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Whole-exome sequencing identifies somatic mutations and
intratumor heterogeneity in inflammatory breast cancer
Rui Luo1,5, Weelic Chong 1,5, Qiang Wei2, Zhenchao Zhang1, Chun Wang1, Zhong Ye1, Maysa M. Abu-Khalaf1, Daniel P. Silver1,
Robert T. Stapp3, Wei Jiang3, Ronald E. Myers1, Bingshan Li2, Massimo Cristofanilli4 and Hushan Yang 1✉

Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer. Although it is a rare subtype, IBC is responsible for
roughly 10% of breast cancer deaths. In order to obtain a better understanding of the genomic landscape and intratumor
heterogeneity (ITH) in IBC, we conducted whole-exome sequencing of 16 tissue samples (12 tumor and four normal samples) from
six hormone-receptor-positive IBC patients, analyzed somatic mutations and copy number aberrations, and inferred subclonal
structures to demonstrate ITH. Our results showed that KMT2C was the most frequently mutated gene (42%, 5/12 samples),
followed by HECTD1, LAMA3, FLG2, UGT2B4, STK33, BRCA2, ACP4, PIK3CA, and DNAH8 (all nine genes tied at 33% frequency, 4/
12 samples). Our data indicated that PTEN and FBXW7 mutations may be considered driver gene mutations for IBC. We identified
various subclonal structures and different levels of ITH between IBC patients, and mutations in the genes EIF4G3, IL12RB2, and
PDE4B may potentially generate ITH in IBC.
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INTRODUCTION
Inflammatory breast cancer (IBC) is an aggressive form of breast
cancer defined by the rapid onset of inflammatory signs (such as
erythema, edema, warmth, and induration) involving more than
one-third of the breast1–3. IBC accounts for 1–6% of breast cancer
cases2,4,5 yet causes roughly 10% of breast cancer deaths6,7. The
prognosis in patients with IBC is worse than in non-IBC, with the 3‐
year survival rate for IBC patients far lower (around 40%) than
patients with other types of breast carcinoma (around 85%)5,8.
Although treatment approaches based on hormone-receptor (HR)
or HER2 status are available, there are no treatments that are
specifically recommended for tumors with an IBC phenotype. The
scarcity of data from IBC patients and the poor understanding at
the molecular level has hindered the development of specific
therapeutic interventions. In order to develop potential IBC-
specific targeted therapies, obtaining more genomic information
is crucial.
Intratumor heterogeneity (ITH) arises from heritable and

stochastic genetic and epigenetic changes, as well as environ-
mental variations within the tumor9. Since tumors with ITH have
subclones with distinct mutations that may relate to cancer-
specific phenotypes, ITH is intricately related to cancer progres-
sion, resistance to therapy, and recurrences10. It is clear that a
better understanding of ITH is very important to the development
of genome-informed precision medicine11.
The rapidly evolving technology of next-generation sequencing

(NGS) has made it possible to analyze genomic characteristics of
tumor samples at an unprecedented speed. Since 2015, eight
NGS-based studies on IBC tumors have been published. Among
them, six out of eight used targeted sequencing12–18, and two
conducted whole-exome sequencing (WES)19,20. These studies
reported frequently mutated genes in IBC, such as TP53 (43–75%),
PIK3CA (13–42%), BRCA2 (13–26%), ARID1A (10–21%), RB1

(11–16%), and PTEN (11–15%)12–18. Frequent HER3 hotspot
mutations were also found in IBC tumors and cell line studies
confirmed a role for mutant HER3 in IBC cell proliferation15.
Frequent genomic alterations in the PI3K/AKT/mTOR pathway
have been seen15, and somatic activation of this pathway (i.e.,
PIK3CA activating mutation or gain14, ERBB2 activating mutation,
PTEN deletion, AKT1 activating mutation) was significantly
associated with shorter progression-free survival (PFS) in trastu-
zumab-naïve HER2-positive IBC patients19. However, most of these
studies were based on targeted sequencing panels, and none of
them provided information for intratumor subclonal structures or
evaluated ITH.
In the current study, we performed whole-exome sequencing in

16 tissue samples (12 tumor and 4 normal samples) from six IBC
patients to obtain a comprehensive understanding of the IBC
genomic landscape. Based on the mutation calls and somatic copy
number alterations, we characterized ITH and subclonal structures,
identified primary and secondary driver genes for the tumor and
subclone formation, which could shed light on potential new
treatment strategies for IBC.

RESULTS
Patient and sample description
Clinical and pathological information of the six IBC patients
(P1–P6) are provided in Supplementary Table 1. The median age
at sample collection time was 56 years (ranging from 36 to 72
years). All six patients had HR+ tumors, with 5/6 (83.3%) patients
having estrogen-receptor-positive (ER+) tumors, and the other
had a progesterone-receptor positive (PR+) tumor. By only
considering HR+ IBC tumors, our study eliminated additional
confounding introduced by differences in HR subtypes seen in
previous studies. Details of the tumor and normal tissue samples
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obtained from the six IBC patients are found in Supplementary
Table 2. The samples from P2 were obtained from an incisional
biopsy, which limited the volume of tissue obtained, and these
samples were subsequently found to be insufficient for conduct-
ing subclone identification.

Sequencing quality validation
We achieved a mean sequencing depth of ~170× (ranging from
133 to 210×, Supplementary Table 3), with mapping rates
exceeding 99% in all 16 samples. After stringent filtering criteria
(see Methods), we obtained a total of 1477 somatic mutations. We
called 293, 15, 261, 120, 495, and 293 somatic mutations,
respectively, in patients P1–P6 (Supplementary Data 1). Four of
the six patients (P1, P2, P4, and P6) had matched normal samples,
allowing us to validate the stringency of our mutation calling
pipeline (see Methods). We identified artifactual mutations in one,
six, one, and four instances, respectively, in patients P1, P2, P4, and
P6. Artifactual mutations in normal samples also had much lower
allele frequencies (AFs) and tended to be obtained at lower
depths compared to tumor mutation calls, which indicated that
FFPE-induced artifacts had negligible effects to the data presented
in our study (Supplementary Fig. 1).

Somatic mutation identification
We used a somatic mutation classification system as previously
described21. Five of six patients exhibited mutational signatures
characterized predominantly by C > T transitions, with the sixth
patient P6 showing a mix of C > G and C > T transitions
(Supplementary Fig. 2). These results were consistent with

previous reports for breast cancer, which have also found C > T
transitions to constitute the majority of somatic mutations21,22.
In total, we found 787 mutated genes from the 12 tumor

samples in six patients. In these samples, KMT2C was the most
frequently mutated gene (5/12 samples, 42%). Nine mutated
genes were found in four samples (33%, including HECTD1,
LAMA3, FLG2, UGT2B4, STK33, BRCA2, ACP4, PIK3CA, and DNAH8),
and 12 genes were mutated in three different samples (25%,
including TTN, IGSF3, TRIM67, DNMBP, CHD2, CORO7, CDC27,
ZNF544, MST1, DENND2A, NCKAP5, and PCDHB10). Figure 1a shows
the 22 most frequently mutated genes. In addition, mutations in
244 genes were found in two tumor samples, with the remaining
gene mutations (in 521 genes) private to single tumor samples.
We also analyzed the gene mutations at the patient-level.

KMT2C, HECTD1, and LAMA3 were the most frequently mutated
genes as they were shared by three of six patients (50%). Histone
methyltransferase KMT2C is a tumor suppressor gene reported to
be a driver gene for breast cancer23,24. There were 57 mutated
genes identified within two patients (2/6, 33%), and the rest of the
mutated genes were not common to multiple patients. All
counted mutations were nonsynonymous (i.e., frameshift/non-
frameshift indel, stop-gain/stop-loss, splicing, or
nonsynonymous SNV).

Copy number aberration (CNA) inference
We obtained ~25,000 germline variants in each patient with
matched normal samples (P1, P2, P4, and P6). We used TITAN, a
probabilistic model that simultaneously infers CNA and loss of
heterozygosity (LOH) segments from read depth and digital allele
ratios at germline heterozygous SNP loci across the exome from

Fig. 1 Somatic mutation profile for 12 tumor samples of six patients. a The most frequently mutated genes are shown in a heatmap, with
the columns representing the 12 tumor samples from six patients, and the rows representing genes. The different colors indicate the type of
mutation as indicated in the figure. b Heatmap of mutations in selected genes known to be involved in cancer pathogenesis or progression.
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tumor WES data25. Figure 2 shows the profiles of CNAs for the four
patients with matched normal samples. We observed that patient
P2 had a relatively low tumor cell fraction. Patient P6 had the best
sample quality and showed extensive LOH.

Subclone identification
Using CNA information, we conducted PyClone analysis to
estimate cancer cell fractions (CCFs) of all mutations and then
assigned each mutation to different subclones (see Methods). For
each patient, we obtained the subclone CCF density (represented
as violin plots) and plotted CCFs in one tumor sample against the
other tumor sample (as a scatter plot) (Fig. 3). Major subclones
from the density plots are labelled in the same color in the scatter
plot.

For patient P6 (Fig. 3a, b), we observed six distinct subclones
with different cluster CCFs. Subclone 4, 5, and 11 all had very low
subclone CCFs in one of the two samples (but high CCFs in the
other sample), indicating clear ITH. Subclone 9 had cluster CCFs of
greater than 0.7 in both samples, suggesting a high possibility of
this subclone containing driver genes. This subclone also
contained mutations in PTEN and FBXW7, both tumor suppressor
genes previously reported26,27 as driver genes for breast cancer.
Subclone 11 contained EIF4G3, IL12RB2, and PDE4B mutations, and
all three mutations had zero allele frequencies in the tumor
sample P6_T11, indicating the possibility of secondary driver
genes for this subclone. We used Integrative Genomics Viewer
(IGV) to check and confirm that the high CCFs of these genes were
not caused by duplication. EIF4G3, IL12RB2, and PDE4B genes are

Fig. 2 Graphical representations of copy number alterations (CNAs) and allelic fractions (AFs) from two tumors per patient. Two tumors
are obtained from each patient, represented on the left and right of the figure. Data from four patients with matched normal samples are
available, and four sets of CNAs and AFs plots are presented. Within each set, the CNA plot is shown above the AF plot. For the CNA plot, the
y-axis is the log2 ratio of the copy numbers of tumor to normal sample, both normalized for read depth. Points close to 0 (midline) represent
no change in copy number, above 0 are copy gains, and below 0 are deletions. Regions are colored as follows: bright green (homozygous
deletion), green (hemizygous deletion), blue (diploid heterozygous or copy-neutral loss of heterozygosity), dark red (copy number gain), and
red (allele-specific CNA, unbalanced CNA, balanced CNA). The x-axis represents chromosomes. For the AF plot, the y-axis is the frequency of
the reference allele in a germline heterozygous SNV, and the expected heterozygous frequency of 0.5 is the midline. Data points close to 1
represent homozygous reference, and data points close to 0 represent the homozygous nonreference base. Regions are colored as follows:
gray (heterozygous, or balanced CNA), bright green (homozygous deletion), green (hemizygous deletion), blue (copy-neutral loss of
heterozygosity), dark red (copy number gain), and red (allele-specific CNA, unbalanced CNA). The x-axis represents chromosomes.
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all located in chromosome 1. Figure 4 shows the phylogenetic tree
for P6. In order to further explore the relationships between
different subclones in patient P6, we constructed the subclonal
architecture based on cluster CCFs (see Methods). Supplementary

Figure 3 depicts the deduced linear and/or branching relation-
ships of subclones in P6. For example, in architecture c (one of the
four possible subclonal architectures of sample T11), subclone 9
represented the subclonal trunk mutations, with subclone 3, 1,
and 5 all derived from it (i.e., they were all linear in relationship to
subclone 9). Subclone 5 was derived from subclone 3, but
subclone 3 and 1 occupied different subpopulations of cells (i.e.,
subclones 3 and 1 were diverging branches).
Three major subclones were found in patient P4 (Fig. 3c, d), and

their subclone CCFs had little differences between the two samples,
indicating high similarity between tumor samples from P4.
Six major subclones were identified in patient P1 (Fig. 3e, f).

Most of the mutations had CCFs below 0.2 (subclone 0 and 1),
while subclone 2 and 4 reflected ITH. Also, a mutation of the driver
gene BCL11A28 was found in subclone 3. Figure 1b shows these
important functional genes.

DISCUSSION
To obtain a better understanding of the genomic alterations and
ITH in inflammatory breast cancer, we applied WES to matched
normal and tumor samples of IBC patients. Herein, we report the
frequently mutated genes, varying levels of ITH, subclonal
structures and possible driver genes in different patients. Our
study is one of the few attempts using WES to analyze IBC19 and
investigate ITH with subclonal structures in IBC.
Previous studies have reported the proportion of positive

receptors in IBC tumors. The prevalence of overexpressed or
amplified HER2 was about 40% (compared with 25% in non-IBCs),
and the prevalence of HR positivity is lower, about 30% (compared
with 60–80% in non-IBCs)29. The HR+ percentage of IBC tumors in
recent NGS-based studies was about 39% (ranging from 29 to

Fig. 3 Cancer cell fractions (CCFs) of subclones and mutations for patients P6, P4 and P1.We computed the CCF for each mutation found in
the tumor samples from patients P6, P4, and P1. Hierarchical clustering of mutations is then performed to obtain putative subclones. a, c, e
Subclone CCF density figure shown as violin plots. The x-axis represents subclone clusters, and the n value shows the number of mutations in
each subclone. Each mutation has two CCF values (as they may be detected in both tumor samples). The y-axis represents the density of CCFs for
each subclone. b, d, f Scatter plot of CCFs for each patient. Each point represents a mutation. The x- and y-axis represent the CCFs of a mutation
for each of two tumor samples in a patient. Mutations belonging to clusters n ≥ 3 are shown in their corresponding cluster colors in the violin
plot. Mutations belonging to clusters n < 3 are outliers (shown in light grey) and not clustered. a 19 PyClone inferred subclone clusters in P6. b
CCF relationship for P6. Subclone 1, 3, 4, 5, 9, and 11 in a are marked. PTEN, FBXW7, EIF4G3, IL12RB2, and PDE4Bmutations are labelled with arrows.
c Five PyClone inferred subclone clusters in P4. d CCF relationship for P4. Subclone 0, 1, and 2 in c are marked. e Seven PyClone inferred subclone
clusters in P1. f CCF relationship for P1. Subclone 0, 1, 2, 3, 4, and 5 in e are marked. BCL11A mutation is labelled with arrows.

Fig. 4 The Phylogenetic tree of tumor samples from patient P6.
The trunk of the tree represents clusters of mutations that are
common to both tumor samples, likely representing truncal
mutations. The lengths of the trunk and the branches of the tree
are proportional to the number of corresponding mutations. Major
subclones are labelled in the same color as in Fig. 3b. Gene labels
refer to mutations in genes that are identified in T11 only, T12 only,
or common to both tumors. The gene labels are nonexhaustive.
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54%)12–18. However, since HR+ IBC patients tend to have worse
clinical outcomes than HR+ non-IBC patients29, this study sought
to explore the genomic landscape of HR+ IBC tumors. This
strategy also prevents potential confounding effects from HR
subtypes, in contrast to previous IBC studies.
We found a frequently mutated gene KMT2C, which has been

reported as frequently altered in other IBC30 (15% mutation rate)
and non-IBC16 cases (11% mutation rate). As a reported driver
gene, KMT2C had the highest genetic mutation rate among
histone methyltransferases in breast cancer and was most
frequently mutated in Luminal A breast cancer31. Previous works
demonstrated that KMT2C mediated ER-independent growth of
HR+ breast cancer cell lines24,32 and KMT2C loss promoted
hormone-independent ER+ breast cancer cell proliferation32.
Thus, the HR positivity of our samples could be an important
factor for the enrichment of KMT2C mutation found in our study (a
42% mutation rate). The deletion of KMT2C is significantly
associated with shorter PFS32, and amplification/gain of this gene
was significantly associated with longer survival, compared with
patients who had no change in copy number32.
In patient P6, PTEN and FBXW7 mutations were detected at high

CCFs, thus they may be driver mutations for this patient. The lipid
phosphatase PTEN is a major negative regulator of the PI3K/Akt/
mammalian target of rapamycin (mTOR) pathway26. PI3K inhibi-
tors, such as alpelisib, have been approved for treatment of
PIK3CA-mutant ER+ breast cancers33. Everolimus (a rapamycin
analog and an inhibitor of the mTOR pathway) has also been
approved for ER+ breast cancer34. FBXW7 is a critical tumor
suppressor, which controls the proteasome-mediated degradation
of mTOR27. Human breast cancer cell lines harboring deletions or
mutations in FBXW7 are particularly sensitive to rapamycin
treatment27. Finally, breast cancer patients with lower FBXW7
mRNA expression had poorer survival35.
Also in patient P6, EIF4G3, IL12RB2, and PDE4B mutations only

occurred in sample T12 and formed a subclone with relatively
high CCF (>0.6). This was an interesting finding as it indicated that
this subclone was newly generated only in a specific area of the
tumor. These genes seemed to have a strong positive selection in
specific environment and conditions, as well as a potential to drive
secondary tumor progression.
Phosphodiesterase type IV (PDE4) degrades the intracellular

second messenger cyclic AMP in many cell types. As PDE4s
regulate many active processes such as immune cell proliferation
and inflammatory mediators releasing, PDE4 inhibitors are potent
inhibitors of inflammation, and they have been approved for the
treatment of many inflammatory diseases including asthma,
arthritis and chronic obstructive pulmonary disease36,37. Previous
works showed that PDE4B is a potential therapeutic target as well
as prognostic molecular marker in colorectal cancer38,39. Further
study is needed to investigate if PDE4B could also be a therapeutic
target or marker for IBC patients.
IL12RB2, which encodes for one chain of the interleukin-12 (IL-

12) receptor, is involved in several inflammatory diseases40. IL-12 is
a heterodimeric proinflammatory cytokine. Overexpression of IL-
12 can cause persistent inflammation41, thus contributing to the
aggressive nature of IBC29. Genetic polymorphisms in IL12RB2 are
associated with increased risk of chronic inflammatory disease42.
Also, hyperactivation of the IL-6 pathway is frequently observed in
IBC, and associated with poor prognosis29. In our samples, we
observed a high percentage of tumor cells harboring IL12RB2
mutations (i.e., high CCF), though it remains unclear whether the
IL12RB2 mutations play any functional roles in influencing the
inflammatory pathways.
The presence of ITH in patients with IBC or other cancers

indicates that an individual tissue biopsy may be insufficient to
evaluate the genomic profile of an entire tumor, which could
introduce bias in the selection of personalized therapies. For
example, the gene coding for the estrogen receptor, ESR1, is often

found to be mutated in metastatic ER+ breast cancers previously
treated with estrogen therapy43. The high ESR1 mutational
prevalence in previously treated tumors, juxtaposed with the
rarity of ESR1 mutations in treatment-naïve primary tumors,
suggest the development of resistance subclones during treat-
ment, and thus has raised much interest in understanding ITH43.
Furthermore, several landmarks of disease progression in breast
cancer, such as resistance to chemotherapy and metastases, arose
within detectable subclones in the primary tumor44. These
findings highlight the importance of subclonal structure analysis.
In this study, conducting WES on multiple samples from each

IBC tumor allowed us to investigate many more genes than using
targeted sequencing, and thus we were able to identify specific
subclonal structures and ITH. However, the main limitation of our
study is the small sample size. Given the rarity of IBC, many
genomic studies on this disease subtype face challenges in
acquiring enough samples. In this study, the tumor tissues without
matched normal specimens further reduced the number of
available samples. Moreover, although we demonstrated exten-
sive ITH in HR+ IBC, the limited sample size prevented us from
reaching more definitive conclusions on the role of clonal
expansion in IBC. One interesting aspect is the genomic level
comparison between IBCs and non-IBCs, which remains under-
explored. A previous study using immunohistochemistry sug-
gested overexpression of E-cadherin to be a key difference45, but
large-scale nonbiased approaches are also needed. Further
research comparing IBC and non-IBC samples with matched
clinical characteristics may uncover the genomic origin of IBC. To
definitively answer the effects of clonal expansion on the
inflammatory phenotype of IBC, non-IBC patients who have
inflammatory recurrence during follow-up could be enrolled, to
compare primary non-IBC tumor tissues with tumor tissue at
recurrence. Another limitation of this study is the lack of
information regarding treatments prior to sample collection for
some patients. Patient P6 received chemotherapy before sample
collection, which could possibly influence the genomic signature
and result in significant ITH.
In conclusion, we conducted WES on multiple samples of

human IBC tumors with matched normal samples, and our results
revealed the high frequency and diversity of somatic mutations,
subclonal structures, differing levels of ITH, and potential driver
genes in IBC patients. These findings encourage future studies and
clinical trials for developing targeted therapies that could benefit
IBC patients.

METHODS
Patient samples
Sixteen samples were collected from six IBC patients, including 12 tumors
(two from each patient) and 4 matched normal samples (in four out of six
patients). The six patients P1–P6 were enrolled between 1993 and 2012.
This study was based on detecting archived tissue samples and reviewing
archived medical/pathologic reports. Patient consent was waived by the
Institutional Review Board of the Office of Human Research at Thomas
Jefferson University under an approved protocol.

Identification of molecular subtype
Immunohistochemical (IHC) staining of paraffin-embedded tissue sections
with monoclonal antibodies were used to determine patients’ ER and PR
status as part of a routine diagnostic procedure. HR status was positive if
the patients were either ER or PR positive. HER2 status was also determined
by IHC staining following standard guidelines at the time of diagnosis. The
FDA approved DAKO guidelines were used for scoring patient P5
(2004)46,47. The 2007 ASCO/CAP guideline48 was used for patient P6
(2012). There were no standard guidelines before the FDA approval,
therefore we matched the old scoring systems49,50 with modern standards
for those early patients (P1–P4). The percentage of ER- and PR-positive cells
and HER2 status scores were obtained from pathological reports and
shown in Supplementary Table 1.
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DNA extraction and WES
For all tumor samples, IBC diagnosis was confirmed by two independent
pathologists and the tumor regions were macro-dissected under a
microscope. For each sample, we extracted total DNA from approximately
ten 14-um sections of formalin-fixed, paraffin-embedded (FFPE) blocks
(tissue surface area, 100–150mm2) using the AllPrep DNA/RNA FFPE kit
(Qiagen), with a protocol we empirically optimized. The AllPrep kit is well-
validated on long-term preserved FFPE samples51,52. Before library
construction, all DNA samples were assessed using a NanoDrop spectro-
photometer for OD 260/280 and OD 260/230, a Qubit fluorometer for
concentration, and a 2100 Bioanalyzer (Agilent) for peak analysis. We then
performed WES (using SeqCap EZ Exome 2.0 kit from Nimblegen for library
construction) on Illumina HiSeq 2000 paired-end sequencing system.
The human genome GRCh37 was used as a reference and the raw reads

were aligned using BWA-0.7.1753. The BAM files were generated through
samtools-1.9, then further processed through duplicates marking, Base
Quality Score Recalibration (BQSR), gVCF generating, joint genotyping and
Variant Quality Score Recalibration (VQSR) by GATK-4.1.0.054. The sequen-
cing quality assessment was evaluated by QPLOT55.

Mutation calling and quality control
Based on the best practice procedures for sequencing alignment and
quality control56, somatic mutations were called by MuTect2 using genomic
references from the Broad Institute57. We created a Panel of Normals (PoN)
by aggregating all the normal samples so that we could remove common
germline variants as well as commonly noisy sites (e.g., mapping artifacts or
other somewhat random but systematic artifacts of sequencing). This PoN
also served as the normal sample for P3 and P5 since they did not have
matched normal samples for somatic calling. We applied the default filter to
conservatively select somatic calls with confidence.
Final mutation calls were selected through a stringent filtering process

and functionally annotated by ANNOVAR58.
We applied the following filtering criteria for somatic mutation calling:

(1) read depth > 25; (2) mutant AF > 0.05 in tumor samples; (3)
corresponding allele frequency <0.01 in matched normal samples (if
present); (4) mutations listed in 1000 Genomes Project59 or Exome
Sequencing Project60 removed.
The following filtering criteria were applied for germline variant calling:

(1) read depth ≥ 50; (2) genotype quality score ≥ 30; (3) allele fractions ≥0.3
and ≤0.7; (4) multiple-allele variants removed; (5) variant quality score
recalibration (VQSR) ≤ 97.00; (6) variants in segmental duplication
removed61.
We validated the quality of our somatic mutation calls using methods

that we have previously established61. Briefly, when running Mutect2 in
patients with matched normal samples (P1, P2, P4, and P6), we performed
the same pipeline and filtering criteria but switched the normal and tumor
samples. The mutation calls that passed the criteria are declared as
artifactual mutations. If there were major artifacts in FFPE samples, we
would be able to call artifactual mutations in matched normal samples
since they were also FFPE samples.

Copy number aberration (CNA) inference
CNAs were inferred using TITAN-1.26.025 based on the called germline
heterozygous variants information. CNA analysis was only performed on
tumor samples with matched normal.
First, we used HMMcopy-0.99.062 to count the number of reads in

nonoverlapping windows of 10 kb directly from BAM files. Then we
obtained corrected read depth using mappability and GC content. CNAs
were inferred by the ratios of tumor/normal, mutant/reference depths at
the germline heterozygous variants sites. We set the maximum copy
number to 5 and the number of clonal clusters to 2 in the TITAN settings.

Subclone inference
Finally, we inferred subclones using PyClone-0.13.163 based on the
obtained CNA information. PyClone is a hierarchical Bayes statistical
model that uses the measurement of allelic prevalence in deep sequencing
data to estimate the proportion of tumor cells harboring a mutation
(referred to herein as ‘cancer cell fraction’ (CCF))63. We first computed the
CCF for each mutation, and then performed hierarchical clustering to
assign each mutation to one cluster (subclone).
In the PyClone settings, the number of iterations was set to 50,000 and

the density model was chosen to be Beta Binomial emission. In order to

obtain a better result, we optimized the input parameters and custom-built
the yaml mutations files.

Construction of subclonal architecture
We deduced linear and/or branching evolutionary relationships of all
subclones in patient P6 based on their cluster CCFs using established
methods61. A linear relationship between two subclones would indicate
that the one with smaller CCF was derived from the one with larger CCF,
suggesting that the mutations in the derived subclone occurred later in
the same ancestral cells, which already carried the mutations in the larger
subclone. A branching relationship between two subclones would indicate
that the mutations in each of the subclones occurred in different ancestral
cells and the subclones occupied different portions of the tumor cells.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data generated and analyzed during this study are described in the following
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related to this paper have been released, and these data have been deposited in
NCBI Sequence Read Archive (SRA) with the accession code https://identifiers.org/
ncbi/bioproject:PRJNA71335965. Additional files underlying the figures and supple-
mentary figures are available as part of the figshare data record.
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