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Prediction of the functional impact of missense variants
in BRCA1 and BRCA2 with BRCA-ML
Steven N. Hart 1✉, Eric C. Polley1, Hermella Shimelis2, Siddhartha Yadav3 and Fergus J. Couch1,2

In silico predictions of missense variants is an important consideration when interpreting variants of uncertain significance (VUS) in
the BRCA1 and BRCA2 genes. We trained and evaluated hundreds of machine learning algorithms based on results from validated
functional assays to better predict missense variants in these genes as damaging or neutral. This new optimal “BRCA-ML” model
yielded a substantially more accurate method than current algorithms for interpreting the functional impact of variants in these
genes, making BRCA-ML a valuable addition to data sources for VUS classification.
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INTRODUCTION
Failure to accurately predict the effects of missense variants in
BRCA1 and BRCA2 confound interpretation of gene sequencing
studies and clinical care. Until recently, few missense variants had
been functionally evaluated using validated assays, so interpreta-
tions of pathogenicity have relied on in silico predictions of
functional effect in combination with family-based data. Many in
silico prediction models are derived from supervised learning
methods using variants in many different genes across the
genome. The objective of supervised learning is to identify and
weight a set of input features to correctly predict whether a
variant is damaging, neutral, or somewhere in between.
Machine learning (ML) is a suite of computational algorithms

that are able to parse data, learn higher dimensional representa-
tions of that data, and ultimately make a prediction using that
data. A subclass of ML, known as supervised learning, involves
utilizing a training dataset with known outcomes and learning a
function to be able to evaluate new unknown outcome
observations and make predictions of the outcome. Examples of
ML include logistic regression algorithms and more complex ones
like random forests, gradient boosting machines, and neural
networks. Choosing the algorithms most suited to a particular task
is an active area of research, since no single algorithm outper-
forms all others on every task1. An efficient exploration of many
different ML algorithms can be achieved through an automated
machine learning (AutoML) approach. To what extent an optimal
ensemble of methods could be determined by combining AutoML
with these algorithms is the focus of this paper.
A key limitation to the application of existing in silico models to

assessment of variants in a specific gene is the reliance on known
damaging variants in other genes. Such variants are likely to cause
a number of different effects (e.g., alternative splicing, disruption
of protein–protein interactions, altered protein folding, etc.) that
may or may not be relevant for a given gene of interest. Gene-
specific models will likely outperform any general model, but only
a few genes have been characterized to a degree that would be
informative for single gene models. Two such exceptions are
BRCA1 and BRCA2. The landscape of functionally characterized
variants in BRCA1 has dramatically increased because of three
major analyses. Starita et al.2 measured the impact of 1056 N-

terminal variants on the homologous recombination DNA repair
activity of BRCA1. Findlay et al.3 exploited the essentiality of BRCA1
for cell survival by used a saturating genome editing approach in
HAP1 cells to evaluate nearly 4000 SNVs (n= 1837 distinct
missense). Finally, Fernandes et al.4 reported on analysis of 354
distinct missense variants (n= 79 in IARC classes 0 or 1 [benign] or
4,5 [pathogenic]) in the BRCT domain of BRCA1 using a validated
transcriptional assay. Combined with results from a homology
directed repair assay of 207 missense variants in the DNA-binding
domain of BRCA25, there are now sufficient numbers of variants to
apply supervised learning methods to better predict damaging
mutations in BRCA1 and BRCA2.

RESULTS
Optimal models for BRCA1 and BRCA2
An iterative process was used to build hundreds of predictive
models with different algorithms (Linear models, Gradient
Boosting Machines, XGBoost, Neural Networks, Random Forests,
and Extremely Randomized Forests) and their associated hyper-
parameters. For BRCA1, 663 model/parameter combinations were
tested with AutoML. The best performing model was a Gradient
Boosting Machine with 48 trees of depth= 8 and between 16–33
leaves. The mean MCC was 0.66 ± 0.049 s.d., corresponding to
89.5% sensitivity and 91.5% specificity. MutPred, AlignGVGD, and
VEST3 contributed to 28% of the model overall, followed by CADD
and REVEL at 7% each, and all others under 6.2%. Similarly, for
BRCA2, 76 model/parameter combinations were tested. The best
performing model being an XGBoosted Machine with 50 trees
with a mean MCC of 0.73 ± 0.057 s.d, sensitivity of 97.7%, and
specificity of 85.1%. Variable importance for this model was driven
by CADD, MutPred, and MCAP (all >10%), followed by EigenRaw
and LRT, with the remaining predictors contributing below 6.4%.
Throughout the remainder of the paper, we will simply refer to
these gene-specific models as BRCA-ML.
For the individual predictors (excluding BRCA-ML), the best

model as determined by Matthews correlation coefficient (MCC)
for BRCA1 was MutPredScore (MCC= 0.399, sensitivity= 94.5%,
and specificity= 77.8%) and BayesDel (MCC= 0.673, sensitivity=
85.3%, and specificity= 83.0%) for BRCA2. More globally, we show
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the receiver operating and precision-recall curves in Fig. 1, which
demonstrates better performance of BRCA-ML compared with
other prediction models. In particular, the high number of false
negative calls in BRCA1 many of the models yielded low area
under the precision-recall curves. BRCA-ML scores for every
possible missense mutation caused by a single-nucleotide
variation are also given in Supplementary Data Set 1.
Figure 2 shows the gene-level scores for every possible

missense variant caused by a single-nucleotide variant in BRCA1
and BRCA2 using BRCA-ML and BayesDel9, a commonly used and
highly accurate predictor. While BayesDel is correctly assigning
higher scores to known functional domains, the higher scores are
not much more than predicted benign variants across the gene.
However, in BRCA-ML, the signal to noise ratio is considerably
higher between damaging and neutral variants. This evidence
suggests that, unlike BayesDel, changing the threshold for
damaging mutations will not significantly affect the number of
predicted damaging mutations in BRCA-ML.

DISCUSSION
We have shown that AutoML methods are efficient means to
derive optimal ML models for predicting damaging missense
mutations in BRCA1 and BRCA2. The final models derived for each
gene, which we collectively term BRCA-ML, show marked
improvements in MCC and other metrics with respect to individual
missense prediction algorithms.
Even in the age of large-scale mutational scanning techniques

like those from Findlay3 and Starita2,3, in silico mutation analysis
will likely continue to be relevant. While the number of variants
functionally tested is impressive for both studies (1056 and 3893,
respectively), there are over 12,520 and 22,772 possible single-
nucleotide variants in BRCA1 and BRCA2. Therefore, it could be
several years before the technology exists to scale to all possible
variants, hence a short term need for computational predictions.

It should be noted that there remain several limitations for
these models. First, there are a limited number of known
damaging mutations in BRCA1 and BRCA2 from which to build a
model. The lack of damaging mutations limits the model ability to
capture the complete variability of input data. Second, the training
data are limited to characterized mutations in regions of the
proteins known to be associated with impaired DNA damage
repair. For example, the only missense variants in BRCA2 that are
associated with disease are in the DNA-binding domain. It is not
known if variants in other domains that we or others predict to
cause damaging missense mutations are able to inhibit DNA
repair. However, using the available functional data from BRCA1 in
regions outside the BRCT and RING domains, BRCA-ML demon-
strated a sensitivity of 74% and specificity of 98%, suggesting that
extrapolation beyond the known domains may still perform well.
Third, it is possible that there is some overfitting of the model due
to the inherent biases in the 25 input features from dbNSFP.
However, by keeping the test set isolated from the training data,
this influence should be minimal. More known mutations in these
genes will be necessary to quantify the amount of overfitting.
The data presented in this paper show that highly accurate

prediction of missense variants in BRCA1 and BRCA2 are not only
possible but simple to access (see Supplementary Data Set 1 for all
possible SNVs in both genes). This improved performance in
BRCA-ML should provide higher quality evidence to genetic
counselors and researchers for interpreting deleteriousness of
missense variants.

METHODS
AutoML
We employed the AutoML approach with the R (version 3.4.2) package h2o.
ai (version: 3.16.0.2)6 to identify the optimal model for predicting the
functional effect of missense variants in BRCA1 and BRCA2. Variants were
loaded in the following order: Hart5, Startia2, Fernandes4, and Findlay3;
keeping only variants not observed in the previous studies. We also
included new BRCA2 functional data for 15 neutral (V2527A, G2544S,

Fig. 1 Receiver operating curves (top) and precision-recall curves (bottom) for BRCA1 (right) and BRCA2 (left) for the hold out test set.
The ideal location in the ROC curve is the top left corner, whereas the optimal position in the PR curve is the top right.
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I2627V, M2634T, Y2658H, A2671S, I2675V, V2728A, P2767S, A2770T,
A2770D, S2806L, I2822F, S3123R, and Q2829R) and seven damaging
mutations (F2562C, W2619G, K2657T, D2723N, L2753P, Y3006D, and
L3101R) (Supplementary Data Set 2). Since not all variants could
unequivocally be assigned to a given class, we selected variants for
inclusion if they satisfied the following criteria: “FUNC” (neutral) or “LOF”
(damaging)3, HDR score ≤0.33 (damaging) or ≥0.772, or International
Agency for Research on Cancer classes 0,1 (neutral) and 4,5 (damaging)4.
Variants were excluded if they were not observed in known functional
domains in BRCA1 (BRCT: amino acids 1–109, RING: amino acids
1642–1855) or BRCA2 (DNA Binding: amino acids 2479–3192). This left
1902 variants (n= 259 damaging) for BRCA1 and 202 variants (n= 74
damaging) for BRCA2.
For training each gene, 80% of variants were selected and trained to

maximize the per class accuracy, with robustness assessed using fivefold
cross-validation. Input features were missense prediction models from
dbNSFP (version 3.4)7, including SiftScore, Polyphen2HdivScore, Poly-
phen2HvarScore, LrtScore, MutationtasterScore, FathmmScore, Provean-
Score, Vest3Score, MetasvmScore, MetalrScore, MCapScore, RevelScore,
MutpredScore, CaddRaw, DannScore, FathmmMklCodingScore, Genoca-
nyonScore, IntegratedFitconsScore, Gm12878FitconsScore, H1HescFitcons-
Score, HuvecFitconsScore, BayesDel, AlignGVGDPrior, EigenRaw, and
EigenPcRaw. AlignGVGD8 and BayesDel9 were also added using the BioR
framework10. Optimal cutpoints for each of the individual input features
(n= 25) from dbNSFP, AlignGVGD, and BayesDel were determined using
the same training data as used in AutoML so as to make a fair comparison.

Evaluation
For the test set evaluation, statistical measures of sensitivity, specificity
were computed with the caret package11. The MCC is used throughout as
an optimal metric for gauging the performance of a binary classifier, as it
represents a singular value that takes into consideration the proportion of
each class. The values of MCC range from −1 to 1, where −1 represents
the worst possible agreement and 1 representing perfect agreement. We
also present traditional measures of performance for ML models such as
receiver operating curves and precision-recall curves. All chromosomal
locations and changes are relative to the hg19/GRCh37 human
genome build.
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