini Kit (# 74134). cDNA was synthesized using
the SuperScript VILO cDNA synthesis kit (ThermoFisher #11755250).
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Real-time qPCR was performed using Applied biosystem QuantStudio 5
real time PCR System (Thermo Scientific). Expression data of the studied
genes was normalized to RPLP1 to control the variability in expression
levels and were analyzed using the 2−ΔΔCT method described by Livak and
Schmittgen77. TaqMan gene expression assays and TaqMan fast advanced
master mix (# 4444556) were purchased from ThermoFisher Scientific and
the list of the assays is provided in Supplementary File 1.

qRT-PCR based TaqMan low density array assays
Based on histological diagnosis, benign breast epithelium was identified
and captured by laser capture microdissection (LCM). RNA was isolated
with Qiagen RNeasy plus mini Kit (# 74134). RNA quality was checked for
integrity using Bioanalyzer 2100 (Agilent). 100 ng RNA was reverse
transcribed using High Capacity RNA-to-cDNA Master Mix (ThermosFisher
#4388950) and preamplified for 14 cycles using TaqMan PreAmp Master
Mix 2X (ThermoFisher #4488593) and pooled assay mix for the genes in
which we were interested. Pre-amplified cDNA were diluted to 1:20 with 1X
TE buffer and mixed with Fast advanced master mix (ThermoFisher #
4444965) Each sample was loaded in duplicate in 384-well microfluidic
cards customized with 47 genes of interest including three housekeeping
genes (GAPDH, RPLP0, and RPLP1). TaqMan assays with best coverage
attribution were used for the TLDA study as recommended by the
manufacturer. A list of the genes and the Assay ID for the primers obtained
from ThermoFisher is provided in Supplementary File 2. Real Time PCR
reactions were carried out in QuantStudio 7 Flex system for 40 cycles using
comparative Ct (ΔΔCt) method. Results were analyzed using Expression-
Suite software.

Statistical analysis
Prior to performing the analyses, the log2-transformed relative (log2RE)
amounts of mRNA expression were normalized to GAPDH and expressed
as log22−(CtX−CtGAPDH) = −(CtX − CtGAPDH), where Ct is threshold cycle.
The Mann–Whitney test was performed to identify genes with pairwise
differences between ER+ and ER− samples. The analyses were adjusted
for multiple testing, 34 genes, using the Benjamini–Hochberg (BH)
adjustment in order to control the false discovery rate at the two-sided
0.05 level. Boxplots were used to visualize differences in log2RE by group.
The log2RE analyses were conducted using the R statistical environment
[R] version 3.5.1.

Live cell PWS imaging
Before treatment and imaging, MCF-10A cells were seeded in 6 well black
culture plates, at least 35% confluency, and allowed to adhere overnight
before the treatment with 500 µM LA and 5mM Octanoate. We based the
concentration of LA used in the experiment on the range in human
plasma: 0.2–5.0 mmol/L78. To determine the chromatin packing behavior of
MCF-10A cells under varying treatment conditions, live-cell PWS images
were acquired at 37 °C and 5% CO2 conditions. Imaging was performed
using the commercial inverted microscope (Leica DMIRB) Hamamatsu
Image-EM CCD camera C9100-13 coupled to a liquid crystal tunable filter
(LCTF; CRi Woburn, MA) to acquire mono-chromatic spectrally resolved
images that range from 500 to 700 nm at 1 nm intervals produced by a
broad band illumination provided by an Xcite-120 LED Lamp (Excelitas,
Waltham, MA) as previously described79,80. Briefly, PWS measures the
standard deviation of internal optical scattering originating from
chromatin in the nucleus, which is related to variations in the refractive
index distribution (Σ). To obtain the interference signal directly related to
refractive index fluctuations in the cell, we normalized measurements to an
independent reference measurement acquired in an area of the plate
without cells. These normalized spatial variations of refractive index are
linearly proportional to nuclear mass density fluctuations, according to the
Gladstone–Dale relation, and are characterized by chromatin packing
scaling, D, the power-law relationship between the mass M of the
chromatin polymer and the three-dimensional space it occupies R, i.e.,
M~RD 80. The measured change in chromatin packing scaling between
treatment conditions was quantified by first averaging D within each cell’s
nucleus and then averaging nuclei from over 100 cells per condition.

Notch reporter assay
Notch pathway function was analyzed by measuring the transcriptional
activity of its downstream component RBP-jk using a Cignal RBP-Jk Dual
Luciferase Reporter assay (Qiagen, Germantown, MD; # 336841). MCF-10A

cells were transfected with Transcription Factor Reporter, Negative Control
reporter or Positive Control constructs using the Neon Transfection System
10 µl kit (Invitrogen, Walthan, MA; # MPK1025). Twenty-four hours after
transfection, cells were exposed to Sodium octanoate (OA, 5 mM) dissolved
in PBS or PBS for 24 h. Cells were then lysed using Passive Lysis Buffer
(Promega, Madison, WI) and transferred to a 96-well white flat-bottom
plate (Corning, Tewksbury, MA). Luciferase activity was measured with the
Dual-Luciferase Reporter Activity system (Promega; # E1910) using a Biotek
Cytation 3 multiwell reader. Firefly luciferase activity was normalized to
Renilla luciferase activity. All transfections were performed in triplicate.
Luciferase measurement for each biological replicate was performed in
three technical replicates. Values are expressed as mean ± SEM. The p-
value was calculated by unpaired t-test.

Flux based analysis (FBA)
We calculated the relative activity of reactions in MCF-10A and MCF-12A
cells by interpreting gene expression data using the Recon1 human
metabolic model augmented with histone modifications44,81. We then
identified a metabolic flux state that is most consistent with gene
expression data in control and octanoate treatment. This was achieved by
maximizing the activity of reactions that are associated with upregulated
genes and minimizing flux through reactions that are downregulated in a
condition, while simultaneously satisfying the stoichiometric and thermo-
dynamic constraints embedded in the model using linear optimization44,81.
The glucose, fatty acid, and glutamine levels in the simulations were
adjusted based on the growth media used for culturing the cells. All p-
values were corrected for multiple comparisons.

LC/MS based post-translation histone modification
quantitation
MCF-10A were treated with 5mM octanoate or 500 µM LA. After 24 h, cells
were snap frozen for nuclei extraction. Histones were acid-extracted from
100% nuclei, derivatized via propionylation reaction and digested with
trypsin. Each sample was resuspended in 50 µL of 0.1% TFA/mH2O and 2 µl
was injected with 3 technical replicates. Multi-reaction monitoring (MRM)
technology was used for histone analysis using a triple-quad mass
spectrometer, which is programmed to fragment only specific precursor
peptides and measure the intensity of specific product ions. Final results
show changes of relative abundances of histone mark modification. Error
bars are+/− one standard deviation obtained from sample technical
replicate intensities.

Western blotting
Cells and organoids were plated and allowed to stabilize overnight and
then treated the next day for the indicated times. At the end of the
treatment, cells were collected, washed with PBS, and lysed in radio
immunoprecipitation assay (RIPA) buffer (ThermoFisher Scientific # 89900)
including protease inhibitors (ThermoFisher Scientific # 78430). Protein is
estimated using the BCA protein assay kit (ThermoFisher Scientific # 23227)
and loaded on 4–12% Bis Tris acetate gel using MES buffer, blotted on a
polyvinylidene fluoride (PVDF) membrane (Invitrolon 0.45 μM) and blocked
with blocking buffer (10% skimmed milk) for 1 h at room temperature.
Primary antibodies were purchased from Cell Signaling Technologies –
AcH3K9 (rabbit mAb Cell Signaling #9649) at 1:250 dilution, AcH3K14
(rabbit mAb Cell Signaling #7627) at 1:250 dilution and H3 (Rabbit mAb
Cell Signaling #9715) at 1:1000 dilution. Membranes were incubated in
primary antibody overnight at 4 degrees Celsius with shaking. Blots were
washed with PBS+ 0.1% Tween 20, three times 5min each, and probed
with secondary antibodies (Anti-rabbit IgG, HRP-linked Antibody, Cell
Signaling #7074) at a concentration of 1:10,000 for 1 h at room
temperature. Blots/lysates were derived from the same experiment and
were processed concurrently. Uncropped images of the original Western
blots are provided in Supplementary File 3.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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DATA AVAILABILITY
The datasets generated and analyzed during the current study are publicly available
in the Gene Expression Omnibus: accession numbers GSE126799 (RNA-seq, MCF-
10A), GSE190572 (RNA-seq, MCF-12A), and GSE190573 (ATAC-seq).

CODE AVAILABILITY
No custom codes were written to analyze the data presented in this manuscript. The
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package edgeR version 3.16.5; HOMER version 4.9 with default settings; bedtools
fisher version 2.26.0; ‘enrichKEGG’ from the R package ‘clusterProfile’ version 3.6.0; R
statistical environment [R] version 3.5.1.
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