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Development and implementation of the SUM breast cancer
cell line functional genomics knowledge base
Stephen P. Ethier 1✉, Stephen T. Guest1,5, Elizabeth Garrett-Mayer1,6, Kent Armeson2, Robert C. Wilson1, Kathryn Duchinski3,7,
Daniel Couch1, Joe W. Gray 4 and Christiana Kappler1

Several years ago, the SUM panel of human breast cancer cell lines was developed, and these cell lines have been distributed to
hundreds of labs worldwide. Our lab and others have developed extensive omics data sets from these cells. More recently, we
performed genome-scale shRNA essentiality screens on the entire SUM line panel, as well as on MCF10A cells, MCF-7 cells, and
MCF-7LTED cells. These gene essentiality data sets allowed us to perform orthogonal analyses that functionalize the otherwise
descriptive genomic data obtained from traditional genomics platforms. To make these omics data sets available to users of the
SUM lines, and to allow users to mine these data sets, we developed the SUM Breast Cancer Cell Line Knowledge Base. This
knowledge base provides information on the derivation of each cell line, provides protocols for the proper maintenance of the cells,
and provides a series of data mining tools that allow rapid identification of the oncogene signatures for each line, the enrichment of
KEGG pathways with screen hit and gene expression data, an analysis of protein and phospho-protein expression for the cell lines,
as well as a gene search tool and a functional-druggable signature tool. Recently, we expanded our database to include genomic
data for an additional 27 commonly used breast cancer cell lines. Thus, the SLKBase provides users with deep insights into the
biology of human breast cancer cell lines that can be used to develop strategies for the reverse engineering of individual breast
cancer cell lines.
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INTRODUCTION
Over the past decade, many genomic data sets have been
obtained from breast cancer cell lines, primary xenograft models of
breast cancer, primary breast cancer specimens, and most recently,
from metastatic lesions. The types of genomic data that are now
available to clinicians and laboratory scientists include sequencing-
based analyses that show the point mutations that occur in breast
cancer, copy number data that provide information on the
oncogenes activated by gene amplification as well as the tumor
suppressor genes inactivated by point mutations or homozygous
deletion, gene expression data from RNA-sequencing and gene
expression arrays, and most recently, proteomics and phospho-
proteomics data. In addition, a number of tools and databases
have been developed, such as the CaBio Portal1, the Kaplan–Meyer
plotter2,3, the DepMap portal4, and others that allow breast cancer
researchers to mine these data sets and draw inferences about the
influence of specific genomic changes on breast cancer develop-
ment, progression, and outcome.
As powerful as these tools and data sets are, they are

descriptive in nature and the inferences and conclusions that
can be drawn from them are, as a result, correlative. Recently, a
number of laboratories, including our own, have performed shRNA
or CRISPR-Cas9-based gene essentiality screens on a large number
of human breast cancer cell lines. Some of these screens have
been focused on specific gene sets, such as the kinome5,6,
whereas others have been genome-scale and made use of
libraries of varying complexities4,7–9. We have performed
genome-scale shRNA screens for the SUM breast cancer cell line
panel and some of the results from those experiments have been

reported10–12. These functional screens have resulted in the
generation of long lists of genes that have been found to play a
direct role in either the proliferation or survival of specific human
breast cancer cell lines. Moreover, when these sets of essential
genes are analyzed with respect to the descriptive genomic data
sets described above, the result is a functionalization of the
genomic data that sheds light on the biology of individual breast
cancer cell lines. The functionalization of genomic data is
particularly important with respect to predicting the sensitivity
or resistance of breast cancer cells to targeted drugs. Targeted
drugs are effective when they inactivate a functional driver gene,
but they are ineffective when they target a passenger gene, and
this notion is supported by results of numerous clinical trials, both
positive and negative. Because gene essentiality screens effec-
tively distinguish driver from passenger genes, regardless of
expression level or genomic status, these analyses are powerful
ways to identify druggable targets in breast cancer cells. Thus,
functional genomics has the potential to make accurate predic-
tions about targeted drugs that are likely to have the largest
impact on cancer cells with the highest therapeutic index.
To take full advantage of these functional genomics data sets,

new tools need to be developed that allow breast cancer
researchers to quickly identify the most essential genes, onco-
genes, pathways, and druggable targets for any cell line, and then
ultimately translate that knowledge to make predictions about
breast cancer specimens from primary sites or metastatic lesions.
Over the past 5 years, our laboratory has performed genome-scale
shRNA screens on the SUM breast cancer cell lines developed
in our laboratory, as well as on MCF10A cells, MCF-7 cells, and
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MCF-7LTED cells10–12. More recently, we developed a series of
web-based tools that allow breast cancer researchers who work
with these cell lines to quickly and easily mine the data to identify
the functional oncogenes, the most essential biological pathways,
and the genes within those pathways that mediate growth and
survival of the cells, as well as the best druggable targets in each
cell line based on essentiality and druggability of each gene. Other
data mining tools allow researchers to determine the status of any
annotated gene in the genome in any cell line, along with its
expression status at the mRNA and protein level, and genomic
alterations that may be present in the gene. Finally, all of these
data and data mining tools are presented in the context of a
Knowledge Base that provides critical information on the
derivation of each cell line, the patient from which the cells were
derived, and the proper conditions for maintaining each cell line.
Recently, we have expanded this Knowledge Base to include 27
additional breast cancer cell lines for which reliable genomics and
functional screening data are available, and the data mining tools
originally developed for the SUM lines can be used for a total of 40
breast cancer cell lines.
This Breast Cancer Cell Line Knowledge Base and the data

mining tools contained within allow for rapid functional genomic
analysis not only for the SUM breast cancer cell lines but for all
breast cancer cell lines for which validated functional screens have
been performed.

RESULTS
Rationale for development of the SLKBase
Human breast cancer cell lines have been and continue to be a
mainstay of breast cancer research worldwide. Indeed, breast
cancer cell lines have played a key role not only in helping to
elucidate the fundamental biology of breast cancer but also for
the development of virtually every drug that is used to treat breast
cancer patients. The MCF-7 cell line was critically important to the
development of the hormonal therapies used to treat patients
with estrogen-receptor positive breast cancer13–16, as were breast
cancer cell lines with HER2 amplifications for the development of
HER2-targeted drugs17–24. More recently, palbociclib was identi-
fied in a drug screen using a large panel of breast cancer cell
lines25. Despite the importance of breast cancer cell lines in the
development of modern therapeutic modalities for breast cancer,
most researchers know relatively little about the cell lines they
work with, and thus, the full potential of the large panel of breast
cancer cell lines that currently exists has not been fully realized. In
attempt to address this gap in our understanding, and to increase
the power and importance of breast cancer cell lines in research,
we set out to develop a knowledge base that allows researchers
using the SUM breast cancer cell lines, as well as other commonly
used breast cancer cell lines, to have ready access to the genomic
and functional genomic data that have been generated from
these cells, and to be able to quickly and easily mine these
complex data sets. The SUM Breast Cancer Cell Line Knowledge
base is the result of these efforts and provides a gateway for the
functional genomic analysis of breast cancer cell lines.

Development of a MySQL breast cancer genomics database
There were three overarching goals in the original development of
the SLKBase: (1) to provide a rich source of information for anyone
working with any of the SUM breast cancer cell lines, (2) to give
researchers ready access to the large genomic data sets that have
been developed with these cells, and (3) to allow researchers to
perform orthogonal analyses of the various genomics data sets
that we and others have obtained from the SUM lines. To build a
platform for analysis of genomic data sets from the SUM lines, we
first built a MySQL database that contains copy number data
derived from array comparative genomic hybridization, gene

expression data derived from Illumina bead arrays and more
recently from RNA sequencing, point mutation data derived from
whole-exome sequencing, and finally, data from the genome-scale
shRNA screens for each of the SUM lines and for MCF10A, MCF-7,
and MCF-7LTED cells26. In addition, we incorporated into the
database the list of targeted drugs that are linked to specific genes
from the Genomics of Drug Sensitivity in Cancer database. We
then designed and launched a series of web-based tools that
allow these data sets to be mined in ways that shed light on the
deep biology of each cell line and suggest targeted drug
strategies that are likely to be effective in each of the lines.

Oncogene signatures
One of the most powerful applications of genome-scale shRNA
screens is the functionalization of genomic alteration data that are
derived from sequencing or array-based applications. It is well-
known that breast cancers, like most cancers, are genomically
complex and that most of the genomic alterations that occur do
not contribute directly to the malignant potential of the cells and
are therefore poor drug targets. Thus, by combining data derived
from essentiality screens with data derived from copy number
analysis, gene expression analysis, and exome sequencing, one
can quickly reduce the complexity of these data sets and identify
the driving oncogenes in each cell line. We refer to the gene sets
that are derived from such an analysis as the oncogene signatures
for a given cell line, and we have reported on these for some of
the SUM lines in previous publications10,12. We thus wanted to
develop a tool that would allow anyone to ascertain the several
types of oncogene signatures for any breast cancer cell line for
which these genomic data sets are available, and this is now
available on the SLKBase. By using the Oncogene Signature Tool,
one can choose a breast cancer cell line and immediately identify
three types of oncogene signatures. The first is the Candidate
Oncogene Signature, which comprises genes that are genomically
altered in the cell line, and are considered to be bona fide human
oncogenes as indicated in the OncoKB database27. Thus, this list
shows all candidate oncogenes that are genomically altered in the
cell line, and their score in the shRNA screen provides information
on the essentiality of each altered gene in the cell line. The second
gene set is the Overall Oncogene Signature, which comprises
any gene that is genomically altered in the cell line of interest
that was also a hit in the functional screen, regardless of whether
they are considered bone fide oncogenes. Thus, any gene that
is genomically altered, by either gene amplification or point
mutation, and was a hit in the functional screen is reported
along with the expression level of the gene and its potential
druggability. Finally, the Functional Oncogene Signature is the
synthesis of the first two gene sets and shows the genes that are
genomically altered, considered to be bona fide oncogenes, and
were hits in the functional screen, along with their expression
levels and druggability. The Candidate Oncogene Signature for
the SUM-185 breast cancer cell line is shown in Table 1. The
Overall and Functional Oncogene Signatures for this cell line are
shown in Supplementary Tables 1 and 2. As can be seen, for each
gene in each table, data on copy number, mutation status, and
screen hit status are presented, as well as any existing drugs that
target those oncogenes. The functional oncogene signature
for the SUM-185 cell line is particularly interesting and shows
that these cells have three functional and druggable oncogenes
(FGFR3, PIK3CA, and BCL2L1), and we have shown previously that
targeting these oncogenes using low doses of appropriate
targeted drugs yields dramatic synergistic and cell line-specific
lethality12. The Candidate Oncogene Signature for the SUM-190
cell line is shown in Table 2 and the other oncogene signatures for
this cell line are shown in Supplementary Tables 3 and 4. The
oncogene signatures for this cell line highlight the importance of
having three separate gene lists. As we12,28,29 and others have
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published30–35, the SUM-190 cell line, derived from a patient with
inflammatory breast cancer, has a HER2 gene amplification, and
HER2 is overexpressed at the mRNA and protein level. And yet,
HER2 was not a hit in the functional screen for these cells. This is
contrast to the SUM-225 cells, which also has HER2 amplifica-
tion28,29 and for which HER2 was a hit in the functional screen
(Supplementary Table 5). This suggests that HER2 is more essential
for the SUM-225 cells than the SUM-190 cells, despite their similar
amplification and overexpression of HER2. And while both cells
are sensitive to the HER2-targeted drug CP724714 compared to
non-HER2-amplified cell lines, SUM-190 cells are 10-fold less
sensitive to the targeted drug than are SUM-225 cells, a finding in
keeping with the screen data (Fig. 1a)26. By contrast, the SUM-52
and SUM-185 cell lines, which have amplifications and over-
expression of FGFR2 and FGFR3, respectively, were as expected,
highly resistant to the HER2-targeted drug. The SUM-190
Oncogene Signatures also shows that these cells have a
commonly observed point mutation in the PIK3CA oncogene,
and this gene was a strong hit in the functional screen. Figure 1b
shows the IC50 values for the Class I alpha-specific PI3′Kinase drug

Alpelisib for the SUM-line panel and shows that the SUM-190 cells,
as well as the other SUM lines with PIK3CA point mutations (red
bars in the figure) are highly sensitive to this drug. Thus, in SUM-
190 cells, for which HER2 lies upstream of PI3′Kinase signaling,
PIK3CA is a better druggable target than HER2, a result predicted
by the shRNA screen data. Interestingly, the HER2-amplified SUM-
225 cell line is also highly sensitive to Alpelisib, an observation
made with other HER2-amplified breast cancer cell lines, as can be
observed using the Functional-Druggable Target tool on the
SLKBase. The concentration–response curves for Alpelisib across
the SUM cell line panel are shown in Supplementary Fig. 1. The
oncogene signatures for the other SUM lines and 25 other
commonly used breast cancer cell lines can be viewed directly on
the SLKBase.
The concept of oncogene addiction predicts that targeting

functional-druggable oncogenes has a profound and specific
effect on proliferation and/or survival in cells with those driving
oncogenes. The oncogene signatures for the SUM lines make
predictions about sensitivity to oncogene-targeted drugs, and
these predictions are borne out by drug sensitivity data, as shown

Table 2. Candidate Oncogene Signature for SUM-190 cells.

Gene symbol QuantLog QuantLogRank Screen hit Log fold
change

DnaAmp Mutation Occurences
in cosmic

Existing drugs

PIK3CA 23.63 88 1 PIK3CAp.H1047R 1889 ZSTK474, PI-103,
A66, BKM120

EPHA5 8.05 787 1 0 1.3009 0

CRKL 5.26 2135 0 2.08183288 3.3127 0

CD274 4.8 2621 0 0.81917265 CD274p.R260C 1

ERBB2 2.48 8269 0 3.48529258 4.4293 0 Lapatinib, CP724714,
CUDC-101, Afatinib

CCND1 2.4 8613 0 1.84218813 1.2862 0

PAK1 2.02 10371 0 1.19466668 1.0625 0 IPA-3

NBN 1.9 11023 0 0.74382708 0.8672 0

EED 1.82 11397 0 1.3939 0

FGF4 1.65 12158 0 0.04983281 1.2862 0

FGF3 1.6 12404 0 1.2862 0

CREBBP 1.36 13493 0 1.33574903 0.8509 0

FGF19 1.28 13826 0 −0.28420775 1.2862 0

FAM58A 1.19 14135 0 1.23522966 0.9519 0

BRCA1 0.95 14857 0 1.7257694 3.0084 0

RAD51L3 0.76 15134 0 0.21738458 1.1823 0

Table 1. Candidate Oncogene for SUM-185 cells.

Gene symbol QuantLog QuantLogRank ScreenHit LogFoldChange DnaAmp Mutation Occurences
in cosmic

Existing drugs

BCL2L1 5.8 5 1 1.16583842 1.1286 0 Obatoclax Mesylate,
Navitoclax, TW 37

FGFR3 2.75 261 1 2.87313456 1.1797 0 PD173074

PIK3CA 2.45 579 1 PIK3CAp.H1047R 1889 ZSTK474, PI-103,
A66, BKM120

ASXL1 2.16 1366 0 0.49973277 1.1286 0

TP53 1.93 2785 0 −0.9858457 TP53p.Q144* 47

PPP2R1A 1.74 4937 0 0.42676332 0.8502 0

UPF1 1.7 5503 0 1.3309692 0.9679 0

WHSC1 1.46 9995 0 0.09894565 1.1797 0
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in Fig. 1 for HER2 and PIK3CA-targeted drugs, and as we have
published for FGFR2, FGFR3, and BCL2L1 (ref. 12). Thus, elucidating
the oncogene signatures of breast cancer cell lines is the starting
point for developing targeted drug strategies that will be highly
effective when used at low concentrations, and thus yield a high
therapeutic index.

Functional-druggable signatures
One of the advantages of genome-scale shRNA screens is that
they identify a large number of essential genes, most of which are
not genomically altered, and, therefore, not bona fide oncogenes.
And yet, because these genes are essential to the growth and/or
survival of the cells, they can be good drug targets as well. In order
to fully leverage the data derived from our genome-scale
functional screen, we created the Functional-Druggable Signature
tool, which merges the shRNA or CRISPR screen hit data with data
derived from the Genomics of Drug Sensitivity in Cancer database

(https://www.cancerrxgene.org)36. This database lists all of the
targeted drugs that have been tested experimentally against a
panel of nearly 1000 cancer cell lines. The functional-druggable
signature tool returns a list for each breast cancer cell line of genes
that are both essential as determined by their hit status in the
screen and druggable using a targeted agent. The functional-
druggable signatures for three of the SUM lines are shown in
Table 3, and the functional-druggable signatures for all the SUM
lines, and for 27 other breast cancer cell lines, can be viewed on
the SLKBase. The hypothesis that emerges from this analysis is
that essentialness as determined by the screen hit data predicts
drug sensitivity. We have performed preliminary experiments to
examine this hypothesis using drugs that target BCL2L2/BCL2
(Navitoclax), and the results are consistent with this hypothesis.
The Z-scores for this drug in each of the SUM lines are shown in
Fig. 2a26 and the red bars indicate the cell lines for which either
BCL2L2 or BCL2 (SUM-44) was a hit in the screen, and shows a
good association between drug sensitivity and essentialness as

Fig. 1 Oncogene signatures and drug sensitivity in SUM cell lines. a Relationship between surviving fraction and concentration of the
HER2-specific tyrosine kinase inhibitor CP724714 for four SUM lines, each of which has an amplification and overexpression of an RTK
oncogene. Both SUM-225 and SUM-190 have HER2 amplifications with overexpression, SUM-52 has an amplification and overexpression of
FGFR2, and SUM-185 has an amplification/overexpression of FGFR3. Cells were treated over a 72-h period with varying concentrations of drug
and the number of viable cells per well was determined using the Celigo cell analyzer following staining with Hoechst stain for total cell
number and propidium iodide to determine the number of dead cells. The surviving fraction was number of viable cells per well at 72 h
divided by the number of cells per well before drug treatment. b SUM breast cancer cell lines were treated with varying concentrations of the
class I alpha-specific PI3′K kinase inhibitor Alpelisib as described above and the IC50 concentrations for each cell line was determined using
GraphPad 4.0 for all but two of the SUM lines. For the cells most resistant to the drug, we estimated the IC50s using a local polynomial
regression (LOESS with a span= 1) to fit a local regression curve over the range of data and determine the IC50 value. The 95% prediction
interval was calculated around the curve, and the interval at the point where cell concentration was predicted to be 50% of the starting value
(coinciding with the IC50 concentration) was inverted to derive the error for the IC50 value.
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determined in the screen. The concentration–response curves
used to calculate the IC50 concentrations for Navitoclax for each of
the SUM breast cancer cell lines are shown in Supplementary
Fig. 2.
To begin to test this hypothesis more rigorously, we developed

a version of the functional-druggable signature tool for the 27
additional breast cancer cell lines for which there are both
functional genomic data from Project Achilles, and drug sensitivity
data from the Genomics of Drug Sensitivity in Cancer database.
Using this tool, one can directly examine the relationship between
essentiality as determined by the screen hit score (CERES score)
and the Z-score for each drug in each cell line, which is a measure
of relative sensitivity for each drug across a panel of over 800 cell
lines. An example of this is shown in Fig. 2b for the ER degrader
GDC0810. With the exception of a single cell line, this result shows
a strong association between essentiality, as determined in the
screen, and drug sensitivity as indicated by the Z-score for the
drug (A Z-score of <−2.0 indicates that the IC50 for this drug in this
cell line is greater than 2 standard deviations less than the
geometric mean IC50 for the entire panel). Work currently in
progress is aimed at performing a rigorous statistical analysis of
the association between essentiality and drug sensitivity for all
targeted drugs across the entire cell line panel.

KEGG Pathway Engine and Pathway Essentialness tool
Another way to gain insight into the biology of human breast
cancer cell lines is to use the screen hit data to identify the most
important biological pathways for each cell line. To accomplish
this goal, we developed the KEGG Pathway Engine, which maps
the genes that were hits in the functional screen onto KEGG
pathways. The KEGG Pathway Engine allows users to pick any
KEGG pathway and determine its importance in any cell line in the
database, obtain a visual picture of the pathway of interest with
screen hits in the pathway displayed, and view the data associated
with each hit gene in the pathway. A separate feature of this tool
is the ability to view gene expression data for the specific cell line
and pathway and compare that to the screen hit data. Figure 3
shows the results of mapping the screen hit data for the SUM-149
cells onto the Cell Cycle KEGG pathway, and indicates the genes in
this pathway that were screen hits, with red color intensity being
related to the strength of the screen hit, or hit rank. The right
panel of the figure shows the screen hit data that are presented
with the pathway map, along with the rank of each hit gene in the
screen, its expression level, and any targeted drug for each screen
hit gene. Figure 4 shows the results of the analysis of the
essentialness of PI3K–AKT signaling in two SUM lines with the
highest and lowest essentialness of this pathway, SUM-185 and
SUM-229, respectively. As is shown in the figure, the SUM-185 cell
line, for which FGFR3 is a functional-driving oncogene activated by
gene amplification, is highly dependent on this pathway for
proliferation and survival. By contrast, other cell lines are less
dependent on this pathway, and indeed, the SUM-229 cell line
(lower left panel) has little or no reliance on this pathway for
proliferation or survival as indicated by the small number of
screen hit genes that map to the pathway.
To increase to power of the KEGG pathway engine, we

developed a Pathway Analysis tool that calculates the relative
essentialness of all KEGG pathways and rank-orders them based
on the level of enrichment of the screen hit data to the pathway.
The algorithm also takes into account the proportion of the genes
in the pathway that were screen hits, as well as the relationship of
hit genes in the pathway to each other, such that screen-hit genes
that are directly linked to other screen hits in the pathway receive
more weight. Table 4 shows the top ten KEGG pathways by
essentialness scores for the SUM-52 and SUM-229 cell lines. Using
the Pathway Analysis tool, one can pick any cell line and obtain a
rank-ordered list of essential pathways, as just described.
Alternatively, one can choose a specific pathway and receive a
rank ordered list of cell lines by their reliance on that pathway.
Table 5 shows the rank order of the cell lines for essentialness of
the transforming growth factor-β (TGF-β) and Hippo signaling
pathways. This table shows that TGF-β signaling is highly essential
for SUM-229 and SUM-1315 cells, and that Hippo signaling is
highly essential for SUM-185 cells. Figure 5 shows the SUM-185
screen hits that map to the Hippo pathway, and shows significant
enrichment for genes in this pathway, including the key
transcription factors and target genes that define this pathway.
By contrast, for SUM-229 cells and SUM-1315 cells, the TGF-β and
WNT signaling pathways are highly essential, as indicated by their
scores and the connectedness of hit genes in these pathways (Fig.
6a, b). This is interesting because the SUM-229 line is a KRAS-
transformed cell line that falls into the basal/claudin-low subset of
triple-negative breast cancers and has been predicted by others to
be enriched for expression of genes in the TGF-beta pathway37–40.
Thus, the Pathway Engine result is not only consistent with this
prediction but also identifies the specific genes within the
pathway that are most essential for these cells. The WNT signaling
and TGF-beta signaling pathways were also found to be important
in SUM-1315 and SUM-159 cells, the latter of which is also a MYC/
HRAS transformed cell line. Thus, the KEGG pathway engine and
Pathway Analysis tools, coupled with the functional-druggable

Table 3. Functional Druggable Signatures for three SUM cell lines.

SUM-44 Existing drugs

KIF11 S-Trityl-L-cysteine, Ispinesib Mesylate

MAP4K2 NG-25

CDK6 AT-7519, Palbociclib

BCL2 Obatoclax Mesylate, Navitoclax, TW 37

PIK3CD Idelalisib

SUM-229 Existing drugs

EDNRA Zibotentan

LCK A-770041, WH-4-023, JW-7-24-1

DHX9 YK-4-279

MAPK11 TAK-715

CAPN1 MG-132

XIAP Embelin

SUM-225 Existing drugs

TOP1 Camptothecin, SN-38

CHUK GSK319347A, BMS-345541

FRAP1 Rapamycin, JW-7-52-1, Omipalisib, OSI-027, Temsirolimus,
Dactolisib, AZD8055, QL-VIII-58

DHX9 YK-4-279

PRKCD Midostaurin, XMD11-85h

KIF11 S-Trityl-L-cysteine, Ispinesib Mesylate

NR1H2 T0901317

HDAC3 Entinostat

EDNRA Zibotentan

RAC1 EHT-1864

PLK1 BI-2536, GW843682X

BRD4 JQ1, I-BET-762, PFI-1

ERBB2 Lapatinib, CP724714, CUDC-101, Afatinib

PIK3CA A66, BKM120
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signature tool, help to identify strategies and drug targets even in
breast cancer cells that do not express functional-druggable
oncogenes.

Gene Query tool
The data mining tools described above are powerful ways to
analyze gene lists and derive biological significance from them.
We also wanted to build a tool that would allow researchers to
rapidly and easily obtain information on individual genes for any
cell line in the database. For this, we developed the Gene Query
tool, which allows users to search for any annotated gene in the
genome and obtain functional genomic and druggability for that
gene in any cell line. As an example, the results of a query for the
BCL2L1 gene, which is of developing interest as a therapeutic
target in breast cancer, are shown in Table 6. The search results
show that BCL2L1 is amplified, overexpressed, and a hit in the
screen in SUM-185 cells. This gene, which is expressed at relatively
normal levels in SUM-52, SUM-190, and SUM-149 cells, was a hit in
the screen in these cell lines as well, and they are, indeed, sensitive
to the targeted drug Navitoclax (Fig. 1b). A similar search for a
related gene, BCL2, shows that it is overexpressed in SUM-44 cells,
as would be expected for an estrogen-receptor-positive cell line,
and was a strong hit in the SUM-44 screen. Thus, SUM-44 cells are
also highly sensitive to Navitoclax with an IC50 of 0.2 µM, as this

drug targets both BCL2 and BCL2L1. Thus, this gene query tool
returns genomic, functional, and druggable data for any gene in
any cell line with a simple mouse click.

Proteomics tool
To make the data sets in the Knowledge Base more complete, we
recently added proteomics data derived from RPPA analysis of the
SUM panel of cell lines. The proteomics data are presented in two
ways on the SLKBase. First, bar graphs are presented that show
the data for a subset of proteins and phospho-proteins the
expression of which varied widely across the panel (Fig. 7)26.
Figure 7 shows that SUM-44 cells express very high levels of the
estrogen-receptor (ER). In keeping with their ER expression, these
cells also express high levels of GATA3. This figure also shows that
androgen receptor expression varies widely across the cell lines
with SUM-185 cells expressing the highest levels, as has been
reported by others, and these cells also express high levels of
GATA3. Figure 7 also shows the relative expression of key
signaling molecules, including Src and phospho-Src. This analysis
showed that although the expression level of c-Src protein itself is
relatively constant across the cell line panel, SUM-225 and SUM-
190 cells exhibit the highest levels of Src pY416, indicating a high
level of Src kinase activity in these two HER2-amplified breast
cancer cell lines. The relative protein expression of CyclinD1,
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Fig. 2 Relationship between gene essentiality and drug sensitivity in breast cancer cell lines. a Z-scores (a measure of drug sensitivity) for
the drug Navitoclax across the panel of SUM breast cancer cell lines. The Z-scores for each cell line treated with Navitoclax was calculated by
subtracting the IC50 for each cell line from the geometric mean IC50 for this drug across the panel of 876 cancer cell lines and dividing by the
standard deviation of the mean. Negative Z-score values indicate cells that are more sensitive (have lower IC50s) than the geometric mean IC50
across the cell line panel. The Z-score value indicates how many standard deviations from the mean the IC50 is for each cell line. Cells are
considered highly sensitive to the drug, with respect to all other cell lines, when the Z-score is ≤−1.5. b Z-scores and CERES scores for 14
breast cancer cell lines that were treated with the ER degrader GDC0810 and part of the Achilles CRISPR gene essentiality screen. Data from
this figure were derived from our MySQL database after downloading data from DepMap portal. As indicated above, Z-scores ≤−1.5 indicate
sensitivity to the drug, and a CERES score of <−0.5 indicate hits in the screen.

S.P. Ethier et al.

6

npj Breast Cancer (2020)    30 Published in partnership with the Breast Cancer Research Foundation



CyclinD2, and GAB2 proteins across the cell line panel is shown in
Supplementary Fig. 3. This is of interest because both CCND1 and
GAB2 are present in the 11q14 genomic region, which is amplified
in SUM-44 and SUM-190 cells. And, while CyclinD1 protein levels
did not vary significantly across the panel, GAB2 protein is highly
overexpressed in SUM-44 cells and in SUM-190 cells. This suggests
that GAB2, and not CCND1, is the important driver gene from this
amplicon in these cell lines.
To provide access to all of the proteomics data, we created the

Proteomics Query tool, which allows a search for any protein or
phospho-protein that was measured by RPPA and returns
normalized linear expression data for all proteins measured on
the array rank-ordered by expression levels in the cell lines. This
tool can be used in conjunction with the Gene Query tool to
rapidly compare expression of a number of important genes at
both the mRNA and protein levels.

Supporting cell line information on the SLKBase
One of the original goals of the SLKBase was to provide an online
information resource for the SUM breast cancer cell lines for
investigators around the world who make use of these cells. Thus,
in addition to the data mining tools that form the core of the
SLKBase, each SUM breast cancer cell line has its own home page
containing information on the patient from which the cell line was
derived, a summary of the molecular characteristics of each line,
and a bibliography of published papers containing data derived
from each cell line. This information is designed to be used in
conjunction with the data derived using the data mining tools to
allow researchers to have a complete biological picture of each
model cell line. It is important to keep in mind that every breast
cancer cell line was derived from a breast cancer patient, and the
cell line, like the patient, is complex and is more than just a single
feature to be studied in a reductionist manner.

Expansion of the SLKBase to all breast cancer cell lines
As indicated in the preceding pages, the SLKBase was originally
designed as a resource for users of the SUM breast cancer cell
lines. However, other laboratories have developed similar omics
and functional screen data sets for other commonly used breast
cancer cell lines, and those data have been deposited in publicly
available repositories. Thus, we have recently incorporated some
of these data sets into our MySQL database and modified our data
mining tools so they can be used with any breast cancer cell line
for which reliable omic and functional data are available. Thus, the
SLKBase now contains new pages with drop down menus for
commonly used breast cancer cell lines, which dramatically
increases the power of this resource.

DISCUSSION
Breast cancer cell lines have been a focal point of breast cancer
research for over 50 years, and thousands of papers have been
published that make use of these models. Despite that, what is
sometimes lost in the discussion about the use of breast cancer
cell lines in research is the connection between the line itself,
and the patient from which it was derived. As a result, most
investigators who use these model systems do so because they
have a specific phenotype or specific set of genes that are of
interest to the researcher. Thus, MCF-7 and T47D cells have been
widely used to study the roles of the estrogen and progesterone
receptors in breast cancer. SKBR3 and BT-474 cells have been
widely used by investigators interested in HER2 amplification and
overexpression in breast cancer, and MDA-MB-468 cells have been
often used to study EGFR signaling in breast cancer. And while
these studies have proven fruitful, there is a sense of diminishing
returns for this type of research when it comes to human cell lines,
and this has sparked efforts to use alternative models, such as PDX
and organoid cultures, to study further the biology of human
breast cancer.

Gene symbol Rank in screen Log fold change Targeted drugs
ANAPC4 31 0.297822519

RBX1 32 -0.834107687
RBX1 41 -0.834107687
RBX1 92 -0.834107687

CDC23 97 -0.441074351
SMC1A 207
CHEK1 213 0.020073899 AZD7762, 681640

ANAPC2 226
ORC1L 237 -0.645277363

ATR 241 QL-VIII-58
SMC3 251 0.01906333
SMC3 268 0.01906333
MCM7 308 -0.264513127
MCM2 324
PLK1 333 -0.755591212 BI-2536, GW843682X

CDC16 378 0.657428381
BUB1B 387 -0.070045943
PCNA 417 -0.464282556
RAD21 539 0.469303271
BUB3 579 -0.276987368

CCNB3 647 0.092590953
CDC14B 677 -0.007943956

E2F5 733 1.266878595
MCM3 739 -0.2782951
ORC6L 767 -0.6368592

ANAPC10 815 -0.0672991
CDC45L 865 -1.8080944
ZBTB17 892 -0.1294326
CDC26 972
CDC20 1003 0.2913447

Fig. 3 KEGG pathway engine analysis of the cell cycle pathway for SUM-149 cells. Results returned by the KEGG Pathway Engine for the
essentialness of the Cell Cycle KEGG pathway in the SUM-149 cell line based on the screen hit data for that line. The KEGG Pathway Engine
returns the pathway map with hit genes highlighted in red, and a table that shows for each hit gene, the rank in the screen, the expression
level relative to normal cells as a Log2 ratio of the fold difference with respect to normal cells, and any targeted drugs associated with
essential genes in the pathway.

S.P. Ethier et al.

7

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2020)    30 



Rather than considering the use of breast cancer cell lines
because of one or two specific characteristics, it is now possible to
consider cell lines as individual breast cancer patients, and use
functional genomics to identify, in an unbiased manner, the most
important genes, pathways, and druggable targets for each line.
Such a systems-level approach can shed new light on many breast
cancer cell lines. For example, the first line that we developed in

our laboratory was SUM-44PE41. These cells were derived from the
pleural effusion metastasis of a patient with estrogen-receptor-
positive lobular breast cancer, and indeed, these cells, like MCF-7
cells, can be used to study the role of the estrogen receptor in the
biology of breast cancer42–47. However, by performing the type of
systems-level functional genomic analysis provided on the
SLKBase, one can see that SUM-44 cells exhibit amplification of

Fig. 4 Variation in essentialness of the PI3′Kinase–AKT pathway across the SUM line panel. Screen hit data mapped to the PI3′Kinase/AKT
KEGG pathway for SUM-185 and SUM-229 cells showing the wide variation in essentialness for this pathway across these two cell lines. Screen
hit data were mapped to the pathway using the KEGG Pathway Engine. The right panel shows the relative essentialness of this pathway for
the SUM cell line panel. The values were derived using the KEGG Pathway Analysis tool.

Table 4. Top 10 Essential KEGG pathways for SUM-52 cells.

Score # hits Proportion of hits Rank

Pathways in cancer—Homo sapiens (human) 13.283333 36 0.159292 1

RNA transport—Homo sapiens (human) 12.416667 32 0.3232323 2

PI3K–Akt signaling pathway—Homo sapiens (human) 10.75 22 0.2588235 3

Cell cycle—Homo sapiens (human) 9.166667 18 0.225 4

Human papillomavirus infection—Homo sapiens (human) 8.7 26 0.2131148 5

Hepatocellular carcinoma—Homo sapiens (human) 7.97619 17 0.2328767 6

Proteoglycans in cancer—Homo sapiens (human) 7.533333 17 0.136 7

Autophagy—animal—Homo sapiens (human) 7.333333 16 0.183908 8

Insulin signaling pathway—Homo sapiens (human) 7.083333 13 0.2096774 9

Human T cell leukemia virus 1 infection—Homo sapiens (human) 6.866667 21 0.1826087 10
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the 8p11–p12 genomic region, which we and others have
published on, and data from the shRNA screen identify KAT6A

(Myst3) and EIF4EBP1 as important driver genes from this
amplicon in these cells10,44,48. In addition, SUM-44 cells over-
express BCL2, which was a strong hit in the screen, and the cells
are exquisitely sensitive to Navitoclax and Venetoclax. CDK6 was
also a strong hit in the shRNA screen in SUM-44 cells, and these
cells are sensitive to palbociclib, as predicted from the functional
druggable signature for these cells. By exploring important KEGG
pathways, one can see that SUM-44 cells express a number of
cytokines and chemokines, many of which, such as CCL1, LIFR,
CCL25, and others, were strong hits in the functional screen,
indicating their importance in the proliferation and survival of
these breast cancer cells. Finally, these cells, having been derived
from a patient with lobular breast cancer, have a point mutation in
the CDH1 gene rendering them E-cadherin null, and thus, a good
model of lobular breast cancer47. These findings demonstrate that
overexpression and activation of the ER is just one feature of the
SUM-44 cell line, and this phenotype occurs in the context of other
molecular and cellular features important to the biology of the
cells and the patient from whom they came. Thus, the SLKBase
can be used to explore the biology of individual breast cancer cell
lines, which yields novel and important observations on breast

Table 5. Rank order of essentialness of TGF-beta and Hippo signaling
pathways in SUM lines.

TGF-beta signaling Hippo signaling

Cell line Rank in
cell line

Score Cell line Rank in
cell line

Score

SUM229 19 5.5108696 SUM185 57 11.896766

SUM185 168 5.2572464 SUM229 7 7.06592

SUM225 95 3.3913043 SUM52 60 5.159204

SUM149 96 2.4492754 SUM225 60 4.742537

SUM52 165 1.6101449 SUM159 19 3.788557

SUM159 99 1.1956522 SUM102 16 3.655224

SUM190 131 1.1811594 SUM149 84 2.657534

SUM44 169 0.5289855 SUM44 30 2.6242

SUM102 128 0.5289855 SUM190 65 2.370647

Fig. 5 Essentialness of the HIPPO pathway in SUM-185 cells. KEGG Pathway Engine generated data showing the essentialness of the Hippo
KEGG pathway to the SUM-185 cells as predicted by the KEGG Pathway Analysis tool.
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cancer cell lines that can be used to elucidate new strategies for
reverse engineering of human breast cancer cells.
Oncogene addiction49–51 is the primary driving principle behind

the orthogonal omics strategy that is key to the SLKBase. The
principle of oncogene addiction proposes that cancer cells have
one or more driving oncogenes to which the cells are addicted for
their proliferation and survival, and the correctness of this
principle has been shown in many laboratory and clinical studies.
Based on this principle, we predicted that we could identify the
functional-driving oncogenes in any cell line by an orthogonal
analysis of gene amplification, gene expression and point
mutation data, with shRNA screen data, which shows all of the
genes in a given cell line that are essential for their growth and
survival. Furthermore, the principle of oncogene addiction
predicts that, for those functional-driving oncogenes that are
druggable, cells should be exquisitely sensitive to drugs that
target the products of those driving oncogenes. The results of our
studies with the SUM lines support the predictions made by the
principle of oncogene addiction.
A second driving principle that underlies our approach to

functional genomics is that since screen hits identify genes
essential for growth and/or survival of the cancer cells, cells that

express essential genes that are druggable should be sensitive to
drugs that target those genes. For this reason, the SLKBase not
only provides data on functional oncogenes in each breast cancer
cell line, it also provides functional-druggable signatures for each
cell line. Indeed, results of our experiments support the connection
between essentialness as determined in the shRNA screens and
drug sensitivity for a number of targeted drugs such as EGFR
inhibitors, BCL2/BCLXL inhibitors, p38 MAP kinase inhibitors, PLK1
inhibitors, palbociclib, and others. In addition, our KEGG pathway
analysis tools help to solidify the connection between functional
druggable targets and essential pathways in individual cancer cell
lines. The recent paper by Lin et al.52 highlights the importance of
linking gene essentiality data with drug sensitivity for the proper
clinical development of targeted drugs.
One concern that investigators have with genome-wide screens

is the possibility of false-positive results that point to genes that
are incorrectly identified as essential. In our hands, using the
Cellecta library of shRNAs and the statistical method we
developed for analyzing the screen data, false positives have
not been a significant issue. So far, we have never failed to confirm
a screen hit using individual shRNA constructs that target putative
essential genes. However, we do consider false negatives to be an
issue with our screen data. The cut points that we chose to
determine the genes considered to be hits in the screen typically
yield approximately 1000 hits per cell line. We intentionally chose
a conservative cut point so as to minimize false positive hits. The
consequence of this decision is more false-negative results that
one has to be cautions of. For example, SUM-159 cells have a
classic HRAS point mutation, and in the SUM-159 screen, this gene
was ranked 2378 out of approximately 15,000 genes queried in
the screen. Had we chosen a more liberal cut-off point; this gene
could have been considered a hit. For this reason, in all of the data
that are returned on specific genes using the data mining tools in
the SLKBase, the actual screen hit ranking is provided along with
the hit status, so investigators can see for themselves how
“essential” any gene is in any given cell line. We have identified
other examples of false negatives for the SUM lines that are
important to discuss. For example, SUM-44 cells express very high
levels of ESR1 mRNA and ER protein, both of which can be seen on
the SLKBase. Furthermore, we have previously shown that while
SUM-44 cells are relatively estrogen-independent and Tamoxifen-
resistant, these cells are sensitive to ER degraders such as
fulvestrant, and knock-down of ESR1 using shRNAs resulted in

Fig. 6 Essentialness of the TGF-beta and WNT signaling pathways in SUM-229 cells. KEGG Pathway Engine generated data showing the
essentialness of the TGF-beta and WNT signaling pathways in the SUM-229 cells.

Table 6. Gene Query Results for BCL2L1.

Cell line Rank in screen ScreenHit LogFoldChange DnaAmp

SUM185 5 1 1.165838415 1.1286

SUM52 339 1 0.531558612

SUM190 598 1 0.351049571

SUM149 1043 1 0.273146406

MCF10A 1283 0

SUM1315 1561 0

SUM229 4105 0 7.609930667

MCF7_LTED 5051 0

MCF7 5976 0

SUM44 9494 0 −0.008303944

SUM225 9547 0 0.714527433

SUM102 12,000 0 0

SUM159 13,674 0 6.070714333
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profound loss of cell viability. Thus, the screen hit ranking of ESR1
of 4857 in SUM-44 cells appears to be a false-negative result and
suggests that the shRNAs that target ESR1 in the Cellecta library
did not have a strong enough effect on knock-down of the very
high mRNA levels to result in a sufficiently high drop-out rate to
score as a hit in the screen.
In summary, our in-depth analysis of the SUM breast cancer cell

lines, and more recently, other breast cancer cell lines, reinforces
the importance of taking a systems-level approach to under-
standing breast cancer cell lines, and not lose sight of the fact that
each cell line was derived from an individual patient with a
specific set of molecular characteristics. As part of this approach, it
is critical that investigators obtain and work with cancer cell lines
appropriately to ensure that they are working with the cells they
think they are, and to ensure that phenotypic drift is minimized, as
any alteration in culture conditions from those originally used to
develop the cell line can result in selection of subpopulations
present within the cell line. By taking such measures, cancer cell
lines are stable models of the type of breast cancer that was
experienced by the patients from which they came, making it
possible to use these model systems to develop novel and
innovative reverse-engineering strategies for each cell line
(patient) and ultimately use those strategies to solve the n of 1
problem, and truly make targeted cancer therapy precise and
effective.

METHODS
Regents and cell lines
All inhibitors were purchased from Selleckchem. The SUM breast cancer
cell lines were maintained as described previously. MCF10A cells were a
gift from Dr. Herb Soule at the Michigan Cancer Foundation. The molecular
subtypes of each of the SUM lines along with additional information
regarding each line are presented in the SLKBase (https://
sumlineknowledgebase.com/?page_id=350). Briefly, SUM-44 and SUM-52
are luminal B cells; SUM-102, SUM-149, SUM-159, SUM-229, and SUM-1315
are triple-negative breast cancer cells. More specifically, SUM-159 and
SUM-1315 cells map to the claudin-low subtype. SUM-190 and SUM-225

cells are HER2-positive breast cancer cells, and SUM-185 maps to the
androgen-receptor enriched sup-type of breast cancer cells.

Small-molecule inhibitor dose response assays
Cells were plated in 24-well plates at a density of 15–30,000 cells per well.
Cells were allowed to recover for 4 days before being treated in triplicate
with the indicated inhibitors or DMSO control every 24 h for 4 days. On the
fifty day, cell number was determined by harvesting and counting nuclei
on a Z1 Coulter Counter (Beckman Coulter, Brea, CA, USA). To prepare
nuclei for counting, cells were washed three times with PBS, incubated on
a rocker table with 0.5 ml per well HEPES/MgCl2 buffer (0.01mM HEPES
and 0.015mM MgCl2) for 5 min, and lysed for 10min with ethyl
hexadecyldimethylammonium solution. For most of the cell lines, IC50s
and the standard deviations were determined using GraphPad. For the
SUM-229 and SUM-44 cell lines that were resistant to Alpelisib and as a
result did not yield a large enough change in cell growth to result in a
sigmoid curve interpretable by GraphPad, a local polynomial regression
was used (LOESS with a span= 1) to fit a local regression curve over the
range of data and determine the IC50 value. The 95% prediction interval
was calculated around the curve, and the interval at the point where cell
concentration was predicted to be 50% of the starting value (coinciding
with the IC50 concentration) was inverted to derive the error for the
IC50 value.

Comparative genomic hybridization
Microarrays with an average resolution of 35 kb (Agilent Human Genome
CGH Microarray 44k chip) were hybridized after direct labeling of DNA with
fluorescent dyes. DNA extraction was performed using standard column
purification (Qiagen) and normal human female DNA was used as the
reference. Dye-reversed replicates were performed. Regions of chromoso-
mal amplification and deletion were determined based on circular binary
segmentation provided by the Bioconductor DNA copy library.

Expression profiling
Total RNA was prepared using standard methods. RNA integrity was
verified on an Agilent 2200 TapeStation (Agilent Technologies, Palo Alto,
CA) utilizing samples with RINs ≥8. Total RNA (100–200 ng) was used to
prepare RNA-Seq libraries using the TruSeq RNA Sample Prep Kit following
the protocol as described by the manufacturer (Illumina, San Diego, CA).

Fig. 7 Proteomic and phospho-proteomic analysis of the SUM panel. a Relative expression values for various cell signaling proteins and
phospho-proteins that were determined for the SUM line panel using Reverse Phase Protein Arrays (RPPA).
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Libraries were clustered at a concentration to ensure at least 100 million
reads per sample on the cBot as described by the manufacturer (Illumina,
San Diego, CA). Clustered RNA-seq libraries were paired-end sequenced
using version 4 chemistry with 2 × 125 cycles on an Illumina HiSeq2500.
Demultiplexing was performed utilizing bcl2fastq v2.17.1.14 to generate
Fastq files for downstream analysis.

RPPA analysis
For RPPA analysis, cells were lysed in 100 μl RPPA lysis buffer containing
1% Triton X‐100, 50 mM HEPES, 150 mM NaCl, 1.5 mM MgCl2, 1 mM EGTA,
100mM sodium fluoride, 10 mM sodium pyrophosphate, 1 mM sodium
orthovanadate, 10% glycerol and protease/phosphatase inhibitors (Roche
#05056489001/04906837001). Protein concentrations were determined by
Bradford assay (BioRad) and concentrations were adjusted to 1 mg/ml. The
samples were then mixed with 4× SDS sample buffer containing 0.2 M
Tris–HCl (pH 8.0), 40% glycerol, and 8% SDS, boiled for 5 min, and stored at
−80 °C until shipment to the RPPA Core Facility at MD Anderson for
analysis.

Exome sequencing
Exome sequencing of SUM cell line DNA was performed essentially as
described previously53. Briefly, Agilent Sure Select XT reagents were used
to prepare sequencing libraries. Hybrid capture was performed using
Agilent Sure SelectXT Human All Exon V4+ UTRs, and 100 bp paired-end
sequencing was performed on a HighSeq2000 achieving a median
coverage of greater than 50-fold. Reads were aligned to the human
reference genome GRCh37 using the Burrow-Wheeler Aligner. The data
were processed further using the Genome Analysis Toolkit (GATK). For
inclusion in the SLKBase, we cross-referenced all called SNVs with data in
COSMIC and only report mutations that have occurred in COSMIC > 5
times. For the data from DepMap portal, we only report on the SLKBase
mutations considered to be hot-spot mutations in COSMIC.

Genome-scale shRNA screens
The detailed methods that we used for our shRNA screens of the SUM lines
have been reported previously12. Briefly, virus pools expressing shRNA
constructs were prepared according to the Cellecta Pooled Lentiviral
shRNA Libraries User Manual protocol (www.cellecta.com). HEK 293 T cells
were transfected with each of the three Cellecta library plasmid DNA pools
(Human Modules 1–3) and the Cellecta Ready-to-Use Packaging Mix (Cat
#CPCP-K2A). For each module, virus was titered and used to transduce 5 ×
107 target cells at a MOI of ~0.3 in the presence of 5 µg/ml polybrene.
Following transduction, cells were cultured for 3 days to allow expression
of the resistance marker and non-transduced cells were eliminated from
the culture by addition of the selective agent puromycin to the growth
media. Three days after the addition of puromycin, cells were trypsinized
and one half of the total population was harvested for genomic DNA
preparation. The remaining cells were plated and grown for ~5–7
population doublings before harvesting for genomic DNA preparation.
Genomic DNA was prepared by phenol:chloroform extraction according to
the Cellecta Pooled Lentiviral shRNA Libraries User Manual protocol.
Barcode sequences were amplified from genomic DNA by two rounds of

PCR as described previously. Amplified barcode sequences were run on a
3.5% agarose gel and purified using a QIAquick Gel Extraction Kit (Qiagen)
according to the manufacturer’s instructions. Isolated barcode sequences
were further purified using the PureLink Quick PCR Purification Kit
(Invitrogen) according to the manufacturer’s instructions. For sequencing,
purified barcodes were diluted to 0.75 ng/µl using buffer EB (Qiagen).
Amplicons were clustered at 17 pM including 30% (v/v) PhiX to add
sequence diversity. Single end (SE) clustering was performed on a Cbot
according to the manufacturer’s protocol (Illumina, San Diego, CA). A total
of 36 cycles of SE sequencing were performed on an Illumina HiScanSQ.
Custom primer GexSeqS (5′-AGAGGTTCAGAGTTCTACAGTCCGAA-3′, HPLC
Purified) was added to the Illumina sequencing primers at 0.5 µM. Fastq
files were generated using CASAVA 1.8.2 and processed using Trimmo-
matic software (www.usadellab.org) to trim read lengths to 18 nucleotides.
Trimmed reads were deconvoluted using a Cellecta Barcode Analyzer and
Deconvoluter software. Fold-depletion scores for each shRNA were
calculated as the ratio of the read count at the reference time point
versus the final time point.
To identify screen hits, log-transformed depletion scores and a quantile

estimation approach in which the 80th percentile for each gene was
calculated from its empirical distribution were used. This avoided the bias

induced by the varying number of scores per gene and accounted for the
skewness of the empirical distributions. Genes were then ranked by this
log-quantile score and the empirical distribution of the log-quantile score
was calculated.
To generate a null distribution of log fold-depletion scores, it was

assumed that the majority of genes (>95%) would not be depleted, and
their log-quantile scores would have a normal distribution. Based on this
assumption, the median of the empirical distribution was used as an
estimate of the mean of the null distribution. The estimate of the standard
deviation of the null distribution was defined as the 97.5th quantile minus
the 2.5th quantile, divided by 4. This was based on the knowledge that
95% of the data in a normally distributed variable falls between ± two
standard deviations from the mean. Using this null distribution, all genes
having log fold-depletion scores that were larger than the 95th percentile
of the null distribution were identified as “hits”. Using this method, all
genes that were hits in the screen had at least two, and usually more,
shRNAs with depletion scores above the cut point.

Acquisition and modification of data for other breast cancer cells
We acquired data derived from other breast cancer cell lines from the
Broad Institute’s Cancer Dependency Map project (DepMap)8, available at
https://depmap.org/portal/download. We obtained metadata for each
breast cancer cell line, such as the cell line’s Achilles ID, and then
processed the data to prepare it for analysis with the tools available on the
SLKBase. We performed median-centering normalization of the gene
expression data. Specifically, to normalize the expression value of a gene
within a cell line, we subtracted the expression value by the median
expression of the gene among all breast cancer cell lines. Along with
expression data, we obtained copy number amplification, mutation data
(COSMIC hit count), and CRISPR scores of gene dependency effects that
were calculated using the CERES method54. We followed DepMap by
considering hits in the CRISPR screens to be those having CERES scores of
≤−0.5.

Development of MySQL database for breast cancer cell lines
We developed a MySQL database to store the functional genomics data for
the breast cancer cell lines. This database is hosted on Google App Engine.
The database contains tables for cell lines, genes, and proteins. Gene tables
contain basic information from Entrez (gene name, symbol, ID) as well as a
Boolean indicator if the gene is annotated as an oncogene by OncoKB. This
allows us to unify gene essentiality information with a manual oncogene
annotation. The database also contains linking tables between cell lines
and genes that store the functional genomics data of a gene within a cell
line (and likewise for proteomics data). For example, BCL2L1 has a linking
table with each of the cell line tables; this linking table contains values for
fold change, CNA, number of COSMIC mutations, etc.

Development of R-Shiny apps for mining the database
We used the Shiny R package (https://shiny.rstudio.com) to develop the
tools available on the SLKBase website and the tools are deployed on
RStudio’s shinyapps.io (https://shinyapps.io). Each of the apps uses the R
package “RMySQL” to query the MySQL database for functional genomics
data. Furthermore, the Pathway Engine tools utilize the “Pathview”
package to map the genomics data to genes within KEGG pathways.
The pathway essentialness algorithm was implemented in Python. Our

implementation uses the NetworkX Python library to store the graph
structure of KEGG pathways. We wrote scripts to parse the KEGG Markup
Language (KGML) and convert them to the format of an adjacency matrix
suitable for input to NetworkX.

Development of the SUM breast cancer cell line Knowledge Base
The SLKBase web site was developed using WordPress tools and the
HitMag style.

Reporting summary
Further information on research design is available in the Nature Research
Life Sciences Reporting Summary linked to this article.
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DATA AVAILABILITY
All the data sets supporting the findings of this study are publicly available in the
SLKBase platform here: https://sumlineknowledgebase.com/. RPPA data, drug
sensitivity data, Alpelisib response data, and data on dose response are also in the
figshare repository, as part of this data record (https://doi.org/10.6084/m9.
figshare.12497630)26. The data from the 27 additional breast cancer cell lines that
were incorporated into our database are available from DepMap portal (https://
depmap.org/portal/), a publicly available data repository.

CODE AVAILABILITY
The R-shiny scripts that run the data mining tools on the web site are available at
https://github.com/couchds/SLKBase-tools.
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