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Interplay between copy number alterations and immune
profiles in the early breast cancer Scandinavian Breast Group
2004-1 randomized phase II trial: results from a feasibility
study
Ioannis Zerdes 1,2,8, Michele Simonetti 3,4,8, Alexios Matikas 1,2,8, Luuk Harbers 3,4, Balazs Acs1,5, Ceren Boyaci 1,5,
Ning Zhang 3,4, Dimitrios Salgkamis 1, Susanne Agartz1, Pablo Moreno-Ruiz1, Yalai Bai6, David L. Rimm 6, Johan Hartman 1,5,
Artur Mezheyeuski 7, Jonas Bergh 1,2,9✉, Nicola Crosetto 3,4,9✉ and Theodoros Foukakis 1,2,9✉

Emerging data indicate that genomic alterations can shape immune cell composition in early breast cancer. However, there is a
need for complementary imaging and sequencing methods for the quantitative assessment of combined somatic copy number
alteration (SCNA) and immune profiling in pathological samples. Here, we tested the feasibility of three approaches—CUTseq, for
high-throughput low-input SCNA profiling, multiplexed fluorescent immunohistochemistry (mfIHC) and digital-image analysis (DIA)
for quantitative immuno-profiling- in archival formalin-fixed paraffin-embedded (FFPE) tissue samples from patients enrolled in the
randomized SBG-2004-1 phase II trial. CUTseq was able to reproducibly identify amplification and deletion events with a resolution
of 100 kb using only 6 ng of DNA extracted from FFPE tissue and pooling together 77 samples into the same sequencing library. In
the same samples, mfIHC revealed that CD4+ T-cells and CD68+macrophages were the most abundant immune cells and they
mostly expressed PD-L1 and PD-1. Combined analysis showed that the SCNA burden was inversely associated with lymphocytic
infiltration. Our results set the basis for further applications of CUTseq, mfIHC and DIA to larger cohorts of early breast cancer
patients.
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INTRODUCTION
The substantial proportion of patients with breast cancer (BC)
that do not respond to immunotherapy by checkpoint
inhibition underscores the importance of identifying reliable
predictive biomarkers. To date, the only prospectively validated
marker remains Programmed Death Ligand 1 (PD-L1) protein
expression, which predicts benefit to immunotherapy in
metastatic triple-negative BC, albeit with contradictory results
depending on the chemotherapy backbone1,2. Moreover, PD-L1
protein detection has been characterized by controversial
analytical performance and ambiguous prognostic role in BC3.
Other factors that describe or determine tumor-host interac-
tions such as tumor-infiltrating lymphocytes (TILs), gene
expression immune signatures and tumor mutational burden
(TMB) represent markers of response to chemotherapy4–7, with
emerging data also supporting prediction of benefit from
immunotherapy8,9. Furthermore, genome instability, aneu-
ploidy, as well as immune evasion have been recognized as
important biomarkers of BC progression10,11. The interplay
between tumor aneuploidy/somatic copy number alterations
(SCNAs) and the immune response has been demonstrated in
advanced BC and other tumor types and can impact both

prognosis and therapy response12–15. However, little is known
about the interplay between SCNAs and the patterns of
immune cell infiltration in early BC.
Recent methodological advances can greatly facilitate the

study of SCNAs and the immune microenvironment by using
low-input clinical tumor samples. We recently developed a
method, CUTseq, which enables highly multiplexed SCNA
profiling at high resolution (10 kilobases, kb) even when using
picogram quantities of genomic DNA (gDNA) extracted from
small (4–5 mm2) areas in single sections of formalin-fixed
paraffin-embedded (FFPE) samples16. In parallel to sequencing
technologies for profiling aneuploidy/SCNAs, emerging auto-
mated digital imaging analysis (DIA) technologies, such as
multiplexed fluorescent immunohistochemistry (mfIHC) and
automated TIL enumeration now allow robust identification
and quantitation of multiple immune markers even in FFPE
tumor tissue sections17.
Here, we sought to demonstrate the applicability of CUTseq,

mfIHC and DIA to FFPE BC tissue sections from patients enrolled in
the Scandinavian Breast Group (SBG) 2004-1 phase II early BC trial
and to portray immuno-genomic correlates detected in these
samples.
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RESULTS
Expression patterns of immune cell subsets and related
markers
We performed mfIHC in 86 out of 124 FFPE samples (69.3%)
available from patients initially enrolled in the SBG-2004-1 trial,
which were previously arrayed on tissue microarrays (TMA) (Fig.
1a, b and Methods). We assessed the number and spatial location
of single-positive (+) CD4 and CD8 T-cells, CD68+macrophages
and FoxP3+ regulatory T-cells as well as their combined
expression with the immune checkpoint markers PD-L1 and PD-
1 (Fig. 1c). Both in tumor and stromal tissue compartments of
matched samples, CD4+ T-cells were the most abundant cell type
(mean cell density: 1104 and 909 cells/mm2, respectively),
followed by CD68+macrophages (mean cell density: 114.2 and
278.3 cells/mm2, respectively) (Fig. 1d and Supplementary Table
1), with higher mean cell densities observed in ER-negative
compared to ER-positive tumors (Supplementary Fig. 1a). PD-L1
and PD-1 were mostly expressed in CD4+ T-cells in both intra-
tumoral (38.5 cells/mm2 and 976.4 cells/mm2, respectively) and
stromal (55.25 cells/mm2 and 779.6 cells/mm2, respectively) areas.
Stromal PD-1+ CD8+ and PD-1+ CD68+ (254.8 and 217.5 cells/
mm2, respectively) cell subsets were also expressed at high
frequency (Fig. 1e and Supplementary Table 1). Immune cell
populations expressing checkpoint proteins were more abundant
in ER-negative tumors (Supplementary Fig. 1b). The densities of
the different intra-tumoral or stromal immune subtypes were
moderately to strongly correlated (Supplementary Table 2).
Nevertheless, hierarchical clustering revealed no difference
between stromal or tumor-related immune cell clusters (Supple-
mentary Fig. 2). In short, immune checkpoints molecules were
expressed both in lymphocytes and macrophages, with a strong
propensity for the stromal compartment.

Manual and digital automated evaluation of tumor-infiltrating
lymphocytes
We then performed TIL enumeration in whole-tissue sections
(WTS) stained with hematoxylin-eosin (H&E) in a total of 93
evaluable samples by eye according to International TILs/Immuno-
Oncology Biomarker Working Group Guidelines. The median
expression of stromal TILs was 10% (range: 1–90), and high
stromal TIL levels were associated with estrogen receptor
negativity (p < 0.001, Pearson’s chi-squared test) and high tumor
grade (p < 0.001, Pearson’s chi-squared test) (Supplementary Table
3). We also tested the performance of an automated TIL scoring
algorithm (easTILs, see Methods) in the same tissue slides both in
WTS (n= 88) and in TMAs (n= 66) (Fig. 2). The median score of
the easTILs digital evaluation was 12.27% (range: 1.30–62.44% of
stroma area) in WTS and 12.95% (range: 1.32–65.29% of stroma
area) in TMA. Manual TIL scoring was strongly and statistically
significantly correlated with easTILs in WTS (Spearman’s rho=
0.677, p < 0.001, two-tailed) but not in TMA (Spearman’s rho=
0.210, p= 0.13, two-tailed) (Fig. 3a–c and Supplementary Table 2).
Furthermore, automated TIL evaluation scores were not statisti-
cally significantly correlated between WTS and TMAs in patients
with matched tissue (Spearman’s rho=0.263, p= 0.06, two-tailed)
(Fig. 3a and Supplementary Table 2). In the same samples assessed
by mfIHC, we also examined the correlation between CD4+ and
CD8+ stromal cell densities with the extent of TIL infiltration. The
mean stromal and intra-tumoral CD4+ and CD8+ T-cell density
and their sum (CD4+ and CD8+) were significantly higher in
lymphocytic predominant BC samples (LPBC; stromal TIL > 50%)
compared to non-LPBC tumors (Fig. 3d, e and Supplementary
Table 2). Similarly, the percentages of automatically counted TILs
in WTS and in TMAs were moderately correlated with CD4+ and
CD8+ cell densities (Fig. 3a and Supplementary Table 2). These
results show that prediction of TIL enumeration by digital

counting depends on tissue source and that mfIHC-derived CD4
and CD8 densities are representative of TIL abundance.

SCNA profiling by CUTseq
Out of 96 FFPE samples evaluated by mfIHC and/or TILs scoring,
93 samples had gDNA of sufficient quality to be used for CUTseq.
As reference for calling SCNAs, we used gDNA extracted from
peripheral mononucleated blood cells available for 33 patients
(Methods). To assess the reproducibility of CUTseq, we sequenced
two libraries prepared using two aliquots of each of the 93 gDNA
samples. Forty-four samples reached a sufficient sequencing read
depth in both replicates and showed a high correlation of the per
bin log2 ratio up to 100 kilobase resolution (Supplementary Fig.
3a). After copy number calling, we observed a significant
correlation (Pearson’s rho= 0.94; p= 2.2e-16, two-tailed) of the
percentage of the human genome that was amplified or deleted
in corresponding replicates and a high concordance of the SNCA
profiles between them (Supplementary Fig. 3b, c).
To increase the number of samples, we merged corresponding

replicates, which led to 77 out of 93 samples (82.7%) with enough
sequencing reads to allow reliable SCNAs calling at 100 kb
resolution (see Methods). In these samples, deletions (DEL) were
present in higher percentage as compared to amplifications (AMP)
(14.6% and 12.2%, respectively) (Fig. 4a). When further subdividing
the samples into ER-negative and ER-positive samples we saw
similar AMP and DEL percentages (12.4% and 14.9% in ER-positive
samples and 11.8% and 14.1% in ER-negative samples, respec-
tively) (Supplementary Fig. 4a). The majority of the alterations
were large-sized (>10 megabases, Mb), both in the case of AMP
and DEL, followed by medium-sized (1–10 Mb) and focal (<1 Mb)
events (Fig. 4b). This was also the case when further stratifying
samples by ER status (Supplementary Fig. 4b). AMP occurred most
frequently on chromosome 1q, 8q, 17q, 20q, while DEL were
predominant on 8p, 11q and 17p (Fig. 4c). We then checked which
genes listed in the Catalog of Somatic Mutations in Cancer
(COSMIC)18 were most frequently amplified or deleted. Among
these, MYC was the most frequently altered gene locus (65% of all
the samples) followed by ERBB2 (57%), TP53 (48%), BRCA2 (36%)
and BRCA1 (36%) (Fig. 4c). We also used the GISTIC (Genomic
Identification of Significant Targets in Cancer)19 algorithm to
detect significantly focally altered genes. ERBB2 was the most
significantly focally altered gene, followed by CCND1, FGFR1 and
ZNF217 (Fig. 4d, e). Altogether, these results show that high-
throughput CUTseq allows robust detection of SCNAs in low-input
clinical samples.

Immune-genomic analyses reveal an inverse link between
SCNA burden and immune response
We then aimed at deciphering the relationship between the
tumoral genomic architecture and the composition of the immune
infiltrate. Using unsupervised hierarchical clustering analysis, we
detected two distinct genomic groups: cluster 1 (n= 20) was
characterized by higher SCNA burden (i.e., the percentage of the
genome either amplified or deleted) as compared to cluster 2
(n= 57), which had a lower SCNA burden (Fig. 5a, b). We did not
find any significant difference between the two clusters in terms
of overall survival (two-sided log-rank p= 0.372). However, we did
observe a differential composition of the immune cell infiltrate
between the two clusters. The mean distribution of visually scored
stromal TILs was significantly lower in cluster 1 as compared to
cluster 2 (mean TILs percentage: 9.6% vs. 24.5% in cluster 1 and 2,
respectively, p= 0.016, Mann–Whitney U test, two-tailed) (Fig. 5d,
upper panel). Similarly, the mean percentage expression of all
digital TILs variables, in both WTS and TMAs, were higher in cluster
2 (Fig. 5d, upper panel). When we evaluated specific immune cell
subsets, we found that intra-tumoral CD4+ and CD68+ cells as
well as stromal CD4+ , CD8+ and CD68+ cell abundances were
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Fig. 1 Immune profiling using a multiplexed method in early breast cancer formalin-fixed paraffin-embedded (FFPE) tissue. a Flowchart
of the patient sample availability and methods used in the translational sub-study of the SBG-2004-1 early breast cancer trial; b Overview and
workflow of the multiplex fluorescent IHC approach in tissue microarrays; c Representative image of the spatial immune cell distribution and
phenotyping according to the (co)expression of the relevant markers; d, e Heatmaps depicting mean cell densities of immune cell
subpopulations and expression patterns per tissue compartment (n= 79).
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signifiscantly increased in cluster 2 (Fig. 5d, middle and lower
panels). Altogether, our results indicate that, in early breast cancer
tumors, an inflamed tumor microenvironment tends to be
associated with a lower SCNA burden and vice versa.

DISCUSSION
This is a correlative and proof-of-principle study that demonstrates
the applicability of newly developed methods (CUTseq for SCNA
genomic profiling and mfIHC and digital image analysis for
immune profiling) in archival FFPE tissue, using samples from
patients enrolled in the phase II SBG-2004-1 early BC trial. mfIHC
facilitated the qualitative and quantitative assessment of several
markers in a tissue-compartment manner (tumor versus stroma
area), while digital TILs scoring20 enabled the evaluation of
morphology-based immune infiltration on routine H&E-stained
sections. Moreover, considering that FFPE tissue remains one of
the main sources of patient material for translational cancer
research and the inherent challenges related to the isolation of
nucleic acids from FFPE samples21,22, we confirmed the ability of
CUTseq to yield high-quality SCNA profiles even in old FFPE
samples (storage age range: 14–16 years), further highlighting
their potential applications. In this cohort of samples, the method
successfully detected the loss of 8p, a frequent deletion of breast
cancer associated with poor patient survival and cell invasive-
ness23. MYC, whose deregulation contributes to BC development
and progression and is associated with poor outcomes24,
represented the most commonly altered gene locus. Not
surprisingly, ERBB2 was also among the most frequently altered
loci25.
Advances in quantitative IHC and emerging approaches for

multiplexed IHC have shifted the landscape of immune profiling
from single to multiple marker evaluation17,26 in tumor samples.
According to a large meta-analysis, multiplexed IHC/IF better
predicts benefit to anti-PD-L1/PD-1 treatment over other biomar-
ker modalities (i.e., TMB or gene-expression profiling)27, support-
ing the potential clinical utility of multi-marker assessment.
Similarly, machine-learning algorithms and digital image analysis
approaches provide the potential for intelligent digital pathology
applications, accurate diagnostics and biomarker develop-
ment28,29. The observed correlations between automated assess-
ment of TILs with both manual TIL-WGS scoring30 and mfIHC

counts, as well as its feasibility in TMAs could pave the way for its
widespread use in translational BC studies. Upon validation in
larger cohorts, digital image analysis of TILs could greatly facilitate
studies on TILs due to the robust reproducibility and low demand
in time and manual labor of this technique31–33. These high-
dimensional methods could also provide the tools for further
dissection and deconvolution of tumor microenvironment hetero-
geneity34 and the complex regulation of tumor-host interplay35,36.
Whether these specific immune-related patterns correlate to
clinical outcomes and confer predictive implications for immu-
notherapy remain to be explored. Similarly, future applications of
CUTseq to larger FFPE sample cohorts could enable the
identification of clinically relevant SCNA signatures.
The second focus of our study was to explore the association

between tumor SCNAs and the host immune response.
Following the first tissue/site-agnostic approval of pembrolizu-
mab for patients with microsatellite instability-high or mis-
match repair deficient unresectable or metastatic solid
tumors37, the identification of genetic determinants of anti-
tumor immune response38,39 is potentially clinically meaningful.
TMB could trigger immune response and predict longer survival
in BC, despite the generally lower mutational load/immuno-
genicity and increased heterogeneity of this cancer type6,40–44,
but its clinical utility still remains questionable. One hypothesis
for such association maintains that a greater level of hetero-
geneity at the genomic and cellular level would lead to a
greater number of neoantigens, a stronger immune response
and better outcomes. In contrast, it has also been proposed that
a low number of infiltrating immune cells causes diminished
immune surveillance and immunoediting and thus leads to
increased clonal heterogeneity. Of note, aneuploidy and SCNAs
involving either larger or smaller (focal) portions of the genome
could also drive diverse cancer hallmarks including cell
proliferation and immune escape11,13 and thus be associated
with dismal prognosis45,46. Furthermore, SCNAs (especially
deletions) in antigen presentation related genes could nega-
tively impact lymphocytic infiltration, irrespective of the TMB,
which has been shown to increase the number of neoanti-
gens13,47. In this study, we confirmed that a higher SCNA
burden is correlated with decreased immune cell infiltration
and especially a reduction in stromal TILs. Previous studies have
also reported a negative correlation between the SCNA burden

Tumor
TIL

Stroma
Other

a b

c d

100µm 100µm

20µm 20µm

Fig. 2 TILs manual and digital evaluation. Representative image of a tissue-microarray (TMA) core (a and c, original magnification x200 and
x400, respectively); Digital image analysis and different cell type annotations in the same images, using a machine-learning algorithm (b and
d, original magnification x200 and x400, respectively).
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Fig. 3 Correlations of TILs with multiplex IHC. a Correlation matrix of the different variables derived from multiplex fluorescent IHC, manual
and digital TILs scoring; Correlations of easTILs in whole-slide images (b) and TMA (c) with manual TILs scoring in lymphocyte-predominant
breast cancer (LPBC) and non-LPBC; Correlation between CD4 and CD8 stromal (d) and intra-tumoral (e) immune cell subsets with LPBC and
non-LPBC based on manual TILs scoring.; In the boxplots, each box extends from the 25th to the 75th percentile, the midline represents the
median, and the whiskers extend from –1.5 × IQR to +1.5 × IQR from the closest quartile, where IQR is the inter-quartile range; WSI: whole-
slide images, TMA: tissue microarrays.
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Fig. 4 Copy number alteration distribution and frequency in FFPE samples using the CUTseq method. Percentage (a) and size (b) of the
altered genome (amplified or deleted) in the SBG-2004-1 study. In the boxplots, each box extends from the 25th to the 75th percentile, the
midline represents the median, and the whiskers extend from –1.5× IQR to +1.5× IQR from the closest quartile, where IQR is the inter-quartile
range; c Landscape of the most frequently altered chromosomal arm and gene loci among study samples; d, e Significantly focally altered
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and immune gene signatures in BC, mostly in the triple-
negative subtype and for whole chromosome/arm aneuploidy
as compared to focal SCNAs, further indicating the role of gene
dosage effects13–15,48. In contrast, a weak positive correlation
was noted in two other studies, especially in the ER+
subtype38,49. Thus, considering (i) the positive correlation of
the TMB with SCNAs13, the TMB-independent prognostic
significance of SCNAs45 as well as (iii) the opposing impact on
immune infiltration and response to immunotherapy (SCNAs
predicted poorer survival in melanoma patients receiving ICB as
compared to TMB13) the following question arises: Could a
combined immunogenomic score including the SCNA burden,
TMB and host immune response better stratify BC patients and
predict benefit from immunotherapy?
The present exploratory study suffers from several limitations,

which will need to be addressed in follow-up studies. Our small
sample size did not enable additional subgroup analyses (e.g.,
further evaluation of predictive implications regarding dose
tailored chemotherapy). The few documented events after a 10-
year follow-up precluded the exploration of the prognostic value
of our findings. Furthermore, the use of TMAs as compared to
whole-tissue sections might underestimate the extent of lympho-
cytic infiltration and the expression of PD-L1/PD-1 axis50,51, as
indirectly supported by the results of TILs enumeration in our
study. Finally, since our study was mostly correlative, causality in
our observations remains to be proven.
The present proof-of-principle study indicates the feasibility of

SCNA and immune cell profiling applications on a large scale using

archival, low-input FFPE BC samples. This could pave the way for
further applications and validation in larger patient cohorts, such
as the continuation phase III PANTHER trial52–55. Our findings also
provide insights into the interplay between SCNAs and the
immune microenvironment in patients with early BC. Ultimately,
we need to identify whether specific immunogenomic patterns
confer poor prognosis despite the use of adjuvant therapy, hence
marking a candidate population for treatment escalation using
immunomodulating therapies.

METHODS
Study samples
The Scandinavian Breast Group (SBG) 2004-1 study is a randomized phase
II study, which aimed to evaluate the feasibility and tolerability of three
different adjuvant chemotherapy regimens: (a) tailored according to the
hematologic nadirs and dose dense epirubicin, cyclophosphamide and
docetaxel (EC→ T) every 2 weeks, (b) fixed dose regimen of the same
agents every 2 weeks and (c) the TAC regimen (docetaxel, doxorubicin and
cyclophosphamide every 3 weeks), enrolling a total of 124 patients with
node-positive disease. The patient characteristics and primary safety and
efficacy analysis, as well as the long-term follow-up (median: 10.3 years)
analysis have been previously reported56,57. The analyses performed in the
present study have been approved by the ethics committee at Karolinska
Institutet, Stockholm, Sweden (Dnr 2017/345-32 and Dnr 2018/1084-32)
and by the Swedish Medical Product Agency (Dnr 5.1 2017–51466). Written
informed consent was obtained from all patients prior to enrollment in the
clinical trial. The conduct of the study conformed to the standards set by
the Declaration of Helsinki. This trial was initiated in 2004, when trial

Fig. 5 Combined immunogenomic analysis in the SBG-2004-1 trial. a, b CNA clusters and graph depicting the respective CNA burden
(percentage of genome amplified/deleted); c Distribution of CNA among the distinct genomic clusters. In the boxplots, each box extends from
the 25th to the 75th percentile, the midline represents the median, and the whiskers extend from –1.5× IQR to +1.5× IQR from the closest
quartile, where IQR is the inter-quartile range; d Heatmaps of the mean cell density and expression of the different multiplex immune cell
subsets and H&E TIL variables (both manual and digital TILs) within CNA clusters.
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registration was not compulsory. It is the feasibility study of a randomized
phase III trial (PANTHER, EudraCT number 2007-002061-12 and Clinical-
trials.gov accession number NCT00798070).

Patient tissue sample processing and tissue microarray
construction
FFPE patient tissue was used for this study (storage age range: 14–16
years); an initial whole-tissue section (WTS) (thickness: 4 μm) was taken
from each tissue block and subsequently stained with hematoxylin and
eosin (H&E) using standard protocols. The tumor area and cellularity (% of
tumor cells) were then annotated and confirmed by a certified pathologist
(J.H.). Two additional tissue sections (thickness: 10 μm each) from each
patient FFPE sample were also obtained only from the tumor area using
scalpels directly on the tissue block. These sections were used for DNA
extraction as described hereunder. TMA were also constructed from
primary tumors of all patients from the FFPE blocks using an automated
tissue microarrayer (VTA-100, Veridiam, Oceanside, CA, USA). Each TMA
consisted of duplicate cores per tumor/patient (diameter: 1 mm), originat-
ing from the previously annotated tumor-rich areas.

Evaluation of tumor-infiltrating lymphocytes
TILs enumeration. Stromal tumor-infiltrating lymphocytes (TIL) were
evaluated on H&E-stained full-face sections, by a certified pathologist
(J.H.), who was blinded to other clinicopathological and genomic
characteristics, as the percentage (%) of tumor stroma covered by
infiltrating lymphocytes, according to the recommendations of the
International TILs/Immuno-Oncology Biomarker Working Group30.

Digital-assisted evaluation of TILs. An image-based, automated evaluation
of TILs was performed in both H&E-stained whole-slide images (WSI) and
TMA, using the QuPath open source software20,58,59. Briefly, a classifier
algorithm compatible with the QuPath software has been created in order
to define tumor cells, lymphocytes, stromal cells and other cells on the
stained sections. For both WSI and TMA the following variable easTILs%=
TILs Cell Area /Stroma Area*100, was calculated as a surrogate of the
respective definition from the TILs Working Group for the visual
assessment while different calculated variables/scores for the machine-
defined TILs are summarized in the Supplementary Table 4.

Multiplex fluorescent immunohistochemical staining
Tissue sections (thickness: 4 μm) were prepared from the FFPE blocks of
TMA for the staining with multiplex fluorescent immunohistochemistry
(mfIHC), enabling the simultaneous and spatial in situ detection of multiple
protein markers60–62. Specifically, the custom-based 7-color IHC kit (OpalTM

7 Solid Tumor Immunology Kit, Akoya Bioscienes, Malborough, MA, USA),
has been optimized in order to include a panel of 6 immune markers: CD4
(1:100, Cat No. M731029-2), CD8a (1:200, Cat No. MA513473), PD-L1 (1:400,
Cat No. ab228462), PD-1 (1:100, Cat No. ab52587), FoxP3 (1:300, Cat No.
12653), CD68 (1:400, Cat No. M087629-2). For improved visualization of
epithelial tissue, a cocktail of primary antibodies against E-cadherin
(1:2000, Cat No. 610182), cytokeratin (1:400, Cat No. GA05361-2) and pan-
cytokeratin (1:500, Cat No. ab7753) was used. The detailed protocol and
reagent references of the mfIHC procedure in this study are presented in
Supplementary Table 5. The fully automated Leica Bond RXm (Leica
Biosystems, Buffalo Grove, IL, USA) was used for the multiplex staining.
Tissue sections were stained with 4′,6-diamidino-2-phenylindole (DAPI) in
order to visualize the nuclei and subsequently mounted with Prolong
Diamond Antifade Mountant (ThermoFisher, Waltham, MA, USA).

Image acquisition, analysis, and thresholding of the
multispectral approach
Imaging of the TMA was performed using the Vectra® Polaris™ Automated
Quantitative Pathology Imaging System (Akoya Biosciences, Marlborough,
MA, USA)60,61. A whole-slide scanning (10x) was obtained in order to locate
and label the TMA cores using the Phenochart software (Akoya
Biosciences, Malborough, MA, USA). Multispectral fluorescent imaging
was then applied on the selected regions providing a resolution of 2 pixels
per 1 um. Spectral umixing was performed using the inForm® image
analysis software (Akoya Biosciences, Malborough, MA, USA) and the signal
intensity for each fluorophore was normalized for exposure. A machine-
learning tissue segmentation algorithm was then set up and applied for
the image analysis following a training step. This included the manual

annotation of three distinct compartment/region types (tumor, stroma and
blank areas) in a training set of TMA cores. Cell segmentation was carried
out based on the nuclear DAPI staining and with the surrounding area
(3mm perinuclear) to be defined as the cytoplasm zone. The established
image analysis protocol was applied for the complete set of scanned TMA
cores (n= 157). Each image was manually evaluated by three investigators
(I.Z., A.M., P.M.) so as to exclude necrotic areas, non-tumor tissue and/or
staining artifacts from subsequent analyses and discrepancies were
resolved by a certified pathologist (A.M.). Both nuclear and cytoplasmic
areas (making a total cell area) were assessed for markers’ expression,
except FoxP3, which was evaluated only in nuclear areas. The intensity
positivity threshold was defined individually for each biomarker using the
built-in function for cell phenotyping (inForm® software) in a randomly
selected set of TMA cores (20 images, 100 cells visually determined per
marker). These thresholds were applied to the output data from the
complete cohort to classify cells according to the expression of each
marker either as positive or negative. Duplicate TMA cores belonging to
the same tumor were merged and cell infiltration was normalized against
the total viable tissue area. The cell density (cells/mm2) of each single
marker, i.e., number of immune marker-positive cells normalized separately
to the tumor and stromal areas/compartments was then computed for
each sample. Co-expression patterns of the various immune-positive
markers were used for the identification of immune cell subpopulations.
The analytical workflow of the applied multispectral method is summar-
ized in Fig. 1b.

DNA extraction from FFPE tumor tissue and blood samples
DNA was extracted from archival FFPE breast cancer patient tissue based
on the aforementioned tumor area annotations and description, using the
AllPrep DNA/RNA FFPE Kit (Cat. No. 80234, QIAGEN, Germany). Briefly, the
main steps of the extraction process involved deparaffinization using
xylene, washing in 100% ethanol, air-drying, lysis/digestion using
proteinase K, on-column RNAase treatment, genomic DNA binding on
QIAmp MinElute spin column, washing and elution of DNA in EB buffer
(Cat. No. 19086, QIAGEN, Germany). Germline DNA was extracted also from
patients’ peripheral blood samples using the FlexiGene DNA kit (Cat No.
51206, QIAGEN, Germany). Quality control (QC) was performed for the
estimated the yield of the extracted DNA. Concentration and the A260/A280
and A260/230 absorbance ratios (purity estimation) were obtained using the
spectrophotometer NanoDrop ND-1000 (Saveen Werner, Sweden). Further
estimation of the DNA concentration was performed using the Qubit® 3.0
Fluorometer (ThermoFisher Scientific, USA) and the Qubit™ dsDNA BR
(Broad Range) Assay kit (Cat No Q32850, Invitrogen, USA). Furthermore, the
integrity of DNA was estimated based on the DNA Integrity Number (DIN)
values, using the Agilent Tapestation 2200 System (Agilent, Santa Clara, CA,
USA) according to the manufacturer’s instructions.

CUTseq
We designed and prepared 96 CUTseq adapters as previously described16. 93/
96 gDNA FFPE samples and 33/36 gDNA blood samples were used (remaining
samples were excluded due to low concentration) and two technical
replicates were prepared by two different operators. Upon receival samples
were diluted to a concentration of approximately 18 ng/ul. The experiment
was performed on a 384-well plate divided into four different parts: (1) top left
96 wells were used for 92 gDNA FFPE samples (replicate 1) and 4 negative
control (Nuclease Free Water); (2) top right 96 wells were used for 33 gDNA
blood samples (replicate 1) and 3 negative control (Nuclease Free Water); (3)
bottom left 96 wells were used for 92 gDNA FFPE samples (replicate 2) and 4
negative control (Nuclease Free Water); (4) bottom right 96 wells were used
for 33 gDNA blood samples (replicate 2) and 3 negative control (Nuclease Free
Water). First 5 µl of Vapor Lock (Qiagen, Cat.No. 981611) was dispensed in
each well to prevent evaporation. After this we used the I-DOT One robot for
all subsequent dispensing steps. We dispensed 350 nl of gDNA (concentration
around 6.3 ng) from FFPE and blood samples and 350 nl of Nuclease Free
Water as control. Digestion mix containing 50 nl of CutSmart buffer (NEB, Cat.
no. B7204S) and 100 nl of NlaIII-HF enzyme (NEB, Cat. no. R0125L). Plate was
centrifuged at 1200 × g for 5min. Digestion was performed at 37 °C for 30min
followed by 20min at 65 °C to inactivate the enzyme. After digestion, we
dispensed 300 nl of 33 nM CUT adapter together with 700 nl of ligation mix
containing 200 nl of T4 rapid DNA ligase (Thermo Fisher Scientific, Cat.No.
K1423), 300 nl of T4 ligase buffer (Thermo Fisher Scientific, Cat. No. K1423),
120 nl of 10mΜ ATP (Thermo Fisher Scientific, Cat.No. PV3227), 30 nl of
50mg/ml bovine serum albumin (Thermo Fisher Scientific, Cat.No. AM2616),
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and 50 nl of nuclease-free water (Thermo Fisher Scientific, Cat.No. 4387936)
and the plate was incubated at 25 °C for 30min. After ligation, we added 5 μl
of 1xPBS (Thermo Fisher Scientific, Cat.No. AM9625) to each well and pooled
the contents of every well (keeping the four different parts separate) with
different barcodes in four different eppendorf tubes. From this step the two
replicates were performed by two different operators. After short spin, Vapor-
Lock (top layer) was removed and purification was carried out by adding 3.7 μl
of 20mg/ml glycogen (Sigma, Cat.No. 10901393001), 11.5 μl of 3M sodium
acetate (Life Technologies, Cat.No. AM9740) and 288 μl of ice-cold Absolute
Ethanol (VWR, Cat.No. 20816.367) per 100 μl of DNA solution and incubate at
−80 °C overnight. The next day Ethanol precipitation was performed and DNA
sonicated using Covaris ME220 Focused-ultrasonicator with the target peak of
200 bp. Sheared DNA was purified with 1.3X ratio of Agencourt Ampure XP
beads (Beckman Coulter, Cat. No. A63881). Eight microliters of purified DNA
was used as input for the IVT step and library preparation as described in the
original CUTseq paper16. Final libraries were sequenced on a Illumina NextSeq
500 platform with high output 75 bp single-end kit (Illumina, catalog number
FC-404-2005).

Sequencing data processing and copy number calling
We filtered reads based on the presence of the correct prefix, allowing for
1 mismatch in the restriction site. Following this, we removed the barcode
and unique molecular identifier (UMI) from the read and appended to the
read header using umi_tools extract (version 1.1.1)63. Subsequently, we
demultiplexed the reads based on the extracted barcodes using BBMap
demuxbyname (version 38.76) (https://sourceforge.net/projects/bbmap).
Demultiplexed reads were then aligned to the human reference genome
GRCh37/hg19 using Burrows-Wheeler Aligner (BWA) (version 0.7.17-
r1188)64. Aligned reads were position sorted and deduplicated with
samtools sort (version 1.10)65 and umi_tools dedup (version 1.1.1)63,
respectively. The preprocessing pipeline used in this study is made
available through a snakemake file on https://github.com/ljwharbers/
sbg2004-cutseq.
We called somatic copy number variants using a pipeline from the

Genome Analysis ToolKit (GATK) (version 4.1.8.0)66. In short, we produced a
list of annotated intervals using PreprocessIntervals and AnnotateIntervals.
Reads were counted in these intervals using CollectReadCounts and a Panel
Of Normal of 33 blood samples was created using CreateReadCountPane-
lOfNormals. Tumor profiles were normalized and segments were modeled
using DenoiseReadCounts and ModelSegments, respectively. Finally, sig-
nificantly amplified or lost segments were called using CallCopyRatioSeg-
ments. The copy number variant pipeline with the exact parameters used is
made available through a snakemake file on https://github.com/
ljwharbers/sbg2004-cutseq.

Data processing and statistical analyses
For comparison of immune cell densities groups of paired samples
between tumor and stroma area, the Wilcoxon signed-rank test was used.
Descriptive statistics (mean, standard deviation, median) were used for
continuous variables (e.g., mfIHC cell densities, eTILs). Unsupervised
hierarchical clustering was performed on normalized data in order to
identify CNA (based on the called segments of the bins) and/or immune
cell clusters. Associations of different immune cell patterns (including TILs
expression levels) and DNA copy number alterations with clinicopatholo-
gical parameters were performed using chi-square (χ2), Fisher’s exact or
Mann–Whitney U-tests, where appropriate. The association between TIL
enumeration using manual and automated counting was assessed using
Spearman correlation. The observed number of survival events in each
CNA group was compared using the log-rank test All analyses were
performed using SPSS (v.25.0 Corp. Armnok, NY, USA), R studio (version
4.3) and GraphPad Prism (version 8.0. GraphPad software Inc., San Diego,
CA, USA).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The segmented SCNA profiles are available in the Supplementary Material
(Supplementary Data 1). The raw data files (BAM) and other data that support the
findings of this study are available from the corresponding authors (J.B., N.C., T.F.)

upon reasonable request and provided that the intended use is in accordance with
the ethics approval and the informed consent signed by the trial participants.
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