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Ancestry-associated transcriptomic profiles of breast cancer in
patients of African, Arab, and European ancestry
Jessica Roelands 1,2, Raghvendra Mall 3, Hossam Almeer3, Remy Thomas4, Mahmoud G. Mohamed 5,6, Shahinaz Bedri7,
Salha Bujassoum Al-Bader8, Kulsoom Junejo9, Elad Ziv10, Rosalyn W. Sayaman11,12, Peter J. K. Kuppen2, Davide Bedognetti6,13,14✉,
Wouter Hendrickx1,14,15✉ and Julie Decock 4,14,15✉

Breast cancer largely dominates the global cancer burden statistics; however, there are striking disparities in mortality rates across
countries. While socioeconomic factors contribute to population-based differences in mortality, they do not fully explain disparity
among women of African ancestry (AA) and Arab ancestry (ArA) compared to women of European ancestry (EA). In this study, we
sought to identify molecular differences that could provide insight into the biology of ancestry-associated disparities in clinical
outcomes. We applied a unique approach that combines the use of curated survival data from The Cancer Genome Atlas (TCGA)
Pan-Cancer clinical data resource, improved single-nucleotide polymorphism-based inferred ancestry assignment, and a novel
breast cancer subtype classification to interrogate the TCGA and a local Arab breast cancer dataset. We observed an enrichment of
BasalMyo tumors in AA patients (38 vs 16.5% in EA, p= 1.30E− 10), associated with a significant worse overall (hazard ratio (HR)=
2.39, p= 0.02) and disease-specific survival (HR= 2.57, p= 0.03). Gene set enrichment analysis of BasalMyo AA and EA samples
revealed differences in the abundance of T-regulatory and T-helper type 2 cells, and enrichment of cancer-related pathways with
prognostic implications (AA: PI3K-Akt-mTOR and ErbB signaling; EA: EGF, estrogen-dependent and DNA repair signaling). Strikingly,
AMPK signaling was associated with opposing prognostic connotation (AA: 10-year HR= 2.79, EA: 10-year HR= 0.34). Analysis of
ArA patients suggests enrichment of BasalMyo tumors with a trend for differential enrichment of T-regulatory cells and AMPK
signaling. Together, our findings suggest that the disparity in the clinical outcome of AA breast cancer patients is likely related to
differences in cancer-related and microenvironmental features.
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INTRODUCTION
As we enter an era of personalized medicine in oncology, large-
scale studies have been instrumental in deciphering the
pathogenesis and evolution of tumors. Public data repositories
such as The Cancer Genome Atlas (TCGA) have enabled
researchers to define the genomic landscape of different types
of cancers, including breast cancer. The public availability of large-
scale datasets has led to a surge in candidate drug targets and
novel prognostic and/or predictive gene signatures. However, it is
important to note that the majority of patients in public datasets
are of European ancestry (EA), and, hence, the knowledge gained
from such studies might not be applicable to patients of a
different ancestry1. Given the global disparities in clinical behavior
of breast cancer, it has become imperative to investigate ancestry-
associated differences in tumor biology.
Breast cancer in women of African ancestry (AA) presents at a

younger age, and is associated with more advanced disease and
higher mortality rates as compared to breast cancer in age-
matched patients of EA or Asian ancestry (AsA)2–10. Several reports
have demonstrated an increased frequency of the more

aggressive triple-negative breast cancer (TNBC) subtype and of
the PAM50-molecular basal subtype in AA women7–16. Moreover,
African-American women with early-stage TNBCs have been
shown to exhibit a lower pathological complete response to
neoadjuvant chemotherapy17. Interestingly, this discrepancy in
clinical outcome remains after correcting for socioeconomic
factors, suggesting the presence of molecular differences by
ancestry18,19. The African-American breast cancer epidemiology
and risk consortium identified few rare germline single-nucleotide
polymorphisms (SNPs) that are associated with an increased risk of
hormone receptor-negative breast cancer and/or TNBC in African-
American women20,21. Analysis of genotypic traits revealed that
most somatic mutations and copy number variations are subtype-
specific rather than ancestrally determined22,23. Very few muta-
tions showed dissimilar frequencies across African, African-
American, or European-American patient subgroups when con-
sidering a specific breast cancer subtype. Likewise, numerous
differentially expressed genes have been identified between
breast tumors of patients of AA and EA24–28; however, there is little
to no evidence linking these findings to differences in breast
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cancer survival or subtype-specific survival in relation to ancestry.
Therefore, differential expression of genes involved in biological
processes such as differentiation, cell cycle, DNA repair, invasion,
metastasis, and angiogenesis could be related to the higher
proportion of triple-negative breast tumors in the African-
American population. To address this, several studies investigated
molecular differences within TNBC tumors of African-American
and European-American patients. TNBC tumors of African-
American women were shown to display enrichment of gene
sets related to a high proliferative rate, high genomic grade index,
BRCA1 deficiency, increased activation of insulin-like growth factor
1 receptor, and increased angiogenesis, closely resembling the
basal like-1 TNBC subtype gene signature as described by
Lehmann et al.23,28–33. In addition, it has been suggested that an
abundance of cancer stem cells might, in part, contribute to the
worse survival of African-American women with TNBC tumors34–38.
Given the importance of immune cell infiltration in determining

the prognosis and treatment response of breast cancer, and,
especially in TNBC, it is important to investigate whether
differences in antitumor immunity may contribute to the

divergent clinical behavior of breast cancer across popula-
tions39–42. To date, this phenotypic aspect of breast cancer is
largely unexplored in the context of ancestry. Interestingly,
systemic levels of pro-inflammatory cytokines such as interferon-
γ and interleukin-6 have been found to be elevated in both
healthy African-American women and those affected with breast
cancer as compared to European-American women, suggesting
ancestry-inferred differences in the immune response that might
affect antitumor immunity and ultimately breast cancer clinical
outcome43,44. In contrast, only subtle differences in immune gene
signatures related to immune cell infiltration were found in TNBC
tumors of women of AA22,45.
In this study, we applied a unique approach to explore ancestry-

associated heterogeneity of breast cancer outcomes. First, we
used improved and curated survival information from the TCGA
Pan-Cancer clinical data resource (TCGA-CDR)46. Second, we
applied SNP-based inference of ancestry47,48 to improve ancestry
assignment, enabling us to include a substantial number of
additional patients from the TCGA dataset in our analysis, thereby
increasing the power of our study. Third, we performed a
comprehensive transcriptomic analysis of both immunological
and cancer cell-intrinsic parameters within breast cancer subtypes
as defined by a novel PAM50 classification. This refined classifier
utilizes a combination of Topological Data Analysis (TDA)
signatures of normal mammary cell types (basal epithelial cells,
luminal epithelial cells, myoepithelial cells, and Her2-related
expression) to subgroup breast tumors into seven distinct
molecular subtypes with prognostic value49. Using this combined
novel approach, we interrogated the TCGA breast cancer dataset,
comprising of patients of AA (n= 184), EA (n= 811), and AsA (n=
56), and a local Arab/Asian breast cancer dataset from Qatar (n=
24) for ancestry-specific molecular differences in breast cancer.

RESULTS
Ancestry of patient populations
To date, studies investigating molecular differences between
ancestries have been solely based on self-identified ancestry. In
our study, we applied a novel approach combining self-reported
ancestry and SNP-based inference of ancestry47,48. Ancestries were
assigned using principal component (PC) analysis of SNP array
genotyping calls following the method as described by Carrot-
Zhang et al.48 (Supplementary Fig. 1). As such, we included 1051
patients from the TCGA breast cancer dataset in our analysis, of
which 811 EA, 184 AA, and 56 AsA patients (Table 1). Ancestry of
patients in the local Retrospective Arab cohort from Qatar (RA-QA)
was solely based on self-reported ancestry, subgrouping 16
patients as Arab ancestry (ArA), five as AsA, two as EA, and one
as Persian (Table 2).

Distribution of molecular breast cancer subtypes
Numerous studies have demonstrated a higher prevalence of
TNBC and of tumors of the molecular basal subtype among AA
women and have linked the increased frequency of these
aggressive breast tumors to ancestry-associated disparity in breast
cancer clinical outcome. Using our novel combined approach, we
interrogated the TCGA and RA-QA datasets to subgroup patients
according to TDA-defined molecular subtype and ancestry49.
Heatmaps of TCGA and RA-QA samples based on TDA gene
signatures (basal, myo1, myo2, luminal, and Her2) show a clear
segregation of samples in seven molecular subtypes, each defined
by a unique combination of expression of five distinct gene
groups, demonstrating the accuracy and robustness of the novel
classifier (Fig. 1a). As can be seen in the circos plots in Fig. 1b, and
in accordance with the METABRIC analysis by Mathews et al.49,
we found that luminal A tumors are mainly reclassified into Lum
and MyoLum subgroups, while luminal B tumors are mainly

Table 1. Cohort demographics of the TCGA breast cancer cohort.

TCGA-BRCA cohort (n= 1082)

Median FU (years) 2.37

Events

OS 151

DSS 83

Age (years)

Median 58

Range 26–90

n %

Ancestrya

European 811 75

African 184 17

Asian 56 5.2

Undefined 31 2.9

AJCC stage

I 179 16.8

II 613 56.6

III 247 22.7

IV 19 1.8

NA 24 2.2

PAM50 subtype

Basal 233 22

Her2-enriched 160 14

Luminal A 337 31

Luminal B 241 22

Normal-like 111 10

TDA subtype

BasalHer2 82 8

BasalMyo 219 20

BasalLumHer2 90 8

Lum 283 26

LumBasal 209 19

MyoLumA 102 9

MyoLumB 35 3

MyoLumHer2 62 6

aSNP-based ancestry
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subgrouped into LumBasal and Lum tumors. In addition, tumors of
the normal-like PAM50 subtype are mainly reclassified into the
Myo classes. Her2-enriched tumors are predominantly subdivided
into BasalHer2, BasalLumHer2, and LumBasal tumors. Further, the
vast majority of basal tumors are reclassified as BasalMyo (88%).
Figure 1c clearly demonstrates differences in molecular subtype
frequency across ancestries, with a strong enrichment in AA
patients of BasalMyo (38.0 vs 16.5% in EA, χ2= 41.3, p= 1.30E−
10) and a reduced proportion of MyoLumA (2.7 vs 11% in EA, χ2=
11.7, p= 0.0006) and Lum (17 vs 29% in EA, χ2= 10.9, p= 0.001)
tumors, and in AsA patients an enrichment of BasalHer2 tumors
(21.7 vs 6.4% in EA, χ2= 19.0, p= 1.33E− 05). While several
studies reported an increase in basal tumors with worse
outcome in AA patients7,9,11,12,29,50, we were able to fine-tune
this observation to a strong increase of BasalMyo tumors,
accounting for the majority of basal tumors. Furthermore, we
observed an increase in the proportion of BasalMyo tumors in ArA
patients (25.0 vs 16.5% in EA, χ2= 1.0E− 4, n.s.), although this did
not reach statistical significance as a likely result of the small
cohort size.

Next, we explored ancestry-related differences in clinical
outcome using curated survival data from the TCGA-CDR46. The
clinical outcome of breast cancer patients, irrespective of
molecular subtype, was not different between EA and AA patients
(Fig. 1d). Among all seven TDA subtypes, BasalMyo tumors were
the only tumors that were associated with significantly different
10-year overall survival (OS, p= 0.020) and disease-specific
survival (DSS, p= 0.033) rates for AA vs EA patients (Fig. 1d and
Supplementary Fig. 2). The 5-year OS rates for BasalMyo tumors
were 85.5% for EA and 70.1% for AA patients (p= 0.07), and the
5-year DSS rates were 90.1% for EA and 73.6% for AA patients
(p= 0.05). Interestingly, compared to TNBC and basal tumors, we
observed a larger disparity in 10-year OS (hazard ratio (HR)= 2.39,
p= 0.020) and 10-year DSS (HR= 2.57, p= 0.033) by ancestry in
BasalMyo tumors (Fig. 1d). To exclude that this survival difference
results from a higher frequency of more advanced stage BasalMyo
tumors in AA patients, we compared the AJCC pathological stage
between EA and AA patients and found no significant difference
in stage distribution by ancestry (χ2= 2.83, p= 0.092) (Supple-
mentary Fig. 3). In addition, we performed survival analysis
stratified by early (stages I and II) and advanced (stages III and IV)
stage and found rather large HRs, although not significant,
indicating worse OS of AA patients within strata (Supplementary
Fig. 3). Adjustment for tumor stage and/or age in multivariate
analysis showed similar results with AA being associated with
worse survival (Supplementary Fig. 3), albeit with borderline
significance, implying that additional factors beyond pathological
stage contribute to the divergent clinical outcome of AA patients
with BasalMyo tumors compared to EA patients.

Ancestry-associated differences in immunological parameters
In an effort to elucidate potential ancestry-inferred differences in
tumor biology, we compared the immune microenvironment of
tumors from patients with different ancestry. More specifically, we
assessed tumor immune disposition using the prognostic
Immunologic Constant of Rejection (ICR) immune gene signa-
ture51,52 and deconvoluted immune cell abundance using
leukocyte subgroup enrichment scores (LES)53. The ICR 20-gene
signature consists of genes encoding CXCR3/CCR5 chemokine
ligands (CXCL9, CXCL10, and CCL5), genes encoding molecules
involved in T-helper type 1 (Th1) signaling (IFNG, TXB21, CD8B,
CD8A, IL12B, STAT1, and IRF1), and effector immune functions
(GNLY, PRF1, GZMA, GZMB, and GZMH), as well as counter-
regulatory molecules (IDO1, PDCD1/PD-1, CD274/PD-L1, CTLA4,
and FOXP3). Using the ICR gene signature, we previously classified
breast cancer samples into four classes with the highest activation
of the antitumor immune response in the ICR4 class51. In a follow-
up study of >8000 nonmetastatic breast cancer cases, we
demonstrated that the ICR signature was the strongest indepen-
dent prognostic predictor for metastatic relapse, in particular for
patients with Her2+-enriched and triple-negative breast tumors54.
Since we did not consider ancestry in our previous findings, the
present study aimed to investigate whether the prognostic value
of ICR holds true across ancestries or whether there could be
immune-related dysregulations that, in part, explain the disparity
in the clinical outcome of AA breast cancer patients. First, we used
the ESTIMATEscore, ImmuneScore, and StromalScore to compare
tumor cellularity, proportion of the stromal component, and level
of infiltration of immune cells of all TDA subtypes in EA vs AA
patients55. We did not observe significant differences within
subtypes by ancestry, indicating that any potential changes in
immune-related gene expression in AA vs EA patients are not
caused by differences in stromal and immune cell composition
(Supplementary Fig. 4).
The ICR gene signature clearly clusters breast tumors of the

TCGA dataset into three immune phenotypes with varying
degrees of immune activation (ICR low, ICR medium, and ICR

Table 2. Cohort demographics of RA-QA breast cancer cohort.

RA-QA cohort (n= 24)

Median FU (years) 8.02

Events

OS 7

Age (years)

Median 48.5

Range 28–63

n %

Ancestrya

Arab 16 66.7

Asian 5 20.8

Caucasian 2 8.4

Persian 1 4.2

AJCC stage

I 4 16.7

II 10 41.7

III 4 16.7

IV 0 0

NA 6 25

PAM50 subtype

Basal 9 37.5

Her2-enriched 3 12.5

Luminal A 7 29.2

Luminal B 2 8.3

Normal-like 3 12.5

TDA subtype

BasalHer2 2 8.3

BasalMyo 7 29.2

BasalLumHer2 2 8.3

Lum 6 25

LumBasal 2 8.3

MyoLumA 1 4.2

MyoLumB 1 4.2

MyoLumHer2 3 12.5

aSelf-reported ancestry
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Fig. 1 Distribution of breast cancer molecular subtypes defined by topological data analysis (TDA) signatures across ancestries.
a Heatmap of expression of PAM50 genes organized by TDA signature classes in TCGA breast cancer and RA-QA cohort. Samples are
annotated by TDA signature class (upper annotation bar) and classical PAM50 intrinsic molecular subtype (lower annotation bar). The
combination patterns of upregulated expression of five distinct gene groups defining each TDA class are summarized in a table on the
right (Summary TDA). b Reclassification of breast cancer samples from classical PAM50 intrinsic molecular subtypes (upper part of circos)
to TDA signature classes (lower part of circos) in TCGA and RA-QA breast cancer cohorts. c Stacked bar chart of distribution of TDA classes
by ancestry. d Kaplan–Meier plots showing overall survival (upper panels) and disease-specific survival (lower panels) by ancestry.
Difference between the survival of patients with European and African ancestry is shown for the complete TCGA breast cancer cohort
(left), patients with TNBC according to hormone receptor status (middle left), patients with PAM50-defined basal breast cancer (middle
right), and patients with tumors classified as BasalMyo by TDA classification (right). Censor points are indicated by vertical lines.
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high), while tumors of the RA-QA cohort were subdivided into two
immune phenotypes (ICR low and ICR high) (Fig. 2a). In
accordance with our previous work, tumors with an ICR Low
immune phenotype were associated with a worse survival in EA
patients (p= 0.028) (Fig. 2b). Likewise, we observed a large,

although not significant, difference in survival between ICR low
and ICR high patients within the AA and ArA groups. In line with
these findings, the prognostic value of gene signatures that reflect
the abundance of individual immune cell populations was overall
similar across ancestries with leukocyte subpopulations classically

Fig. 2 Tumor immune phenotypes and clinical outcome by ancestry. a Heatmap of ICR gene expression in TCGA and RA-QA breast cancer
cohorts. Classification of samples by ICR consensus clustering segregates TCGA samples in ICR low, ICR medium, and ICR high groups. Samples
of RA-QA cohort were classified as ICR low or ICR high. b Kaplan–Meier plots showing overall survival across ICR groups in breast cancer TCGA
patients of EA (left), TCGA patients of AA (middle), and RA-QA patients of ArA (right). c ICR enrichment scores across ancestries within TDA
signature classes. Box plots indicate medians and interquartile range, and whiskers represent 10th and 90th percentile. All data points are
plotted individually. d Overall survival of EA and AA patients in TCGA BasalMyo samples classified as ICR medium+ low (left), and ICR high
(right). Censor points are indicated by vertical lines.

J. Roelands et al.

5

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2021)    10 



associated with better prognosis such as CD8+ T cells and
cytotoxic cells having the same trends in EA and AA patients
(Supplementary Fig. 5). Next, we investigated whether the
immune disposition, inferred from the ICR enrichment score,
varies within TDA subtypes by ancestry (Fig. 2c). Comparison of
the continuous ICR enrichment score demonstrated modest
variation between TDA subtypes with overall higher scores in
non-luminal tumors (BasalHer2 and BasalMyo), which was not
affected by ancestry. For instance, no significant difference in ICR
enrichment score was found in BasalMyo tumors by ancestry,
suggesting a similar overall immune disposition across ancestries.
In accordance, we did not find any significant differences in the
expression of individual ICR genes based on ancestry (data not
shown). Further analysis of BasalMyo tumors, however, revealed
differences within ICR clusters whereby ICR low and ICR medium
patients were grouped into one subgroup due to the limited
sample size of each cluster within BasalMyo tumors. Although
BasalMyo tumors of AA patients were overall associated with
worse OS, this was more pronounced in ICR medium+ low tumors
(10-year OS, p= 0.03; 5-year OS, p= 0.07) (Fig. 2d). In multivariate
analysis, AA remained significantly associated with worse survival
when adjusted for tumor stage, and reached borderline

significance when adjusted for tumor stage and age (Supplemen-
tary Fig. 3).
This finding raised the question whether the worse outcome of

AA patients with BasalMyo tumors is linked to molecular
differences in ICR medium+ low tumors also known as cold
tumors. For this purpose, we determined the LES of 24 distinct
immune cell types (Fig. 3a). Focused analysis of BasalMyo cold
(ICR medium+ low) tumors revealed a significant decrease in
T-regulatory cell (Tregs) and Th2 enrichment scores (p= 0.036;
p= 3.36E− 4, respectively), and a small increase in B cell
enrichment score (p= 0.039) in AA vs EA patients, whereas
dendritic cell (DC) enrichment scores were reduced in ICR hot (ICR
high) tumors (p= 0.009).
In order to identify which LES may harbor prognostic value, we

focused on BasalMyo tumors irrespective of ICR class due to
sample size limitations and adopted a machine-learning strategy,
which has empirically been shown to work efficiently on small size
datasets56–58, despite a slight tendency for overfitting (EA, n=
134; AA, n= 70). First, we performed a sensitivity model analysis
that enabled us to identify the XGboost models that have an
optimal set of hyper-parameters (Harrell’s C index EA= 0. 58,
AA= 0.63) with relatively small variance (data not shown).

Fig. 3 Enrichment of immune cell subpopulations in AA and EA patients with BasalMyo breast tumors. a. Enrichment scores of signatures
reflecting the abundance of dendritic cells (DCs), T-regulatory cells (Tregs), T-helper 2 (Th2), and B cells in BasalMyo tumor samples of EA and
AA patients. Box plots are facetted by ICR groups, ICR high (upper panels), ICR medium+ low (middle panels), and across all samples (lower
panels). Box plots indicate medians and interquartile range, and whiskers represent 10th and 90th percentile. All data points are plotted
individually. T test (two-sided): *p < 0.05, **p < 0.01, ***p < 0.001, and n.s. not significant. Adjusted p value (FDR) by Benjamini and Hochberg
method. b Kaplan–Meier plots of overall survival in EA and AA patients with BasalMyo breast cancer dichotomized by enrichment scores of
TReg (left panels) and Th2 cell signatures (right panels). Cutoff for dichotomization in “High” and “Low” categories is based on optimal
enrichment cutoff determined by XGBoost model used for survival analysis. Censor points are indicated by vertical lines.
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Next, we used XGBoost modeling for nonlinear multivariate Cox
regression survival analysis followed by the SHapley Additive
exPlanation (SHAP) method for the AA and EA subgroups
separately (Supplementary Fig. 6). This approach provided
information on which features or gene signatures are the most
important and their range of effects over the dataset, including
the breadth (SHAP value) and the direction of the effect (positive
or negative). Both the Treg and Th2 signature were classified as
features with more importance for predicting outcome in AA
patients as compared to outcome in EA patients, with reduced
enrichment scores being associated with increased risk of death.
In accordance, we found that AA, but not EA, patients could be
stratified into different risk groups based on the expression of the
Treg and Th2 cell signatures with borderline statistically different
clinical outcomes (Fig. 3b). More specifically, stratification by Treg
LES subgrouped AA patients with BasalMyo tumors in a low-risk
group with higher expression and 5-year OS rate of 77%, and a
high-risk group with low expression and 5-year OS rate of 59%
(10-year HR= 2.99, 95% confidence interval (CI)= 1.02–8.77). Th2
LES-based stratification grouped AA patients with BasalMyo
tumors into a low-risk/high expression group with 5-year survival
rate of 84% and a high-risk/low expression group with 5-year
survival rate of 55% (10-year HR= 3.13, 95% CI= 0.98–10.00). No
differences in survival were noted for DC and B cell LES (data not
shown), which supports their lower rank of importance in the
SHAP plot of AA patients (Supplementary Fig. 6).

Ancestry-associated differences in cancer cell-intrinsic
features
Next, we investigated whether specific cancer cell-intrinsic
features might contribute to the worse survival of AA patients
with BasalMyo tumors. First, we examined potential changes in
common cancer-associated genomic aberrations, including muta-
tional load, neoantigen load, and tumor aneuploidy. Remarkably,
non-silent mutation rate was significantly lower in AA patients
compared to EA (p= 0.025), while the number of predicted
single-nucleotide variant neoantigens was similar between
both patient populations (Supplementary Fig. 7). Therefore, we
speculated that AA BasalMyo tumors undergo less immunoedit-
ing and immune-mediated elimination of neoantigens compared
to EA BasalMyo tumors. To address this hypothesis, we used an
“immunoediting score,” defined as the observed ratio (number of
point mutations predicted to generate neo-epitopes divided by
the total count of non-silent point mutations) compared to the
expected ratio (expected numbers based on silent mutation
rate)59. Indeed, the ratio of the observed/expected neoantigens
was increased in AA patients (p= 0.033), suggesting reduced
immunoediting in AA samples (Supplementary Fig. 7). However,
we did not observe any survival difference between tumors with
a high observed/expected neoantigen ratio compared to tumors
with a low ratio (HR= 1.1, 95% CI= 0.43–2.79, p= 0.842),
suggesting that this tumor attribute does not explain the
observed survival differences between AA and EA BasalMyo
tumors. Similarly, while we observed a significantly increased
tumor aneuploidy score in samples of AA patients (p= 0.008,
Supplementary Fig. 7), this tumor characteristic was not
associated with a difference in survival (HR= 0.691, 95% CI=
0.32–1.48, p= 0.34).
To further explore tumor intrinsic features that could contribute

to the divergent survival outcomes, we explored the differential
enrichment of 54 cancer-associated pathways (Fig. 4a). A total of
16 pathways were found to be differentially enriched between
BasalMyo tumors of AA vs EA patients. Of note, only 2 out of 16
pathways, DNA repair and oxidative phosphorylation, were
associated with an increased enrichment in AA patients. A
number of enriched pathways were identified multiple times as
they were included in more than one database, including estrogen

response and estrogen-dependent breast cancer signaling, ErbB
signaling and ErbB2/ErbB3 signaling, PI3K-Akt mTOR signaling and
PI3K-AKT signaling or mTOR signaling, and ERK MAPK signaling,
ultraviolet B (UVB)-induced MAPK signaling, and MAPK up genes.
Furthermore, the pathways defined as angiogenesis, AMPK
signaling, EGF signaling, and PTEN signaling were significantly
less enriched in BasalMyo tumors of AA vs EA patients. Using the
same approach that we applied to explore the prognostic value of
immune gene signatures, we used XGBoost modeling and the
SHAP method to identify which cancer-associated pathways are
the most powerful indicators of poor survival in AA vs EA patients
with BasalMyo tumors (Fig. 4b, c). Based on the summary SHAP
plots, we observed that among the top 10 pathways affecting
survival in EA patients, the majority displayed an inverse
correlation of enrichment with survival, including barrier genes,
reactive oxygen species pathway, EGF signaling, hedgehog
signaling, UVC-induced MAPK signaling, AMPK signaling,
estrogen-dependent breast cancer signaling, and UV response
up genes (Fig. 4b). In contrast, increased enrichment of DNA repair
and VEGF signaling pathways were associated with better survival
in EA patients. In AA patients, the majority of the top 10 pathways
determining survival exhibited better survival with increased
enrichment including PI3K-Akt mTOR signaling, proliferation, G2M
checkpoint, PI3K-AKT signaling, AMPK signaling, ERK5 signaling,
and ErbB signaling (Fig. 4b). On the other hand, we found that
pathway enrichment for telomere extension by telomerase, barrier
genes, and UV response down corresponded to worse survival.
In analogy with our analysis of the prognostic value of enriched

immune gene signatures, we performed a combined analysis of
differentially enriched pathways and the top ten pathways with
importance for the prediction of survival (Fig. 4c). Using this
approach, we identified three differentially enriched pathways
with prognostic value in EA patients with higher enrichment of
EGF signaling (p= 0.02, optimal enrichment cutoff= 0.334) and
estrogen-dependent breast cancer signaling (p= 0.076, optimal
enrichment cutoff= 0.268) being associated with worse prog-
nosis, while a better survival was observed for enrichment of DNA
repair (p= 0.03, optimal enrichment cutoff= 0.304). Focusing on
AA patients, we found three differentially enriched pathways with
prognostic connotation whereby enrichment of PI3K-Akt-mTOR
signaling (p= 9.00E− 04, optimal enrichment cutoff= 0.307),
PI3K-Akt signaling (p= 0.006, optimal enrichment cutoff=
0.328), and ErbB signaling (p= 0.053, optimal enrichment cutoff
= 0.232) was associated with better outcome (Fig. 4b, c).
Interestingly, we found AMPK signaling to be the sole pathway
to be differentially enriched between BasalMyo tumors of AA and
EA patients with prognostic value in patients of both ancestries.
Further analyses revealed an inverse correlation of AMPK
enrichment with OS in AA vs EA patients. While in EA patients,
pathway enrichment was associated with worse survival, it
bestowed a survival advantage for AA patients (Fig. 4d). The
5-year OS rate of EA patients with BasalMyo tumors enriched for
AMPK signaling was reduced by 12% from 91 to 79% (10-year
HR= 0.343, 95% CI= 0.11–1.10), while the opposite was observed
in AA patients where the 5-year OS rate was increased by 21%
from 57 to 78% (10-year HR= 3.598, 95% CI= 1.18–10.94).

Molecular alterations in Arab breast cancer patients
Given the similarity in TDA subtype distribution of ArA and AA
patients (Fig. 1c), we investigated whether the increased
frequency of BasalMyo tumors in ArA patients was associated
with differential enrichment of LES and cancer-associated path-
ways. Specifically, we focused our analyses on Treg, Th2, and
AMPK signaling signatures that showed differentially enrichment
with prognostic value in AA patients. Due to limited cohort size,
we assessed enrichment patterns in all Arab patients without
subgrouping by TDA subtype. Compared to AsA patients, ArA
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Fig. 4 Differentially enriched oncogenic pathways with prognostic connotation in EA and AA patients with BasalMyo breast tumors.
a Enrichment scores of signatures of tumor-associated pathways that are differentially regulated between EA and AA patients with BasalMyo
tumors. Box plots indicate medians and interquartile range, and whiskers represent 10th and 90th percentile. All data points are plotted
individually. T test (two-sided): *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. Adjusted p value (FDR) by Benjamini and Hochberg
method. b SHAP plots of tumor-associated pathways that are associated with overall survival in EA (left) and AA (right) patients with BasalMyo
breast tumors. Pathways are ranked by p value to reflect the importance of each feature in the survival model. Each dot represents a single
sample and is colored by relative enrichment score. Corresponding impact on model output (SHAP value) ranges from −1 (indicating the
absence of an event) to +1 (indicating the occurrence of an event, in this case, death). c Intersection of differentially enriched tumor-
associated pathways with ten most important pathways in AA and EA patients with BasalMyo breast tumors. AMPK signaling is differentially
regulated in AA vs EA and is of importance in survival models of both AA and EA patients. d Kaplan–Meier curves visualizing the prognostic
value of AMPK signaling in EA (upper) and AA (lower) BasalMyo patients. Dichotomization of samples by AMPK signaling is based on optimal
enrichment score cutoff as determined by XGBoost model. Censor points are indicated by vertical lines.
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patients showed a trend towards lower enrichment scores of the
Treg and AMPK signature (Fig. 5a). In order to compare patterns of
enrichment between ancestries of both cohorts, we performed a
similar analysis across TCGA ancestries (EA, AA, and AsA) without
TDA subgrouping (Fig. 5b). Out of the three signatures, only the
differential enrichment of AMPK signaling holds true when
comparing the overall AA vs EA patient population. Since
BasalMyo tumors constitute a large proportion of breast tumors
in the AA patients (38%) and are associated with a strong
reduction in AMPK signaling (p= 1.78E− 04), we cautiously
speculate that the overall reduced enrichment of AMPK signaling
in AA patients might be related to our findings in BasalMyo
tumors. Similarly, it could be plausible that our findings in Arab
patients might be related to differential enrichment signatures in
BasalMyo tumors, supporting the need for larger Arab patient
cohorts to enable statistically powered subanalysis of TDA
subgroups.

DISCUSSION
An increasing effort is expended to decipher the molecular
differences that are associated with global disparities in breast
cancer outcomes. Several studies have investigated the presenta-
tion of breast tumors in patients of African origin in comparison to
women of European origin. A consensus across studies is that
women of AA display a higher prevalence of the unfavorable TNBC
subtype and of the molecular PAM50-defined basal subtype7–15,60.
We interrogated the TCGA breast cancer cohort using curated
survival data, improved ancestry assignment, and a refined
classifier that reclassifies breast tumors into seven subgroups using
the PAM50 signature in combination with TDA. Comparison of the
classical PAM50 and the TDA classifier revealed that the large
majority of basal tumors belong to the BasalMyo TDA subgroup,
and that the reported enrichment of basal tumors in patients of AA
is largely dominated by the BasalMyo subtype. Moreover, we were
able to demonstrate that BasalMyo tumors are the only TDA
subgroup that is associated with an ancestry-associated disparity in

clinical outcome, underlining the clinical relevance of BasalMyo
tumors in African patients.
In order to elucidate the underlying biological processes

contributing to the worse survival of AA patients with BasalMyo
tumors as compared to EA patients, we assessed transcriptomic
differences in immunological parameters and cancer cell-intrinsic
features. To date, only a few population-based studies have
considered ancestry-related changes in the immune response of
breast cancer patients22,43–45. Overall, very few immunological
differences in tumor tissues have been reported between patients
of AA and EA22,45. Pitt et al.22 reported subtle differences in tumor
immune signatures when adjusting for PAM50-defined subtype.
They found an enrichment of the type I IFN signature in luminal A
and luminal B tumors of patients of AA, including African-
American and Nigerian women, as compared to patients of EA. A
study by O’Meara et al.45 reported no significant differences in the
expression of 14 immune metagenes in TNBC tumors of AA and
EA patients, whereas the proportion of resting CD4+ memory
cells, as determined by CIBERSORT, was significantly higher in
TNBC tumors of EA patients. Based on the notion that the
CIBERSORT algorithm determines the relative abundance of
immune cell subpopulations within a tumor rather than between
tumors, we did not include CIBERSORT in our analyses. We
explored ancestry-related differences in immune disposition using
the ICR classifier of tumor immune phenotypes and LES. As such,
we found that the prognostic value of the ICR immune gene
signature holds true across ancestries and that the lower
enrichment of Tregs and Th2 immune cells in patients of AA
negatively correlated with outcome. Although this seems a
counterintuitive finding, it is important to note that the presence
of immunosuppressive cells could be a result of prior immune
activation. In line with this, we previously found that FoxP3
expression heavily correlates with T cell infiltration as a counter-
regulatory signal and hence is an important marker of the ICR
signature52. In addition, a number of studies have reported that
increased expression of immunosuppressive gene signatures
supports chemotherapy sensitivity and hence better clinical
outcome in (triple-negative) breast cancer61–64.

Fig. 5 Enrichment of selected immune cell subpopulations and oncogenic pathways in Arab breast cancer patients. Enrichment scores for
signatures for T-regulatory cells (Tregs, left), T-helper 2 cells (Th2, middle), and AMPK signaling (right) in panel (a). RA-QA cohort comparing
ArA to AsA breast cancer patients, independent of molecular subtype. b TCGA breast cancer cohort comparing EA, AA and AsA breast cancer
patients, independent of intrinsic molecular subtype. Box plots indicate medians and interquartile range, and whiskers represent 10th and
90th percentile. All data points are plotted individually. T test (two-sided): *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, not
significant.
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Subsequently, we explored whether we could identify
ancestry-specific enriched oncogenic pathways with prognostic
relevance in BasalMyo tumors. In support of this concept, a
recent transcriptome-wide association study of the Caroline
Breast Cancer Study transcriptomic dataset, comprising of self-
identified African-American and European-American women,
demonstrated that ancestry-stratified predictive risk models
did not perform across ancestries and/or subtype65. Through
integrative analysis of differential enrichment and prognostic
connotation, we identified seven differentially enriched signaling
pathways with prognostic connotation in patients of EA and/or
AA. Enrichment of EGF and estrogen-dependent signaling was
associated with worse clinical outcomes in patients of EA, while
enrichment of DNA repair genes correlated with a better
outcome. Conversely, enrichment of PI3K-Akt/PI3K-AKT-mTOR
and ErbB signaling was associated with better prognosis in
patients of AA. Although this survival-favorable correlation
appears contradictory in relation to mTOR and ErbB-mediated
oncogenic signaling, recent studies have demonstrated enrich-
ment of PI3K-AKT signaling in immunogenic TNBC tumors,
suggesting that hyperactivation of this signaling pathway might
promote immunogenic activity and result in better prog-
nosis61,66,67. This raises the question whether BasalMyo tumors
enriched in PI3K and ErbB signaling could similarly infer an
immune favorable tumor phenotype in a subset of AA patients.
Furthermore, analysis of the individual molecules constituting
the ErbB signaling pathway revealed a reduced enrichment of
ErbB2, ErbB3, and ErbB4 and downstream signaling, irrespective
of ancestry, in hormone receptor-negative tumors and in
particular BasalMyo tumors compared to hormone receptor-
positive tumors (data not shown). On the other hand, hormone
receptor-negative tumors and BasalMyo tumors feature a higher
enrichment of ErbB1/EGFR and its downstream molecules, which
may be driving the overall increased enrichment of ErbB
signaling in those tumors (data not shown). These findings
highlight the importance of obtaining a more granular view of
the changes in the ErbB pathway in BasalMyo tumors such as the
relative effect of individual EGFR ligands on ErbB signaling
enrichment. Notably, AMPK signaling was associated with
opposing prognostic significance in EA and AA patients, with a
positive connotation in the latter group. AMP-activated protein
kinase or AMPK is a key regulator of cancer metabolism and
oncogenic signaling, is frequently upregulated in TNBC vs non-
TNBC tumors, and is generally associated with poor clinico-
pathological factors and shorter survival68,69. Several lines of
evidence, however, point towards a more complex role for AMPK
in cancer whereby AMPK activation has been associated with
both pro-tumorigenic and anti-tumorigenic effects depending
on specific metabolic cues70. For example, activation of AMPK
signaling has been shown to inhibit the PI3K-AKT-mTOR path-
way, the expression of EGFR and cyclins, and the phosphoryla-
tion of Src, STAT3, and MAPK, culminating in reduced
tumorigenic potential and better clinical outcome71–73. It
remains to be determined if metabolic-mediated dysregulation
of AMPK signaling could be regulated by ancestry-specific traits.
Indeed, few studies have reported ancestral disparity in cancer
metabolomics74–76. Our finding illustrates that metabolic path-
ways might be governed by different regulators depending on
ancestry, and hence reiterates the need to account for ancestry
in biomarker and cancer target research.
To conclude, the rapidly evolving technological landscape

and refinement of cancer treatment towards precision cancer
medicine has led to the recognition that breast cancer is not a
single disease, but should be studied and clinically managed as
multiple distinct disease entities. It is now well appreciated that
the complexity and heterogeneity of breast cancer arise from
differences in cancer cell-intrinsic mechanisms as well as from
dysregulation of the interplay with the stromal and immune

microenvironment. Our findings support the notion of an
additional level of complexity introduced by ancestry-associated
traits and urge for more studies on underrepresented populations
such as patients of ArA. Therefore, we advocate accounting
for ancestry-specific molecular features in breast cancer research
and in clinical decision making in order to guide precision cancer
medicine.

METHODS
Patient cohorts
Two different breast cancer cohorts were included in this study: the
publicly available TCGA breast cancer dataset and a local cohort
from Qatar.
RNA-sequencing data from the TCGA breast cancer cohort (n= 1082

patients) was downloaded using R (v3.5.1) and TCGA Assembler (v2.0.3,
ref. 77). Sample data were extracted ensuring a single primary tumor
sample per patient using the TCGA Assembler “ExtractTissueSpecificSam-
ples” function. Clinical data for all patients were obtained from the TCGA-
CDR46. Patient ancestry was obtained using SNP-based inferred ancestry
data, focusing on the European, Asian, and African clusters47,48. To visualize
major ancestry clusters within the TCGA-BRCA cohort, PC analysis results of
Carrot-Zhang et al.48 were used to plot PC1 vs. PC2 using ggplot. Using
these data, we were able to include 108 patients who previously had no
reported ancestry. As SNP-based ancestry had a very high concordance
with reported ancestry (99.1%), we decided to also include 63 patients for
whom only self-reported ancestry was available. We excluded 31 patients
from our ancestry-based analyses. First, 16 patients with American inferred
ancestry as the number of samples in this cluster is limited as well as one
patient who self-identified as not Hispanic or Latino. Second, six patients
without self-reported or inferred ancestry and third exceptional cases of
discordance between self-reported and SNP-based ancestry (n= 8; 0.9%)
were excluded. The final TCGA breast cancer cohort used for analysis
comprises 1051 patients (811 of EA, 184 of AA, and 56 of AsA). The tumor
non-silent mutation rate, predicted neoantigen load, and aneuploidy score
were obtained from Thorsson et al.78, and predicted vs expected
neoantigen values were extracted from Rooney et al.59.
The RA-QA patient cohort constitutes a breast cancer cohort from Qatar

(n= 24 of which 16 of ArA) with patients who were newly diagnosed with
breast cancer between 2004 and 2010 at the National Centre for Cancer
Care and Research (NCCCR) in Doha. Clinical information and self-reported
ancestry were extracted from the medical records. The study was approved
by the local ethical committees of the Hamad Medical Corporation (study
approval number #14027/14), the Qatar Biomedical Research Institute
(study approval number #2016-002), and Sidra Medicine (study approval
number #1711015664), and was performed in accordance with the ethical
standards of the institutional and/or national research committee and with
the 1964 Declaration of Helsinki and its later amendments or comparable
ethical standards.
The study protocol was granted a waiver of informed consent under the

condition of anonymization and no additional intervention for the
participants.

Total RNA-sequencing
RNA was isolated from four 20 μm sections of formalin-fixed paraffin-
embedded (FFPE) tumor samples of the RA-QA cohort using the AllPrep
DNA/RNA FFPE kit (Qiagen, Germany), followed by a quality control for
purity and integrity by the Agilent Bioanalyzer system. Total RNA was
depleted from ribosomal RNA and random primed for complementary
DNA synthesis using the TruSeq-stranded total RNA kit (Illumina, USA).
RNA-sequencing was performed on the Illumina HiSeq2500 platform
(Illumina) with paired-end 25× coverage (PE100–125). The FASTQ files were
trimmed to remove adaptor sequences using flexbar (v3.0.3, ref. 79) and
aligned to GRCh37/hg19 reference genome using hisat2 (v2.0.5, ref. 80),
resulting in an average 10–15M aligned reads. Reads were counted to
genomic features using subreads (v1.5.5, ref. 81). For both the TCGA and
RA-QA cohort, RNA-seq data were corrected for GC content and
normalized within and between lanes using the R package EDASeq
(v2.12.0, ref. 82), and quantile normalized using the preprocessCore
(v1.36.0, ref. 83).
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Intrinsic molecular subtype classification
The intrinsic molecular subtype of each tumor sample was defined by the
differential expression of a set of 50 genes (PAM50) using two distinct
algorithms. First, the R package bioclassifier_R was used to predict sample
subtype according to the Parker et al.84 subtype predictor. Second, a more
recent classification model was applied using a robust classifier that
integrates the PAM50 gene signature with Topological Data Analysis,
resulting in seven subgroups with well-defined gene expression patterns49.
The TDA classifier is based on the observed expression of five gene groups,
basal (a), myo1 (b), myo2 (c), luminal (d), and Her2 (e) (Fig. 1a). The
nomenclature of the identified TDA classes directly reflects the observed
gene groups, for example, BasalHer2 samples are characterized by
increased expression of the basal (a) and the Her2 (e) gene groups, and
LumBasal samples by basal (a) and luminal (d) gene expression, and so on.
An explanatory summary of the characteristics of the different TDA classes
is included in Fig. 1a. Sample clustering according to both classification
methods was visualized in a PAM50-based heatmap using the R package
ComplexHeatmap (v1.20.0, ref. 85). Circos plots using the R package circlize
(v0.4.6, ref. 86) depicted TDA reclassification of samples in comparison to
PAM50 subtyping. The distribution of TDA subtypes within ancestries was
assessed using stacked bar plots and χ2 tests.

ICR consensus clustering
Consensus clustering of samples according to the expression values of 20
ICR genes was performed using the ConsensusClusterPlus (v1.42.0, ref. 87) R
package with the following parameters: 5000 repeats, and agglomerative
hierarchical clustering with ward criterion (Ward.D2) inner and complete
outer linkage as previously described51,88. The optimal number of clusters
for best segregation of samples was determined using the Calinski-
Harabasz criterion with samples in intermediate clusters defined as “ICR
Medium.” Samples of the TCGA dataset were clustered into three groups:
ICR low (cluster 1), ICR medium (clusters 2 and 3), and ICR high (cluster 4).
Due to the small number of samples, the RA-QA cohort was divided into 2
groups: ICR low (clusters 1, 2, and 3) and ICR high (cluster 4).

Single-sample gene set enrichment analysis
Enrichment of specific gene sets, reflecting either abundance of immune
cell populations or expression of tumor-related pathways, was defined by
single-sample gene set enrichment analysis using R package GSVA
(v.1.30.0, ref. 89)90. Gene set signatures of 24 distinct immune cell types
or LES were used to deconvolute immune cell abundance53. Gene sets
comprising numerous tumor-related pathways were obtained from multi-
ple sources, including the Molecular Signatures Hallmark91 and Ingenuity
Pathway Analysis (IPA) gene set collections and several signatures that
have been associated with tumor immune escape92–95. Gene signature
enrichment scores were compared based on ancestry using the two-tailed
unpaired t test.

XGBoost model
We utilized an optimized version of the white-box, nonlinear, ensemble
gradient boosting machine called XGBoost to build our Cox regression
model for survival analysis96,97. Gradient Boosting is a machine-learning
technique based on a constructive strategy by which the learning
procedure will additively fit new models, typically decision trees98 and
repetitively leverage the patterns in residuals to provide a more accurate
estimate of the response variable or time to event, that is, death in case of
survival analysis. The patients who are alive are considered as right-
censored, and since the XGBoost model takes only one label for the
response variable as input, the censored survival information is converted
to negative labels while performing the Cox proportional hazards
modeling99. XGBoost is a scalable machine-learning technique for tree
boosting, a learning technique to improve the regression performance of
weak regressors by repeatedly adding new decision trees to the
ensembles, which enhances performance in comparison to other boosting
algorithms96. The main components of XGBoost algorithm are the
objective function and its iterative solution. The objective function is
initialized to describe the model’s performance. Given the training dataset,
D ¼ fxi ; yigNi¼1, where xi∈ Rd, d= 54, yi∈ R, N denotes the total number of
training samples, R depicts the set of real numbers, and D represents the
training set. The predicted output ŷlobtained from the ensemble model
can be represented as: ŷl ¼ PT

t¼1 Ht xið Þ, where Ht(x
i) represents the

prediction score of the tth decision tree for the ith patient in the training

dataset. If the decision trees are allowed to grow unregulated, then the
resulting model is bound to overfit96. Hence, the following objective has to
be minimized:

J Hð Þ ¼
XN

i¼1

L yi ; ŷl
� �þ

XT

t¼1

Ω Htð Þ (1)

where L is the loss function and Ω() is the penalty that is used to prevent
overfitting and is defined as Ω Htð Þ ¼ γAþ 1

2 λ
PA

j¼1 w
2
j , where γ and ƛ are

the parameters that control the penalty for number of leaf nodes (A) and
leaf weights (w), respectively, in the decision tree Ht.
The objective function can be rewritten as J Hð Þ ¼ PN

i¼1L yi ; ŷl t�1þ
�

Ht xið ÞÞ þPT
t¼1 Ω Htð Þ. After applying a Taylor expansion100 and expanding

Ω(Ht), we obtain:
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� �� �
and hi ¼ ∂2yt�1

L yi ; ŷl t�1

� �� �
are the first- and

second-order gradient statistics for the loss function L. For a fixed tree
structure H(x), where Ij= {i},∀H(xi)= j is an instance of leaf node j, the
optimal weight wo

j for leaf node j is given by:

wo
j ¼

�P
i2Ij giP

i2Ij hi þ λ

The corresponding optimal objective function becomes:

J Htð Þ ¼ �1
2

XA

j¼1

P
i2Ij gi

� �2

P
i2Ij hi þ λ

� �þ γA (3)

Equation 3 can be used as a scoring function to measure the quality of a
tree structure Ht during iteration t. This score is equivalent to the impurity
score used for evaluating decision trees in random forests101. We build our
XGBoost model using the fast, greedy, and iterative algorithm by Chen
et al.96 to identify the optimal tree structures.

SHAP model
One of the disadvantages of the feature importance scores obtained from
the XGBoost model is that the directionality is not apparent. For instance,
when a particular pathway attains a high enrichment score, it is not clear
whether this corresponds to a higher or lower risk of death. Moreover, at
the test phase, it is a challenge for traditional white-box, tree-based,
machine-learning techniques to provide information about the top five
features driving the prediction to better or poorer survival prognosis.
Recently, several techniques have been proposed to overcome aforemen-
tioned limitations, including LIME (Local Interpretable Model-agnostic
Explanations)102 and SHAP103. These methods have the ability to interpret
feature importance scores from complex training models and provide
interpretable predictions for a test sample based on the top k features for
that particular test instance. In our work, we used the SHAP method as it
has been shown to outperform the LIME method and to be better aligned
with human intuition103. The SHAP method is an additive feature
attribution method where a test instance prediction is defined as a linear
function of features that satisfies three critical properties: local accuracy,
missingness, and consistency.
The explicit SHAP regression values are derived from a game-theory

framework104,105 and can be computed as:

Φi ¼
X

S�Q�fig

Sj j! Qj j � Sj j � 1ð Þ!
Qj j! HS∪ fig xS∪ fig

� �� HS xSð Þ� 	

where Q represents the set of all d features, S represents the subsets
obtained from Q after removing the ith feature, and ɸi is an estimate of the
importance of feature i in the model. In order to refrain from undergoing
2|Q| differences to estimate ɸi, the SHAP method approximates the Shapley
value by either performing Shapley sampling106 or Quantitative Input
Influence107. A detailed description of model interpretation using the SHAP
method has been outlined by Samek et al.103. In our work, SHAP values
associated with a particular pathway in the XGBoost model provide
information on the change in log (risk of death) for each feature of the Cox
proportional hazards model.
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Survival analysis
Kaplan–Meier curves were generated using the ggsurvplot function from R
package “survminer” (v0.4.8) to compare OS and DSS between ancestries,
ICR clusters, and AMPK subgroups. Univariate Cox proportional hazards
regression analysis was performed with the R package “survival.” AJCC
pathologic tumor stage as described in the TCGA-CDR was used for
stratified analysis within the BasalMyo class. Forest plots were generated
using the R package forestplot (v1.7.2).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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