
ARTICLE OPEN

Plasma extracellular vesicle long RNA profiles in the diagnosis
and prediction of treatment response for breast cancer
Yonghui Su 1,2,3,5, Yuchen Li1,4,5, Rong Guo1,2,3,5, Jingjing Zhao1, Weiru Chi1,2,3, Hongyan Lai1, Jia Wang1,2,3, Zhen Wang1, Lun Li1,2,3,
Yuting Sang1,2,3, Jianjing Hou1,2,3, Jingyan Xue1,2,3, Zhimin Shao1,2,3, Yayun Chi 1,2,3✉, Shenglin Huang 1,4✉ and Jiong Wu 1,2,3✉

A large number RNAs are enriched and stable in extracellular vesicles (EVs), and they can reflect their tissue origins and are suitable
as liquid biopsy markers for cancer diagnosis and treatment efficacy prediction. In this study, we used extracellular vesicle long RNA
(exLR) sequencing to characterize the plasma-derived exLRs from 112 breast cancer patients, 19 benign patients and 41 healthy
participants. The different exLRs profiling was found between the breast cancer and non-cancer groups. Thus, we constructed a
breast cancer diagnostic signature which showed high accuracy with an area under the curve (AUC) of 0.960 in the training cohort
and 0.900 in the validation cohort. The signature was able to identify early stage BC (I/II) with an AUC of 0.940. Integrating the
signature with breast imaging could increase the diagnosis accuracy for breast cancer patients. Moreover, we enrolled 58 patients
who received neoadjuvant treatment and identified an exLR (exMSMO1), which could distinguish pathological complete response
(pCR) patients from non-pCR with an AUC of 0.790. Silencing MSMO1 could significantly enhance the sensitivity of MDA-MB-231
cells to paclitaxel and doxorubicin through modulating mTORC1 signaling pathway. This study demonstrated the value of exLR
profiling to provide potential biomarkers for early detection and treatment efficacy prediction of breast cancer.
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INTRODUCTION
Breast cancer (BC) is the most common malignancy in women
worldwide1. As with many cancers, BC found at an early stage
carries much-improved prognosis compared to advanced stage
disease2. Thus, the detection and efficient treatment of early stage
BC has significant potential for reducing its mortality. Currently,
mammography and ultrasound are the optimal methods for BC
screening and are recommended by different clinical guidelines.
Unfortunately, their sensitivity and specificity are not consistent
among different studies3–7. Carbohydrate antigen 15-3 (CA15-3)
and carcino-embryonic antigen (CEA) are blood-based biomarkers
that are currently used for BC screening and treatment response
monitoring; however, their sensitivity and specificity remain poor8.
Hence, new efficient diagnostic methods and treatment efficacy
predictive approaches for early stage BC must be developed.
Because of the existence of tumors, pre-surgery (neoadjuvant)

chemotherapy (NACT) was used in many clinical trials to evaluate
the treatment response. The latest blood-based biomarkers, such
as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA),
and tumor-derived extracellular vehicles (EVs), have the potential
of assessing real-time tumor responses to therapy as well as
identifying dynamically resistant clones in BC which undergo
NACT9–12. A meta-analysis published by Bidard et al.13 suggested
that the CTC count is an independent and quantitative prognostic
factor for early BC patients treated by NACT. Magbanua et al.11

found that the ctDNA clearance during NACT of high-risk early BC
was a significant predictor of response and metastatic recurrence.
EVs, including exosomes and microvesicles, are lipid bilayer-
enclosed structures that contain various cargoes, including large
number RNA species14,15. Rodríguez-Martínez et al.16

demonstrated that the exosomal microRNAs (miRNAs) profile
could act as a predictive tool in localized BC undergo NACT.
Besides miRNAs, certain long RNAs are enriched and stable in EVs,
and they could reflect their tissue origins and are potential
suitable as liquid biopsy markers for cancer diagnosis and
treatment efficacy monitoring17,18. However, the roles of EV long
RNAs (exLRs) profile in BC, especially in BC diagnosis and
treatment efficacy prediction, remain unknown.
In this study, we performed exLR-seq on plasma samples

collected from 172 subjects, including BC patients, breast benign
disease patients and healthy individuals who were receiving
routine healthcare with the aim of exploring the potential of exLR-
based signature as a clinically actionable biomarker for BC
diagnosis. Moreover, we evaluated the treatment monitoring role
of exLRs profile in BC patients who were receiving NACT.

RESULTS
Patient characteristics
One hundred and seventy-two individuals were included in this
study; the participants consisted of 112 BC patients, 19 benign
patients, and 41 healthy donors (Table 1). Among the 112 BC
patients, 28 were at stage I, 35 were at stage II, 15 were at stage III,
and 34 were at stage IV (Table 1). Forty-nine BC patients with stage
II or III received neoadjuvant chemotherapy in our cohort. The
benign patients included 10 adenosis, 4 fibroadenomas, 4 mastitis,
and 1 intraductal papilloma. Other clinical features, including the
age, the Breast Imaging Reporting and Data System classification
(BI-RADS) of ultrasound or mammography, plasma CA15-3 and
CEA level, are shown in Table 1.
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EV isolation and exLR-seq
The isolated vesicles were rounded, cup-shaped, and membrane-
enclosed, as observed by transmission electron microscopy (TEM,
Fig. 1a). Flow cytometry revealed a heterogeneous population of
spherical nanoparticles, with abundant peaks of less than 200 nm
and a mean diameter of 92.5 nm (Fig. 1b). Western blot analysis
revealed that the exosomal characteristic markers CD63 and
TSG101 were enriched in the isolated vesicles but not in
peripheral blood mononuclear cells (PBMCs, Fig. 1c). These
findings indicate that the isolated EVs consisted mostly of
exosomes.
ExLR-seq was conducted using plasma samples from 172

healthy individuals and patients. Approximately 15,000 annotated
genes, including mRNAs, lncRNAs pseudogenes, and circRNAs,
were reliably detected in each sample. More mRNAs, lncRNAs,
pseudogenes, and circRNAs were identified in benign and BC
groups than healthy group (Fig. 1d). We identified 1552 exLRs that
were differentially expressed in BC samples compared with
controls (benign+ healthy) by the Mann–Whitney U test (false
discovery rate (FDR) < 0.01, |fold change (FC) | > 1.5). Most different
exLRs were up-regulated in the BC group. Unsupervised hier-
archical clustering revealed a clear separation of the BC and
control group (Fig. 1e). The Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis revealed that differentially
expressed exLRs were enriched for some pathways involved in
cancer, such as the TGF-beta signaling pathway, pathways in
cancer, pancreatic cancer, and p53 signaling pathway (Fig. 1f).

Blood exLRs may reflect the relative fractions of different cell
types
Since blood EVs are derived from a variety of tissues, we further
used the xCell software (http://xcell.ucsf.edu) to characterize
source contribution of the cell fractions from the exLR-seq profiles.
xCell is a web tool that performs cell type enrichment analysis
from gene expression data for 64 immune and stroma cell types.
The relative proportion of the different cell types in BC and control
samples are shown in Fig. 2a. We then adjusted the cell type
enrichment scores to cell type proportions; 19 normalized average
xCell scores were significantly different between BC and control
groups (Fig. 2b). Blood cells (common lympoid progenitors (CLP),
common myeloid progenitor cell (CMP), erythrocytes and
granulocyte macrophage progenitor (GMP)), immune cells
(CD8+ T-cells, naïve B-cells, plasma cells, Th1 and Th2 cells), and
stroma/epithelial cells (preadipocytes and smooth muscle cells)
were significantly enriched in BC group compared with control
(Fig. 2b).

Establishment of an exLR d-signature for BC
The different exLRs profiling between the BC and control groups
implies that the exLRs have potential as biomarkers for the
detection of BC. We then explored an exLR d-signature for the
diagnosis of BC. ExLRs (n= 1511) that were upregulated in BC
patients compared with controls were selected using a training
cohort of 43 control individuals and 77 BC patients. The selected
exLR markers were analyzed using the random forest algorithm
and the LASSO method to shrink the number of variables. Finally,
eleven exLR markers (BEX2, AC104843.1, AL136981.2, KRT19,
NPM1P25, CTSG, CBR3, HOXB7, AL691447.3, RNA5SP141, and
circRNA chr13_42953948_42970670_-) were selected and used to
construct a BC classifier (Supplementary Table 1). Using the
support vector machine (SVM) algorithm, we established a
diagnostic model and generated an exLR d-signature for BC. The
exLR d-signature comprising the eleven exLRs distinguished the
BC patients from controls with an areas under the curve (AUC) of
0.96 (95% confidence interval (CI): 0.93 to 0.99, standard deviation
(SD): 0.01), a precision of 0.93, a recall of 0.93 and a f1-score of 0.92
in the training cohort (Fig. 3a, c). The diagnostic accuracy was
92.5%. The exLR d-signature was then applied to the validation
cohort; BC was detected with an AUC of 0.90 (95% CI: 0.81 to 0.98.
SD: 0.04), a precision of 0.92, a recall of 0.92 and a f1-score of 0.92
(Fig. 3b, d). The diagnostic accuracy was 92.3%. Unsupervised
hierarchical clustering using the eleven exLRs effectively distin-
guished BC from controls with high specificity and sensitivity (Fig.
3e, f).

The exLR d-signature detects early BC
Early stage BC diagnosis allows immediate surgery without prior
chemotherapy or radiation therapy and has a favorable prognosis.
We found that BC exhibited a high median exLR d-signature score
when compared with benign disease in the entire cohort (0.809 vs
0.444; Mann–Whitney U test, p < 0.001) and healthy (0.809 vs
0.254; Mann–Whitney U test, p < 0.001, Fig. 4a). We also observed
no correlation between the d-signature scores and tumor stages
(Fig. 4b), which suggests that the diagnostic performance of the
d-signature was independent of the tumor burden, which would
make it an optimal diagnostic tool for the detection of BC.
Therefore, we next confirmed the diagnostic performance of the
d-signature in early stage of BC. The d-signature can identify early
stage (I/II) BC from controls with an AUC of 0.94 (95% CI: 0.90 to

Table 1. Patient characteristics.

Breast cancer Breast benign disease Healthy cohort

Total 112 19 41

Age, years

Median 51.5 46 54

Range 31–75 22–61 40–85

Mammography (BI-RADS)*

1–3 19 (20.7%) 3 (21.4%) /

4 47 (55.2%) 11 (78.6%) /

5 20 (24.1%) 0 (0%) /

Ultrasound (BI-RADS)*

1–3 1 (1%) 7 (43.8%) /

4 50 (50.5%) 9 (56.2%) /

5 48 (49.5%) 0 (0%) /

Serum CA15-3, U/ml*

≤25 58 (70.7%) / /

>25 24 (29.3%) / /

Serum CEA, ng/ml*

≤5.2 59 (72.0%) / /

>5.2 23 (28.0%) / /

Cancer stage

I 28 (25.0%) / /

II 35 (31.3%) / /

III 15 (13.4%) / /

IV 34 (30.4%) / /

Hormone receptor

Positive 63 (56.3%) / /

Negative 49 (43.8%) / /

HER2*

Positive 64 (57.7%) / /

Negative 47 (42.3%) / /

Abbreviations: BI-RADS breast imaging reporting and data system, CA15-3
carbohydrate antigen 15-3, CEA carcino-embryonic antigen, HER2 human
epidermal growth factor receptor 2.
*Excluded the unknown category.
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0.98), a precision of 0.89, a recall of 0.89, and a f1-score of 0.88
(Fig. 4c). Furthermore, the d-signature can identify early stage BC
from healthy and benign groups with an AUC of 0.96 (95% CI: 0.93
to 0.99, Fig. 4d) and 0.88 (95% CI: 0.80 to 0.95, Fig. 4e), respectively.
These results demonstrated that the exLR d-signature could be
used for high-accuracy diagnosis of BC, even for early BC.
CA15-3 and CEA are the biomarkers that are currently used for

BC screening and recurrence monitoring. The d-signature scores
were significantly higher in the BC patients with CA15-3 positive
compared to negative patients (Fig. 4f). However, there is no
correlation between the d-signature score and CEA status (Fig. 4g).

The exLR d-signature has improved diagnostic performance
for BC detection
The ability to complement the limitations of the current imaging
examination in the detection of BC would add value to a
biomarker for the diagnosis of BC. We found that BC with imaging
BI-RADS 5 exhibited a higher median exLR d-signature score when
compared with BI-RADS 4b/4c and BI-RADS 4a (Fig. 5a). Clinically,
in general, the probability of a malignant tumor for patients with
imaging BI-RADS 4 is estimated to be within a range of 2–95%. In
our cohort, 101 and 46 patients were with imaging BI-RADS ≥ 4a
(including 4a, 4b, 4c, and 5) and BI-RADS 4a/4b, 85 and 46 patients
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were diagnosis with BC, with diagnosis accuracy of 81.6% and
73.9%, respectively. We combined the exLR d-signature with the
corresponding BI-RADS scores for predicting the presence of
cancer. The diagnosis accuracy was approximately 91.9%, with a
precision of 0.92, recall of 0.92, f1-score of 0.92, and AUC of 0.90
(95% CI: 0.83 to 0.97, SD: 0.04) (Fig. 5b) for patients with BI-RADS ≥
4a. If only the patients with BI-RADS 4a or 4b were considered, the
integrated predictive value for predicting the presence of cancer
in these patients was approximately 91.3%, with a precision of
0.92, recall of 0.91, f1-score of 0.91, and AUC of 0.90 (95% CI: 0.80
to 0.98, SD: 0.05) (Fig. 5c). These results indicate that exLRs
combined with the BI-RADS system could be utilized as a more
accurate biomarker for differential diagnosis of early-stage BC
compared with the BI-RADS system only.

Plasma exMSMO1 as predictive biomarker for neoadjuvant
chemotherapy of BC
We next investigated the ability of exLR profiling to predict
treatment responses in BC patients who received NACT. We
enrolled 58 local advanced BC (LABC) patients received NACT
(paclitaxel (PAX) and/or doxorubicin (DOX) -base regimens, plus
trastuzumab if HER2 positive), and 24 achieved a pathological
complete response (pCR) after NACT. We identified 2573 exLRs
that were differentially expressed in the pCR group compared with

the non-pCR group by the Mann–Whitney U test (p < 0.05, |FC | >
2). Different expressed exLRs are shown in Fig. 6a. DAVID GO
analysis revealed that the increased exLRs were enriched for
biological processes such as transcriptional misregulation and
proteoglycans in cancer, while decreased exLRs were strongly
involved in focal adhesion and cGMP−PKG signaling pathway in
non-pCR group (Fig. 6b). Gene set enrichment analysis (GSEA)
analyses revealed that the steroid biosynthesis pathway was one
of the most upregulated biological processes in the non-pCR
group (Fig. 6c).
Methylsterol monooxygenase 1 (MSMO1), an intermediate

enzyme in the cholesterol biosynthetic pathway, was identified
based on its relative high enrichment in the non-pCR group (p <
0.001; Fig. 6d). Extracellular vehicle MSMO1 mRNA (exMSMO1)
distinguished non-pCR from pCR patients with an AUC of 0.79
(95% CI: 0.664 to 0.907, Fig. 6e). MSMO1 was highly expressed in
tumor tissue of BC compared with adjacent normal tissue in the
cancer genome atlas (TCGA) dataset (Fig. 6f). We also evaluated
the expression of MSMO1 by the qRT-PCR assay in an independent
BC cohort from Fudan University Shanghai Cancer Center (FUSCC,
Supplementary Table 2), and we found that high MSMO1
expression was significantly associated with poor disease-free
survival (DFS, p= 0.0007, Fig. 6g). Multivariate analysis also
demonstrated that high MSMO1 expression was independent of
unfavorable prognostic factors for DFS in BC patients (hazard ratio
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(HR)= 2.683; 95% CI: 1.571–4.583; p < 0.001, Supplementary Table
3). We performed a functional study using a small interference
RNAs (siRNAs) pool and found that the silencing of MSMO1 could
significantly enhance the sensitivity of MDA-MB-231 cells to the
chemotherapy drug PAX (0.05 μM) and DOX (0.5 μM) (Fig. 6h).
Moreover, the inhibition of MSMO1 expression increased the
apoptosis rates of MDA-MB-231 to PAX (0.1 μM) and DOX (1.0 μM)
(Fig. 6i).
To better understand how MSMO1 promotes drug resistance in

breast cancer cells, RNA-seq was performed to analyze the gene
expression profile affected by MSMO1 knockdown. GSEA showed
that MSMO1 knockdown affected multiple signaling pathways,
such as the mTORC1 signaling pathway (Fig. 6j). Further analysis

showed that silencing MSMO1 reduced the phosphorylation of
AKT and mTOR (Fig. 6k). Considering that mTORC1 signaling
activation has been shown to promote therapy resistance in
BC19,20, these data suggested that MSMO1 could promote drug
resistance through modulating the mTORC1 signaling pathways in
BC cells.

DISCUSSION
Thus far, a clinically actionable biomarker that serves diagnosis
and monitoring is not available for early BC. In our study, we
report that molecular interrogation of blood exosomal long RNA
can offer valuable diagnostics information for BC patients. We
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obtained exLR-seq expression profiles from 172 human plasma EV
samples. Differences in the exLR levels were then compared
between patients with BC, patients with breast benign disease and
healthy participants, and a diagnostic signature for BC was finally
established. In addition, the exLRs, such as exMSMO1, can be
employable as predictive biomarkers upon response to NACT
for LABC.
The latest blood-based biomarkers were evaluated by many

scientists to develop novel diagnosis methods. CTCs are rare in
localized BC and difficult to isolate, so cementing a role for them
in diagnosis appears challenging. Recently, the healthcare
biotechnology company GRAIL Inc produce a multicancer early
detection assay that identifies abnormally methylated ctDNA with
high specificity21. The detail data on breast cancer specifically
have not been published yet. Moreover, some studies have
suggested that tumor-derived EVs represent an appealing source
of diagnostic biomarkers22,23. The analysis of EVs encompasses
several advantages over CTCs and ctDNA due to their higher
abundancies and stability in the bloodstream, as well as their
functionality in supporting tumor-host cross talk or tumorigenesis.
Until Valadi et al. demonstrated that variable RNAs can be

transported between cells by EVs in 2007, EVs have begun to
attract the attention of scientists24. Recent studies have suggested
that some exLRs were differentially expressed between cancer and
healthy controls and could have potential for cancer diagno-
sis25,26. To determine the differences in the plasma exLR profiles
among BC, breast benign disease and healthy, we performed exLR
profiling of plasma samples from all 172 participants using an
optimized exLR-seq strategy we recently developed17. We
identified 1552 exLRs that were differentially expressed in the
BC samples compared with controls (benign+ healthy) by the
Mann–Whitney U test. Then, we integrated the random forest
algorithm and the LASSO method and selected eleven exLR
markers to construct a BC classifier. The d-signature can
distinguish BC from controls with high diagnostic accuracy in
both training and validation cohorts (92.5% and 92.3%, respec-
tively). Moreover, it can act as an effective classifier to identify
early stage (I/II) BC from controls (AUC= 0.94). The diagnosis of
early stage BC is critical in clinical practice, which could enable
immediate surgery, thereby improving the prognosis of BC.
Considering the selection result of predicting signature may

strongly depend on the arbitrary selection of variable filtering
methods, we repeated the data analysis procedures of marker
screening and diagnostic model construction without the
candidate diagnostic targets enrollment. We firstly filtered 11
exLRs (PPIAP11, DEFA3, RF00002, AL138900.3, MS4A3,
chr1_15717893_15721388_+, chr14_86028369_86041833_+,
chr17_48112031_48113401_+, chr17_36952886_36953907_+,
chr18_12999421_13030608_+, chr6_4891713_4892379_+) to
establish a new classifier with concordant parameter tuning

processes. Comparing with previously included 11 signature
genes, the model based on these new targets showed
insufficient efficiency for cancer screening (AUC; training
cohort: 0.43 vs. 0.96; validation cohort: 0.94 vs. 0.9). Addition-
ally, we randomly selected the varying number of exLR targets
(e.g. 10, 20, 50, 100) to constructed the diagnostic model in the
same manner. As a result, the model based on these new
targets showed insufficient efficiency for cancer diagnosis in
the validation cohort (exLR NO.= 10, 20, 50, 100; AUC= 0.59,
0.47, 0.59, 0.54), which do not lead to a strength classification
power. These results indicated that although the cut-off
number of candidate targets selection were partially artificial,
the predict strength of BRCA classifier based on candidate
targets was consistently used to explore the causal connection
between selected variables and patient’s outcome.
Clinical doctors routinely choose invasive methods, either core

needle biopsy or excision biopsy, to further examine patients who
have a BI-RADS 4a or higher finding based on mammography or
ultrasound. Wiratkapun et al.27 reported that the biopsy rate
categorized as BI-RADS 4 was 75% and the diagnosis accuracy was
20.6% in their study. Jung et al.28 retrospectively reviewed
consecutive core needle biopsy performed from 2005 to 2016 at
their institution and found that more than half (58.5%) patients
with BI-RADS 4a received biopsy and only 6.7% were diagnosis
with malignancy. Thus, if all patients with BI-RADS 4a findings
receive invasive procedures, most of the lesions will be benign,
which indicates unnecessary treatment for these patients. When
integrating the diagnosis exLRs signature with BI-RADS 4a or
higher findings, the diagnosis accuracy was approximately 91.9%.
Moreover, if we considered only the patients with BI-RADS 4a or
4b, the integrated predictive value was approximately 91.3%.
Therefore, by integrating the exLRs signature and film findings,
the possibility of false positive and the unnecessary treatment of
patients would be greatly decreased.
The development of novel prognostic biomarkers for cancer

treatment monitoring is of great valuable in clinical practice. Some
studies suggested that certain functional exLRs were valuable for
the prediction of different cancer treatment responses29–31. In
terms of BC, Koldemir et al. showed that the cellular expression of
lncRNA GAS5 in BC cells leads to its exosomal enrichment, which is
considered to be a marker of apoptotic induction32. Moreover,
exosomal lncRNA-SNHG14 promotes trastuzumab resistance in
HER2-positive BC33. However, little is known about the prognostic
roles of exLRs in BC treatment. Therefore, to further explore the
role of exLRs in BC therapeutic evaluation, we collected and
divided 58 NACT patients into pCR (n= 24) and non-pCR (n= 34)
groups based on the post-surgical pathology. Different exLR
profiles were found between these two groups. Through GSEA
analysis, the steroid biosynthesis pathway is one of the most
upregulated pathways in the non-pCR group. Many studies have

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity

1-Specificity

AUC=0.90
SD=0.04
95%,CI 0.83-0.97

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity

1-Specificity

AUC=0.90
SD=0.05
95%,CI 0.80-0.98

Ultrasound or Mammagraphy ≥ 4a Ultrasound or Mammagraphy 4a or 4b

b c

0.00

0.25

0.50

0.75

4a 4b or 4c 5

d-
sig

na
tu

re
1.0

BI-RADS of Ultrasound

a

Fig. 5 Combined imaging results with exLR-based d-signature for BC diagnosis. a ExLR d-signature scores in BC patients with different
BI-RADS scores. b, c ROC for the performance of exLR d-signatures in BC with ultrasound or mammography ≥ 4a (b) and 4a or 4b (c).

Y. Su et al.

6

npj Breast Cancer (2021) 154 Published in partnership with the Breast Cancer Research Foundation



implicated the function of the sterol synthesis pathway in tumor
growth and response to treatment. For example, the sterol
composition of the membrane has been shown to regulate EGFR
signaling34 and the sensitivity of head and neck cancer cells to
apoptosis35. ExMSMO1 enriched in the non-pCR group and could
distinguish non-pCR from pCR with an AUC of 0.79 (95% CI: 0.62 to

0.97, SD: 0.09) (Fig. 6d, e). MSMO1 is an intermediate enzyme in
the cholesterol biosynthetic pathway. Previous study has indicated
that the inactivation of MSMO1 markedly sensitized tumor cells to
therapeutic anti-EGFR antibody via increased EGF receptor
degradation36. In this study, we demonstrated that MSMO1 was
overexpressed in BC and correlated with poor survival. Moreover,
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MSMO1 can decrease the sensitivity of BC cells to PAX and DOX by
regulating the mTORC1 signaling pathway. In other words, these
findings demonstrate that exMSMO1 can act as a predictive
biomarker for neoadjuvant treatment efficacy of BC.
Several limitations in this study warrant mention. First, as a

single-center study, it is uncertain whether this diagnosis
signature is applicable to other populations composed of different
cultures and ethnic groups. Future work with larger cohorts from
multiple centers is still needed to externally validate our results.
Second, the role of exLRs in treatment efficient prediction is still
not fully evaluated in this study. Further work must be done on
this issue.
Our study evaluated the exLRs profiles among BC, benign, and

healthy samples and developed a stable and valuable SVM
classifier model to distinguish BC and controls. Moreover, we
found that certain exLRs, such as exMSMO1, could serve as non-
invasive predictive treatment effect biomarkers for BC. We believe
that the development of novel effective, noninvasive diagnostic
and treatment efficacy predictive tools could be helpful for
clinicians.

METHODS
Patients and clinical features
One hundred and seventy-two participants, including patients with BC (n
= 112), benign patients (n= 19), and healthy controls receiving routine
healthcare (healthy, n= 41), were enrolled in this study. In addition, the 24
pCR and 34 non-pCR samples were also included to explore the potential
application of candidate exLR for therapeutic evaluation. All of the enrolled
patients were suspicious for malignancy based on clinical or radiological
evidence, and they were diagnosed with BC or benign by pathological
examination. All of the participants were recruited from FUSCC between 1
July 2017 and 30 December 2018. This study is conducted in accordance
with Declaration of Helsinki. Informed written consent was obtained from
each subject, and the study was approved by Institutional Review Board of
FUSCC, China.

Plasma sample collection
Blood samples were collected with 10mL EDTA-coated Vacutainer tubes
from all participants. Blood samples were collected before surgery from
early stage BC patients and before chemotherapy from metastatic or LABC
patients. Plasma was separated by centrifugation at 800 × g (~3000 rpm)
for 10min at room temperature (25 °C) within 2 h after blood collection.
This step was followed by a second 10min centrifugation at 16,000×g (~13
000 rpm) at 4 °C to remove the cellular debris. Plasma samples were
aliquoted and stored at –80 °C until use.

Isolation of EVs and EV RNAs
For each patient, 1 mL of fresh or once-frozen thawed plasma was used,
and EVs were isolated by affinity-based binding to spin columns using an
exoRNeasy Serum/Plasma Kit (Qiagen, Hilden, Germany) following the
manufacturer’s instructions. Briefly, thawed plasma was mixed with
binding buffer and added to the exoEasy membrane affinity spin column.
For TEM, size distribution measurement and Western blotting, the EVs
were eluted with 400 μL of XE elution buffer. To concentrate the EVs,
samples were subjected to ultrafiltration using the Amicon Ultra-0.5

Centrifugal Filter 10 kDa (Merck Millipore, Germany). For the EV RNA
isolation, EVs were lysed on the column using QIAzol (Qiagen), and the
total RNA was then eluted and purified.

Transmission electron microscopy
EVs were identified by negative staining with phosphotungstic acid. Fifty
microliters of resuspended EVs were placed on a Parafilm membrane. A
copper mesh with a formvar supporting membrane was covered with the
EVs suspension and floated for 3–10min to allow sample absorption into
the supporting membrane. Next, 50 μL of 2% phosphotungstic acid was
dropped onto the Parafilm membrane. The fluid was then absorbed from
the edges of the copper mesh with filter paper. The copper mesh
absorbing the sample was covered with 2% phosphotungstic acid and
floated for 3 min. Then, the sample was dried for 10min under
incandescent light after the staining solution was absorbed with filter
paper. The copper mesh was imaged with a TEM (Phillips CM120, Tokyo,
Japan).

Size distribution measurement
Size distribution analysis of the EVs was performed with a Flow
NanoAnalyzer (NanoFCM Inc., Xiamen, China) according to the manufac-
turer’s instructions. A series of monodisperse silica nanoparticles (SiNPs)
were synthesized and used as size reference standards. Then, the side
scattering (SSC) distribution histogram of the mixture was obtained. The
SSC intensity of every vesicle was converted into its corresponding vesicle
size. One hundred mL phosphate-buffered saline (PBS) resuspended EV
samples and 100mL PBS (blank control) were analyzed using the same
instrument settings. The EV data were analyzed and used to construct a
size distribution histogram.

Western blotting of EVs
PBMCs were isolated by Lymphoprep (STEMCELL Technologies, USA)
according to the manufacturer’s instructions. PBMCs and the concentrated
EVs were lysed in RIPA buffer (1% NP40, 0.5% deoxycholate, 0.1% sodium
dodecyl sulfate [SDS] in Tris-buffered saline) with complete protease
inhibitors on ice for 30min. Equal amounts of protein from EVs and PBMC
were separated on 10% SDS-polyacrylamide gels and then transferred to
nitrocellulose membranes (Bio-Rad, Hercules, CA, USA). Membranes were
blocked with 5% non-fat milk and incubated with anti-CD63 (Cat# 216130,
Abcam; 1: 1,000) and anti-TSG101 (Cat# 136111, Santa Cruz Biotechnology;
1:500). Target proteins were detected using an enhanced chemilumines-
cence kit (Amersham Pharmacia Biotech, Uppsala, Sweden).

Cell lines and compounds
MDA-MB-231 cell line was obtained from the American Type Culture
Collection (ATCC) which was characterized by Short Tandem Repeat (STR)
profiling. Cells resuscitated from original passage and passaged within
6 months were used in all experiments. All these cells were cultured under
standard conditions. PAX and DOX were purchased from Selleck.

siRNA transfections and in vitro viability assays
The siRNAs targeting MSMO1 and controls were obtained from RioBio.
Sequences of effective siRNA are as follows:
siMSMO1-1: 5’- GAACAGACUCUCAGUAUAAdTdT-3’;
siMSMO1-2: 5’- GCUGUGGAAUAUGUAGAUUdTdT-3’.

Fig. 6 Plasma exMSMO1 as a predictive biomarker for neoadjuvant chemotherapy of BC. a Heatmap of different exLRs expressions
between pCR (n= 24) and non-pCR (n= 34) groups. b KEGG pathway enrichment analysis for the differentially expressed exLRs of (A). c The
steroid biosynthesis pathway was enriched in the non-pCR group by gene set enrichment analysis (GSEA). d Comparison of exMSMO1
between pCR and non-pCR groups. e ROC for the performance of exMSMO1 in predictive neoadjuvant chemotherapy treatment efficacy of
BC. f Higher expression of MSMO1 in BC tumor tissue compared to adjacent normal in the TCGA database. g Kaplan–Meier survival analysis
(log-rank test) of disease free survival of BC patients with low (n= 157) or high (n= 138) MSMO1 expression. h MDA-MB-231 cells made
deficient in MSMO1 by the siRNAs pool (siMSMO1-1, siMSMO1-2) were treated with the indicated chemotherapy drugs. Viability data from 3
independent experiments were normalized to control–transfected cells. i MDA-MB-231 cells were treated with MSMO1 siRNAs pool followed
with PAX or DOX for 24 h, and apoptosis was analyzed with the flow cytometry assay. h, i Only significant differences were shown. Each
column represents averaged results. Bars, SDs. j Enrichment plots of the hallmark mTORC1 signaling pathway in MSMO1 deficient cells
compared to controls, as identified by GSEA. k MDA-MB-231 cells were transfected with the MSMO1 siRNAs pool. Cell lysates were
immunoblotted as shown. Abbreviations: ROC receiver operating characteristic, AUC area under the curve, SD standard deviation, CI
confidence interval, DMSO dimethylsulfoxide, PAX paclitaxel, DOX doxorubicin. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Y. Su et al.

8

npj Breast Cancer (2021) 154 Published in partnership with the Breast Cancer Research Foundation



Cells were transfected in triplicates with siRNAs pool at 10 nmol/L
concentrations mixed with Lipofectamine RNAiMAX reagent (Thermo
Scientific) on a 96-well plate according to the manufacturer’s reverse
transfection protocol. Twenty-four hours after plating, cells were treated
with PTX (0.05 μM), DOX (0.5 μM), or dimethylsulfoxide (DMSO, 0.02%). The
viability was measured in 48 h using CCK-8 (Promega).

Apoptosis and pathway analysis
Apoptosis was measured using the Annexin V assay (Guava Technologies).
Annexin V–positive MDA-MB-231 cells were counted using flow cytometry
72 h after transfection, 48 h after PTX (0.1 μM), DOX (1.0 μM), or vehicle
treatment. Representative flow cytometry sequential gating/sorting
strategies were shown in Supplementary Fig. 1. Cell extracts were
prepared using Tissue Protein Extraction buffer (T-PER) (Thermo Scientific)
supplemented with the Halt Phosphatase Inhibitor Cocktail and the
Complete Mini Protease Inhibitor Cocktail (Thermo Scientific). Extracts were
centrifuged at 15,000 × g for 10min at 4 °C. Western blot analysis was
conducted using antibodies to phosphorylated and total AKT and mTOR
and to GAPDH. The following primary antibodies were commercially
obtained: MSMO1 (Cat# 46773, Sigma-Aldrich; 1:1,000), Phospho-Akt
(Ser473) (Cat# 9271, Cell Signaling Technology; 1:1,000), Phospho-Akt
(Thr308) (Cat# 9275, Cell Signaling Technology; 1:1,000), Akt (Cat# 9272,
Cell Signaling Technology; 1:1,000), Phospho-mTOR (Ser2448) (Cat# 2971,
Cell Signaling Technology; 1:1,000), and GAPDH (Cat# 125247, Abcam;
1:1,000). All blots derive from the same experiment and were processed in
parallel.

RNA-seq analysis
Total EV RNA isolated from 1mL of plasma was treated with DNase I (NEB,
Ipswich, Massachusetts, USA) to remove DNA. Strand-specific RNA-seq
libraries were prepared using the SMARTer Stranded Total RNA-Seq Kit—
Pico Input Mammalian (Clontech, Palo Alto, California, USA). The library
quality was analyzed using a Qubit fluorometer (Thermo Scientific,
Waltham, Massachusetts, USA) and Qsep100 (BiOptic, New Taipei City,
Taiwan). EV RNA-seq libraries could be prepared from 1mL of plasma on
average. ExLR-seq was performed on an Illumina sequencing platform (San
Diego, California, USA) with 150 bp paired-end run metrics.
Raw reads were filtered using FastQC and aligned to the GRCh38 human

genome assembly using STAR. Annotations of mRNA and lncRNA in the
human genome were retrieved from the GENCODE (V.25). The circRNAs
were discovered by the Assembling Splice Junctions Analysis (ASJA)37, and
the normalized method was the same as in a previous study17. The length
and backsplicing ratio of the circRNAs were calculated on the basis of
previous study37. Gene expression levels were calculated in transcripts per
kilobase million (TPM). Differentially regulated exLRs were annotated gene
IDs and were assessed for KEGG pathway enrichment using DAVID (https://
david.ncifcrf.gov/).

Data and statistical analyses
RNA-seq raw read counts were converted to TPM values to scale all of the
comparable variates and were normalized across all samples. Variates with
frequencies of <10% (i.e., expressed in less than 10% of the entire samples)
were omitted, and the remaining markers were used for subsequent
statistical analyses.
We used the Random Forest to find markers that could distinguish BC and

control (benign+ healthy) samples. The steps were as followed: (1) ExLR-seq
TPM expression profiles (n= 172) were randomly distributed in training (n=
120) and validation cohorts (n= 52). (2) In the training cohort, the
Mann–Whitney U test was used to assess the differential expression of exLRs
in BC and control cohorts, and the p value of each marker was adjusted by the
Benjamini–Hochberg method to control the FDR. (3) The RandomForestClas-
sifier method of the sklearn package and 0.01 threshold of SelectFromModel
were used to define candidate makers and accuracy score. (4) Repeat (1) to (3)
steps for 3000 times. Finally, we selected the best candidate makers based on
accuracy score and then calculated the out-of-bag (OOB) error to determine
markers. We received the learning curve of AUC from the classifiers after
thousands time of fitting, and the desired plateau condition in curve was
observed (Mean= 0.85, SD= 0.03), indicates the model has strong adapt-
ability to the new data set, and the sample size is sufficient.
Eleven exLRs evaluated by the mentioned algorithms and annota-

tions were selected to construct a SVM model for BC prediction. For
binary (BC vs benign+ healthy) sample classification, the SVM
algorithm was executed using the ‘LinearSVC’ package in python

software. In principle, the SVM algorithm determines the location of all
samples in a high-dimensional space, in which each axis represents an
exLR and the expression level of particular exLR in a sample determines
its location on the axis. We divided sample randomly into training (n=
120) and validation (n= 52) cohorts with ratio of 7:3. During the
training process, the SVM algorithm draws a hyperplane that best
separates the two classes based on the distance between the closest
sample of each class and the hyperplane. The different sample classes
are positioned at each side of the hyperplane. Moreover, to assess the
predictive value of the SVM algorithm in an independent data set,
which is not typically included in the SVM training process, the
algorithm was trained with the training data set, all SVM parameters
were fixed and samples in the internal validation cohorts were then
evaluated. The internal training performance of the SVM algorithm
could be improved by enabling the SVM tuning function, which implies
optimal determination of parameters of the SVM algorithm (C, gamma,
kernel) by randomly subsampling the data set used for the algorithm
training (‘fivefold internal cross-validation’).
The d-signature score was computed from the predictive strength of the

SVM classifier output. To assess the samples’ probability of being predicted
as BC, we used the R function ‘predict’ to evaluate the prediction strength
in quantitative terms on the internal validation. The prediction strength of
the SVM classifier output was used to establish the exLR d-signature. The
diagnostic efficacy of the d-signature was evaluated by receiver operating
characteristic (ROC) curve analysis for the training, internal validation. The
comparison between the AUCs of the different classifiers was evaluated by
the bootstrap method with 3000 iterations. Youden’s index was
determined to identify the optimal cut-off point for calculating the exact
diagnostic indices. The d-signature distribution in the different patient
groups was tested by the Wilcoxon rank-sum test and Student’s t test after
using the Shapiro–Wilk test to determine the data normality.
For most of the experiments, independent sample t-tests were used to

calculate the p values. DFS was derived from the Kaplan–Meier estimate
and compared by the log-rank test. Cox regression analysis was performed
to assess the effect of potential risk factors upon the survival time.
All statistical analyses were two-sided, and a p value <0.05 was

considered to be statistically significant. R software packages (‘varSelRF’
and ‘pROC’) and python packages (‘RandomForestClassifier’, ‘train_test_s-
plit’, ‘SelectFromModel’, ‘accuracy_score’, ‘StratifiedKFold’ and ‘LinearSVC’)
were used in this study.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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RNA-seq datasets were uploaded to Genome Sequence Archive for Human (GSA-
Human) under accession number HRA001985 and can be accessed using the
following link: https://bigd.big.ac.cn/gsa-human/browse/HRA001985. Additional
datasets used and/or analyzed during the current study are available from the
corresponding author on reasonable request.

CODE AVAILABILITY
Detailed algorithm and software for data analysis can be found in the methods
section. The code developed during the current study are available upon reasonable
request.

Received: 4 January 2021; Accepted: 3 November 2021;
Published online: 10 December 2021

REFERENCES
1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 69,

7–34 (2019).
2. DeSantis, C. E. et al. Breast cancer statistics, 2019. CA Cancer J. Clin. 69, 438–451

(2019).
3. Chan, C. H., Coopey, S. B., Freer, P. E. & Hughes, K. S. False-negative rate of

combined mammography and ultrasound for women with palpable breast
masses. Breast Cancer Res. Treat. 153, 699–702 (2015).

4. Harding, C. et al. Breast cancer screening, incidence, and mortality across US
counties. JAMA Intern. Med. 175, 1483–1489 (2015).

Y. Su et al.

9

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2021) 154

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://bigd.big.ac.cn/gsa-human/browse/HRA001985


5. Narod, S. Breast cancer: the importance of overdiagnosis in breast-cancer
screening. Nat. Rev. Clin. Oncol. 13, 5–6 (2016).

6. Ohuchi, N. et al. Sensitivity and specificity of mammography and adjunctive
ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer
Randomized Trial (J-START): a randomised controlled trial. Lancet 387, 341–348
(2016).

7. Ya-jie, J. et al. Application of breast ultrasound in a mammography-based Chi-
nese breast screening study. Cell Biochem. Biophys. 65, 37–41 (2013).

8. Mirabelli, P. & Incoronato, M. Usefulness of traditional serum biomarkers for
management of breast cancer patients. BioMed Res. Int 2013, 685641 (2013).

9. Radovich, M. et al. Association of circulating tumor DNA and circulating tumor
cells after neoadjuvant chemotherapy with disease recurrence in patients with
triple-negative breast cancer: preplanned secondary analysis of the BRE12-158
randomized clinical trial. JAMA Oncol. 6, 1410–1415 (2020).

10. Cavallone, L. et al. Prognostic and predictive value of circulating tumor DNA
during neoadjuvant chemotherapy for triple negative breast cancer. Sci. Rep. 10,
14704 (2020).

11. Magbanua, M. J. M. et al. Circulating tumor DNA in neoadjuvant-treated breast
cancer reflects response and survival. Ann. Oncol. 32, 229–239 (2021).

12. McDonald, B. R. et al. Personalized circulating tumor DNA analysis to detect
residual disease after neoadjuvant therapy in breast cancer. Sci. Transl. Med. 11,
eaax7392 (2019).

13. Bidard, F. C. et al. Circulating tumor cells in breast cancer patients treated by
neoadjuvant chemotherapy: a meta-analysis. J. Natl Cancer Inst. 110, 560–567
(2018).

14. Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular
interactions of exosomes and other extracellular vesicles. Annu Rev. Cell Dev. Biol.
30, 255–289 (2014).

15. van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of
extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

16. Rodriguez-Martinez, A. et al. Exosomal miRNA profile as complementary tool in
the diagnostic and prediction of treatment response in localized breast cancer
under neoadjuvant chemotherapy. Breast Cancer Res. 21, 21 (2019).

17. Li, Y. et al. Extracellular vesicles long RNA sequencing reveals abundant mRNA,
circRNA, and lncRNA in human blood as potential biomarkers for cancer diag-
nosis. Clin. Chem. 65, 798–808 (2019).

18. Li, Y. et al. Circular RNA is enriched and stable in exosomes: a promising bio-
marker for cancer diagnosis. Cell Res. 25, 981–984 (2015).

19. Jiang, B. H. & Liu, L. Z. Role of mTOR in anticancer drug resistance: perspectives
for improved drug treatment. Drug Resist. Updat. 11, 63–76 (2008).

20. Butt, G. et al. Role of mTORC1 and mTORC2 in breast cancer: therapeutic tar-
geting of mTOR and its partners to overcome metastasis and drug resistance.
Adv. Exp. Med. Biol. 1152, 283–292 (2019).

21. Oxnard, G. R., Klein, E. A., Seiden, M., Hubbell, E. & Liu, M. C. J. J. O. G. O.
Simultaneous multi-cancer detection and tissue of origin (TOO) localization using
targeted bisulfite sequencing of plasma cell-free. DNA 5, 44–44 (2019).

22. Melo, S. A. et al. Glypican-1 identifies cancer exosomes and detects early pan-
creatic cancer. Nature 523, 177–182 (2015).

23. Yang, K. S. et al. Multiparametric plasma EV profiling facilitates diagnosis of
pancreatic malignancy. Sci. Transl. Med. 9, eaal3226 (2017).

24. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel
mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

25. Goldvaser, H. et al. Characterisation of blood-derived exosomal hTERT mRNA
secretion in cancer patients: a potential pan-cancer marker. Br. J. Cancer 117,
353–357 (2017).

26. Yu, S. et al. Plasma extracellular vesicle long RNA profiling identifies a diagnostic
signature for the detection of pancreatic ductal adenocarcinoma. Gut 69,
540–550 (2020).

27. Wiratkapun, C., Bunyapaiboonsri, W., Wibulpolprasert, B. & Lertsithichai, P. Biopsy
rate and positive predictive value for breast cancer in BI-RADS category 4 breast
lesions. J. Med. Assoc. Thai 93, 830–837 (2010).

28. Jung, I. et al. Annual trends in ultrasonography-guided 14-gauge core needle
biopsy for breast lesions. Korean J. Radio. 21, 259–267 (2020).

29. Del Re, M. et al. The detection of androgen receptor splice variant 7 in plasma-
derived exosomal RNA strongly predicts resistance to hormonal therapy in
metastatic prostate cancer patients. Eur. Urol. 71, 680–687 (2017).

30. Del Re, M. et al. PD-L1 mRNA expression in plasma-derived exosomes is asso-
ciated with response to anti-PD-1 antibodies in melanoma and NSCLC. Br. J.
Cancer 118, 820–824 (2018).

31. Qu, L. et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal
cancer by acting as a competing endogenous RNA. Cancer Cell 29, 653–668
(2016).

32. Koldemir, O., Ozgur, E. & Gezer, U. Accumulation of GAS5 in exosomes is a marker
of apoptosis induction. Biomed. Rep. 6, 358–362 (2017).

33. Dong, H. et al. Exosome-mediated transfer of lncRNASNHG14 promotes trastu-
zumab chemoresistance in breast cancer. Int J. Oncol. 53, 1013–1026 (2018).

34. Sigismund, S. et al. Clathrin-mediated internalization is essential for sustained
EGFR signaling but dispensable for degradation. Dev. Cell 15, 209–219 (2008).

35. Bionda, C. et al. Differential regulation of cell death in head and neck cell car-
cinoma through alteration of cholesterol levels in lipid rafts microdomains. Bio-
chem. Pharm. 75, 761–772 (2008).

36. Sukhanova, A. et al. Targeting C4-demethylating genes in the cholesterol path-
way sensitizes cancer cells to EGF receptor inhibitors via increased EGF receptor
degradation. Cancer Discov. 3, 96–111 (2013).

37. Zhao, J. et al. ASJA: a program for assembling splice junctions analysis. Comput.
Struct. Biotechnol. J. 17, 1143–1150 (2019).

ACKNOWLEDGEMENTS
We sincerely appreciate the support from the patients and their families. We are
grateful to Dr. Bingqiu Xiu, Dr. Qi Zhang, and Prof. Xianghuo He for critical reading of
the manuscript. This work was supported by the Natural Science Foundation of China
(82072920) and the National Key R&D Program of China (2017YFC1311004).

AUTHOR CONTRIBUTIONS
JW, SH, YC, and YS contributed to conception and design; YS, RG, WC, JiaW, YuS, LL,
JH, JX, and ZS contributed to provision of study materials or patients; YS, JZ, RG, WC,
YL, JiaW, ZW, YuS, LL, and JH collected and assembled the data; JW, SH, YS, JZ, HL, RG,
and YL contributed to data analysis and interpretation; JW, SH, YC, and YS wrote the
manuscript. All authors finally approved the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41523-021-00356-z.

Correspondence and requests for materials should be addressed to Yayun Chi,
Shenglin Huang or Jiong Wu.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021, corrected publication 2022

Y. Su et al.

10

npj Breast Cancer (2021) 154 Published in partnership with the Breast Cancer Research Foundation

https://doi.org/10.1038/s41523-021-00356-z
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Plasma extracellular vesicle long RNA profiles in the diagnosis and prediction of treatment response for breast cancer
	Introduction
	Results
	Patient characteristics
	EV isolation and exLR-seq
	Blood exLRs may reflect the relative fractions of different cell types
	Establishment of an exLR d-nobreaksignature for BC
	The exLR d-nobreaksignature detects early BC
	The exLR d-nobreaksignature has improved diagnostic performance for BC detection
	Plasma exMSMO1 as predictive biomarker for neoadjuvant chemotherapy of BC

	Discussion
	Methods
	Patients and clinical features
	Plasma sample collection
	Isolation of EVs and EV RNAs
	Transmission electron microscopy
	Size distribution measurement
	Western blotting of EVs
	Cell lines and compounds
	siRNA transfections and in�vitro viability assays
	Apoptosis and pathway analysis
	RNA-seq analysis
	Data and statistical analyses
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




