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Application of convolutional neural networks to breast
biopsies to delineate tissue correlates of mammographic breast
density
Maeve Mullooly1,2,12*, Babak Ehteshami Bejnordi3,4,12, Ruth M. Pfeiffer2, Shaoqi Fan 2, Maya Palakal2, Manila Hada2, Pamela M. Vacek5,
Donald L. Weaver5, John A. Shepherd6,7, Bo Fan6, Amir Pasha Mahmoudzadeh6, Jeff Wang8, Serghei Malkov6, Jason M. Johnson9,
Sally D. Herschorn 5, Brian L. Sprague5, Stephen Hewitt10, Louise A. Brinton2, Nico Karssemeijer3, Jeroen van der Laak 3,
Andrew Beck4,13, Mark E. Sherman11,13 and Gretchen L. Gierach 2,13

Breast density, a breast cancer risk factor, is a radiologic feature that reflects fibroglandular tissue content relative to breast area or
volume. Its histology is incompletely characterized. Here we use deep learning approaches to identify histologic correlates in
radiologically-guided biopsies that may underlie breast density and distinguish cancer among women with elevated and low
density. We evaluated hematoxylin and eosin (H&E)-stained digitized images from image-guided breast biopsies (n= 852 patients).
Breast density was assessed as global and localized fibroglandular volume (%). A convolutional neural network characterized H&E
composition. In total 37 features were extracted from the network output, describing tissue quantities and morphological structure.
A random forest regression model was trained to identify correlates most predictive of fibroglandular volume (n= 588).
Correlations between predicted and radiologically quantified fibroglandular volume were assessed in 264 independent patients. A
second random forest classifier was trained to predict diagnosis (invasive vs. benign); performance was assessed using area under
receiver-operating characteristics curves (AUC). Using extracted features, regression models predicted global (r= 0.94) and
localized (r= 0.93) fibroglandular volume, with fat and non-fatty stromal content representing the strongest correlates, followed by
epithelial organization rather than quantity. For predicting cancer among high and low fibroglandular volume, the classifier
achieved AUCs of 0.92 and 0.84, respectively, with epithelial organizational features ranking most important. These results suggest
non-fatty stroma, fat tissue quantities and epithelial region organization predict fibroglandular volume. The model holds promise
for identifying histological correlates of cancer risk in patients with high and low density and warrants further evaluation.

npj Breast Cancer            (2019) 5:43 ; https://doi.org/10.1038/s41523-019-0134-6

INTRODUCTION
Among women, invasive breast cancer is the most commonly
diagnosed female cancer in most countries worldwide.1 Increased
mammographic breast density, which describes the radiologically
appearing white tissue on a mammogram, is one of the strongest
breast cancer risk factors2. A recent meta-analysis found that
percent density, which reflects the proportion of total breast area
comprised of dense fibroglandular tissue, is a stronger predictor of
risk than absolute dense area.3 It is estimated that 43% of US
women 40–74 years of age have dense breasts,4 but mechanisms
accounting for the relationship between elevated density and
breast cancer risk remain ill-defined.
Studies highlight that pre-cancerous lesions5 and breast

tumors6 are more likely to occur in mammographically dense
regions within the breast, suggesting the relevance of localized as
well as global density measures in cancer development. The few
studies that have examined histological correlates of breast
density have suggested that higher breast density is associated
with greater epithelial cell content and non-fatty stroma.7,8 While

most studies to date have utilized quantitative microscopy to
characterize breast tissue from women undergoing procedures for
suspect lesions, one study of non-cancerous autopsy breast tissues
also showed positive relationships between epithelial and non-
fatty stromal tissue, particularly stromal collagen area, and percent
density.9

Advancements in automated digital pathology now allow
increased opportunities for characterization and quantification of
breast tissue organization that can complement traditional
microscopic assessments. Moreover, increasingly, studies are
utilizing automated digital tools for complex tissue pathology
assessment of breast cancer outcomes.10,11 The recent incorpora-
tion of progressive artificial intelligence platforms into digital
pathology work systems now allows the utilization and expansion
of these approaches to larger scale molecular epidemiological
studies. Specifically, deep learning methods such as convolutional
neural networks,12 are increasingly being employed for histologi-
cal image recognition with high accuracy and reproducibility.13–15

We previously developed a deep learning convolutional neural
network model for the assessment of tissue characteristics in

1Division of Population Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland. 2Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda,
MD, USA. 3Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands. 4Beth Israel Deaconess Medical Center, Harvard Medical School,
Boston, MA, USA. 5University of Vermont and University of Vermont Cancer Center, Burlington, VT, USA. 6University of California, San Francisco, San Francisco, CA, USA. 7University
of Hawaii Cancer Center, Honolulu, HI, USA. 8Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan. 9The University of
Texas MD Anderson Cancer Center, Houston, TX, USA. 10Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA. 11Mayo Clinic, Jacksonville, FL, USA. 12These
authors contributed equally: Maeve Mullooly, Babak Ehteshami Bejnordi. 13These authors jointly supervised this work: Andrew Beck, Mark E. Sherman, Gretchen L. Gierach.
*email: maevemullooly@rcsi.ie

www.nature.com/npjbcancer

Published in partnership with the Breast Cancer Research Foundation

1
2
3
4
5
6
7
8
9
0
()
:,;

http://orcid.org/0000-0001-5894-7510
http://orcid.org/0000-0001-5894-7510
http://orcid.org/0000-0001-5894-7510
http://orcid.org/0000-0001-5894-7510
http://orcid.org/0000-0001-5894-7510
http://orcid.org/0000-0002-9193-6490
http://orcid.org/0000-0002-9193-6490
http://orcid.org/0000-0002-9193-6490
http://orcid.org/0000-0002-9193-6490
http://orcid.org/0000-0002-9193-6490
http://orcid.org/0000-0001-7982-0754
http://orcid.org/0000-0001-7982-0754
http://orcid.org/0000-0001-7982-0754
http://orcid.org/0000-0001-7982-0754
http://orcid.org/0000-0001-7982-0754
http://orcid.org/0000-0002-0165-5522
http://orcid.org/0000-0002-0165-5522
http://orcid.org/0000-0002-0165-5522
http://orcid.org/0000-0002-0165-5522
http://orcid.org/0000-0002-0165-5522
https://doi.org/10.1038/s41523-019-0134-6
mailto:maevemullooly@rcsi.ie
www.nature.com/npjbcancer


hematoxylin and eosin (H&E)-stained whole slide breast tissue
images,16,17 which classified whole slide images as epithelial,
stromal and fat tissue. In this current study, we hypothesized that
application of this model to whole slide images of H&E-stained
fixed tissue specimens collected from diagnostic image-guided
breast biopsies might enable identification of specific histologic
correlates that underpin breast density, including both global and
localized (peri-lesional) measures. Secondly, as more than 25
million women in the US have dense breasts,4 and because only a
small proportion of these women will develop breast cancer, we
also aimed to identify tissue correlates of breast density that may
be important for distinguishing malignant from benign biopsy
diagnoses separately among women with high and low breast
density, to help inform cancer risk stratification among women
undergoing a biopsy following an abnormal mammogram.

RESULTS
Patient characteristics
Overall, patient characteristics were largely similar between the
training (n= 588) and testing (n= 264) sets (Table 1). The mean
age was 50 years, and most women were of white race (91.3%),
college educated (82.3%), of normal weight (50.4%) and
premenopausal (58.1%). Most mammograms were categorized
after work-up as suspicious abnormality (BI-RADS diagnostic
category 4: 83.7%). The remainder were categorized as probably
benign (BI-RADS diagnostic category 3: 5.9%) or highly suggestive
of malignancy (BI-RADS diagnostic category 5: 10.5%). A little over
half of the core needle biopsies were ultrasound-guided (54.6%),
with the remainder being stereotactic-guided (45.3%). Median
global fibroglandular volume was 34.4%, and median localized
fibroglandular volume was 40.0%. No difference was observed for
global and localized fibroglandular volume between the training
and testing sets. Among the n= 1036 biopsy targets, most biopsy
diagnoses were benign (78.2%). Benign breast disease diagnoses
were categorized according to benign non-proliferative (including
non-proliferative fibrocystic change and other benign and discrete
entities), proliferative without atypia (including ductal hyperplasia
and sclerosing adenosis) and proliferative with atypia (including
atypical ductal and lobular hyperplasia). Further, 8.0% of all
biopsies yielded in-situ lesions, and 13.8% were invasive
carcinoma (Table 1).

Associations between histologic features and breast density
(global and localized fibroglandular volume)
As mentioned in the methods, 37 features were extracted from
the output of the convolutional neural network model. Using
these identified features in separate random forest regression
models trained to predict global and localized fibroglandular
volume, the correlations between predicted and actual fibro-
glandular volume measurements were 0.94 for global and 0.93
for localized fibroglandular volume, respectively. The top 10
correlates identified as most important for predicting both
fibroglandular volume measurements are shown in Table 2, and
the corresponding Gini index plots for global and localized
fibroglandular volume are shown in Supplementary Fig. 2.
Overall, similar features were identified as correlates of global
and localized fibroglandular volume measures; however, some
differences were noted. Normalized non-fatty stromal tissue
quantity (i.e., stromal tissue quantity normalized to total breast
tissue area on the whole slide image) and normalized fat
quantity (i.e., fat tissue quantity normalized to breast tissue area
on the whole slide image) were the strongest predictors of both
global and localized fibroglandular volume. Of note, epithelium
quantity did not rank among the top 10 features for global
fibroglandular volume and was ranked 8th for localized
fibroglandular volume. Features characterizing the spatial

arrangement of the epithelial regions assessed using an area-
Voronoi diagram18,19 were among the top 10 features ranked for
prediction of both global and localized fibroglandular volume.
Sensitivity analyses were conducted to examine the influence

of body mass index (BMI) and menopausal status on the
predictions, and results from these investigations are detailed
in Supplementary Table 2. BMI was consistently ranked as the
strongest predictor of fibroglandular volume when included in
the model. Interestingly, in this model, the normalized fat
quantity was the next most important feature for both global
and localized fibroglandular volume, followed by normalized
non-fatty stroma quantity. When analyses were stratified by
menopausal status, some differences in top ranking features
were noted as outlined in Supplementary Table 2. For global
fibroglandular volume prediction, the top-ranked features were
similar; however, for localized fibroglandular volume, fat-related
variables ranked lower among postmenopausal women than for
premenopausal women.

Exploratory investigation relating histologic features to biopsy
diagnosis among patients with high and low fibroglandular
volume
As elevated breast density is common among women,4 yet only a
small proportion will develop invasive breast cancer, we aimed to
identify histological correlates that could inform future breast
cancer risk stratification among women undergoing diagnostic
biopsy with either high or low breast density. The main objective
of this exploratory investigation was to examine if the histologic
features that were associated with cancer status were similar and/
or different among women with low vs. high fibroglandular
volume. Thus, using the 37 features, a random forest classifier was
trained to predict invasive cancer vs. benign breast disease among
women stratified into high or low fibroglandular volume (using
the median cut-point of global (34.4%) and localized (40%)
fibroglandular volume from the training population). The top-
ranked features for predicting invasive cancer status separately
among women with high vs. low fibroglandular volume are shown
in Table 3. Firstly, features associated with the spatial arrange-
ments of the epithelial regions were ranked most important (top
two features) for predicting cancer status among women,
irrespective of global fibroglandular volume (Table 3). H&E images
highlighting examples of the top-ranked epithelial region spatial
arrangement features, with corresponding mammograms from
patients whose biopsies yielded diagnoses of atypical ductal
hyperplasia and invasive carcinoma, are shown in Fig. 2a, b,
respectively. Despite similar radiological global fibroglandular
volume on both mammograms, the H&Es from each diagnostic
biopsy, targeted to locally dense regions within the breast, reflect
differences in the spatial arrangement of epithelium (Fig. 2a, b).
Within Fig. 2, two features are highlighted: the mean and median
area ratio of each epithelial region to its Voronoi region. Figure 2a
represents a H&E whole slide image with low mean and median
area ratio of each epithelial region to its Voronoi region. This slide
has a diagnosis of atypical ductal hyperplasia and has both global
and localized fibroglandular volume >median (global fibrogland-
ular volume: 45%; localized fibroglandular volume: 61%). In
contrast, Fig. 2b represents a H&E whole slide image with higher
mean and median area ratio of each epithelial region to its
Voronoi. This slide has a diagnosis of invasive carcinoma and has
both global and localized fibroglandular volume >median (global
fibroglandular volume: 49%; localized fibroglandular volume:
49%). Features of epithelial regions were also strongly associated
with invasive cancer status in models stratified by localized
fibroglandular volume. Among women with high localized
fibroglandular volume, epithelial morphology features ranked as
the most important (4 out of the top 5). Among women with low
localized fibroglandular volume, epithelium quantity and the
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Table 1. Selected characteristics of study participants from the BREAST-Stamp Project, who were referred for an image-guided breast biopsy,
stratified by the training and testing sets (n= 852)

Characteristic Overall (N= 852) Training (N= 588) Testing (N= 264) P-value*

n % n % n %

Age at ipsilateral mammogram (years) 0.85

<45 175 20.5 119 20.2 56 21.2

45–49 217 25.5 152 25.9 65 24.6

50–54 202 23.7 142 24.2 60 22.7

55–59 145 17.0 95 16.2 50 18.9

60+ 113 13.3 80 13.6 33 12.5

Mean (SD) 50.8 (6.9) 50.8 (6.9) 50.7 (6.8) 0.91**

Race 0.81

White, non Hispanic 778 91.3 536 91.2 242 91.7

Other 74 8.7 52 8.8 22 8.3

Education level 0.70

<High school 14 1.7 9 1.6 5 2.0

High school graduation 132 16.0 95 16.7 37 14.6

College/graduation school degree 678 82.3 466 81.8 212 83.5

BMI (kg/m2) 0.22

<25 427 50.4 283 48.4 144 54.8

25-<30 212 25.0 153 26.2 59 22.4

30+ 209 24.7 149 25.5 60 22.8

Mean (SD) 26.7 (6.3) 26.8 (6.2) 26.6 (6.5) 0.43†

Age at menarche (years) 0.41

≤12 326 38.9 216 37.2 110 42.8

13 322 38.4 233 40.1 89 34.6

14 114 13.6 80 13.8 34 13.2

15+ 76 9.1 52 9.0 24 9.3

Age at first birth (years) 0.54

Nulliparous 189 22.3 134 22.9 55 21.2

<25 269 31.8 193 32.9 76 29.2

25–30 202 23.9 135 23.0 67 25.8

30+ 186 22.0 124 21.2 62 23.9

Menopausal status 0.89

Premenopausal 472 58.1 326 58.2 146 57.7

Postmenopausal 341 41.9 234 41.8 107 42.3

Menopausal hormone therapy use 0.88

Never 719 86.1 497 86.0 222 86.4

Ever 116 13.9 81 14.0 35 13.6

First degree family history of breast cancer 0.45

0 636 77.0 439 77.6 197 75.8

1 167 20.2 114 20.1 53 20.4

2+ 23 2.8 13 2.3 10 3.9

Breast biopsy prior to enrollment 0.54

No 580 68.9 404 69.5 176 67.4

Yes 262 31.1 177 30.5 85 32.6

Global FGV (%)c 0.55

≤34.4 (%) 439 51.5 307 52.2 132 50.0

>34.4 (%) 413 48.5 281 47.8 132 50.0

Median (Range) 34.4 (0.6, 99.5) 34.4 (0.6, 99.5) 36.2, (1.4, 99.3)

Localized FGV (%)c 0.21

≤40 (%) 406 50.7 289 52.2 117 47.4

>40 (%) 395 49.3 265 47.8 130 52.6

Median (Range) 40.0 (0, 100) 39.8 (0, 100) 43.3 (0, 100)
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median number of epithelial regions were the top two ranked
features, followed by normalized stroma quantity.
The performance of the model for predicting invasive cancer

among women with high vs. low global fibroglandular volume in
the testing set is shown in Fig. 3a, b. An AUC of 0.92 (95% CI:
0.80–0.99) was achieved for predicting invasive cancer diagnosis
among women with high global fibroglandular volume, and an
AUC of 0.84 (95% CI: 0.71–0.94) was reached for predicting an
invasive cancer diagnosis among women with low global
fibroglandular volume. For cancer detection stratified according
to high and low localized fibroglandular volume, similar predic-
tion values were observed, as shown in Fig. 3c, d (high localized
fibroglandular volume: AUC: 0.92 (95% CI: 0.79–0.99); low
localized fibroglandular volume: AUC: 0.81 (95% CI: 0.65–0.96)).
No significant differences were observed between the AUCs for
high vs. low global (p= 0.24) or localized fibroglandular volume
(p= 0.24).

DISCUSSION
We report that we can predict global and local mammographic
fibroglandular volume by applying a deep convolutional neural
network model to H&E-stained sections of image-guided breast
biopsies prompted by an abnormal mammogram. Specifically, we
show that greater non-fatty stromal and adipose tissue content
and the spatial distribution of epithelial regions in tissues, rather
than total epithelial quantities, were the strongest correlates of %
fibroglandular volume. The cardinal histopathologic feature of
breast cancer on low magnification is ‘invasion’, characterized by
irregular epithelial growth with incursion of cells into normal
structures. As anticipated, features extracted from the output of
the convolutional neural network indicated that epithelial
organization is the strongest correlate of invasive cancer
irrespective of fibroglandular volume. Thus, we hypothesize that
more complex analyses of dense tissue using convolutional neural
networks or other imaging technologies may enable radiological

Table 1 continued

Characteristic Overall (N= 852) Training (N= 588) Testing (N= 264) P-value*

n % n % n %

Biopsy type 0.82b

Ultrasound-guided (14-guage) 445 52.2 309 52.6 136 51.5

Stereotactic-guided (9-guage) 406 47.7 279 47.5 127 48.1

Both 1 0.1 0 0.0 1 0.4

BI-RADS mammography assessment 0.89

Probably benign finding 47 5.9 32 5.8 15 6.1

Suspicious abnormality 670 83.7 463 83.4 207 84.2

Highly suggestive of malignancy 84 10.5 60 10.8 24 9.8

Pathologic diagnosisa# 0.23

Benign non-proliferative 282 33.1 190 32.3 92 34.9

Proliferative without atypia 316 37.1 215 36.6 101 38.3

Proliferative with atypia 57 6.7 44 7.5 13 4.9

In-situ (LCIS or DCIS) 76 8.9 48 8.2 28 10.6

Invasive breast cancer 121 14.2 91 15.5 30 11.4

Characteristic (per biopsy target, n= 1036 biopsies)

Biopsy type 0.63b

Ultrasound-guided (14-guage) 566 54.6 372 54.2 194 55.6

Stereotactic-guided (9-guage) 469 45.3 315 45.9 154 44.1

Both 1 0.1 0 0.0 1 0.3

Pathologic diagnosis# 0.39

Benign non-proliferative 373 36.0 242 35.2 131 37.5

Proliferative without atypia 369 35.6 242 35.2 127 36.4

Proliferative with atypia 68 6.6 52 7.6 16 4.6

In-situ (LCIS or DCIS) 83 8.0 53 7.7 30 8.6

Invasive breast cancer 143 13.8 98 14.3 45 12.9

BMI body mass index, DCIS ductal carcinoma in situ, FGV fibroglandular volume, LCIS lobular carcinoma in situ, SD standard deviation
Missing data were excluded from percentage calculations and statistical comparisons: 28 for education levels, 4 BMI, 14 age at menarche, 6 age at first birth, 39
menopausal status, 17 menopausal hormone therapy use, 26 first degree family history of breast cancer, 10 breast biopsy prior to enrollment, 51 percent
volumetric local density (biopsy radius 0–2mm), 51 BI-RADS mammography assessment
*P-values from Chi-Square test except where noted
**P-value from two-sample t-test
†P-values from Kruskal–Wallis test
aAmong women with multiple biopsies, this was the worst pathologic diagnosis
bOne woman from the test group who had both biopsy types was excluded from the Chi-square test
cThe median cut points of breast density were determined among the training population and were consistent among all 852 women
#Benign non-proliferative diagnosis includes non-proliferative fibrocystic change and other benign and discrete entities; Proliferative without atypia includes
ductal hyperplasia and sclerosing adensosis; Proliferative with atypia includes atypical ductal and lobular hyperplasia
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recognition of textural patterns that reflect the epithelial
disorganization characteristic of breast cancer. Recent preliminary
analyses using convolutional neural networks suggest the
potential of this approach.20

Our findings agree with prior literature using quantitative
microscopy9 to understand histological correlates of breast
density. Similarly, our findings support prior studies that suggest
radiological density is largely non-fatty stroma, with relatively little
variation in epithelial content by mammographic density.8,9

Further, we showed that other quantitative measures of fat tissue
were also highly ranked as being important for the prediction of %
fibroglandular volume. The heterogeneous nature of the top-
ranked histologic features further supports the complexity of
quantitative measures of breast density. A novel finding of our
study was the identification of the spatial arrangement of
epithelial regions as ranking among the top 10 correlates of
fibroglandular volume. To define spatial arrangements, we used
an area-Voronoi diagram and Delaunay triangulation, which are
approaches that would be very difficult to reproduce using visual
assessment. Voronoi decomposition is a method whereby an area
is partitioned into smaller areas that surround regions that are
closest to pre-specified points.19,21 In essence, our results suggest

that tissues that display a high ratio of epithelial area to its
corresponding areas of influence are characteristic of cancer in
both high and low global fibroglandular volume contexts. The
identified Voronoi area along with the area ratio of each epithelial
region to its Voronoi region ranked among the top 10 correlates
for both global and localized fibroglandular volume measures.
Beck and colleagues were among the first to highlight the

potential of digital image analysis for examining histological
features of breast cancer. They developed and utilized C-Path
(Computational Pathologist), a machine learning tool, which
identified features of stromal morphology that were especially
important for predicting breast cancer prognosis.10 Although
prognosis was not the focus of our analyses, using a similar
approach, we also found that the quantity of non-fatty breast
stromal tissue was among the top-ranked predictors of fibro-
glandular volume, supporting the contributory role of stroma to
fibroglandular volume. This study highlights the importance of
examining the tissue microenvironment of dense tissue in more
detail, including conducting in-depth analysis of stromal compo-
nents17 including collagen.22,23

A major clinical challenge is differentiating between the non-
fatty stroma and at-risk epithelium that together constitute the
‘white’ dense areas that appear on a mammogram. Thus, despite
similar measures of breast density for a radiologically dense
breast, there could be considerable heterogeneity of tissue
composition within the dense regions. As density alone may not
be capable of defining epithelial organization, other techniques
are needed. Potential solutions could be alternative imaging or
further classification of density using neural networks.20 Findings
from our exploratory analysis relating histologic correlates to
biopsy diagnosis highlight the interindividual heterogeneity that
may be apparent at the histological level despite having
comparable radiological densities. Interestingly, we found that
irrespective of fibroglandular volume, spatial arrangement of
epithelium was the most predictive of a cancer diagnosis, showing
that deciphering composition of the mammographic fibrogland-
ular volume is important for identifying abnormalities at the
histological level. Of note, the performance of the model was
better in detecting cancer status among women with high
fibroglandular volume (both global and localized) than among
women with low fibroglandular volume, though this difference
was not statistically significant. This could be an artifact of the
model, i.e., a challenge of recognizing spatial patterns in low
density. However, this finding could also support the concept of
epithelial-stromal interaction in the progression of invasive cancer.
Understanding the heterogeneity24 and significance of the
epithelial region spatial arrangement and organization may
provide important etiological clues for tumorigenesis, and
additional assessment of these features is needed to examine
their relationships with other epithelial histological risk markers
including terminal duct lobular units.25

Since the publication by Beck and colleagues, there have been
substantial advancements in digital pathology methodology,
particularly with the advent of deep learning. For example, our
investigation complements and expands on existing studies that
have highlighted the potential of deep learning for identifying
factors associated with breast cancer diagnosis.14,15,26–28 The
publication of the CAMELYON16 challenge winners showed the
ability of deep learning algorithms to detect lymph node
metastasis with high accuracy with a comparable AUC to that
obtained following pathological assessment (AUC= 0.96).15 While
our limited sample size and the cross-sectional nature of the study
design prevented detailed investigation of features associated
with breast biopsy diagnoses, our preliminary findings also
support the need for further investigations of biopsy tissue using
deep learning algorithms.
This study has many important clinical implications and

considerations. Firstly, the ability to make predictions using

Table 2. Summary of top 10 ranked histologic features identified in
the random forest model for the prediction of global and localized %
fibroglandular volume (FGV)

Feature Name Rank of feature
importance
Predicted
model: global
FGV (%)

Rank of feature
importance
Predicted
model: localized
FGV (%)

Global tissue amount

Fat amount (µm2) 5 3

Fat amount normalized (%) 2 2

Stroma amount (µm2) 3 5

Stroma amount normalized (%) 1 1

Epithelium amount
normalized (%)

− 8

Morphology

Ecc epi regions (median) 7 −

Ecc epi regions (IQ) 6 9

Spatial arrangement of the
epithelial regions (Area-Voronoi
diagram)

Voronoi area (mean µm2) 10 −

Voronoi area (median µm2) − −

Voronoi area (IQ µm2) 8 6

Ratio epi to Voronoi (mean) − 7

Ratio epi to Voronoi (median) − 4

Ratio epi to non-epi (mean) 9 −

Spatial arrangement of the
epithelial regions (Delaunay
Triangulation)

Neighbors (SD) 4 10

Ecc eccentricity, epi epithelial, IQ interquartile, FGV fibroglandular volume,
SD standard deviation
Only features ranked within the top 10 for prediction of each, FGV density
measure, are included in the table
Features are ranked numerically and sequentially from 1 to 10, with 1
representing the most important feature and 10 representing the 10th
most important feature
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feature assessment alone and without the inclusion of additional
breast cancer risk factor information suggests the utility of deep
learning approaches for the clinical setting. However, to investi-
gate potential influences of patient characteristics, we conducted
sensitivity analyses. As expected given its well-established strong
inverse association with % fibroglandular volume,29 BMI was the
highest ranked feature for predicting % fibroglandular volume for
models in which it was included. While recognition of clinical and
participant characteristics is important, the inclusion of such
factors in analytical models may mask lesser associations
identified by the random forest approach. Second, clinically
relevant histological features of biopsy tissue accompanied with
radiological information may be of benefit to integrate into breast
cancer risk models,30 which are increasingly being used in clinical
practice for determining risk of invasive breast cancer. Our
findings are of particular relevance for women with elevated
breast density, who have had a prior breast biopsy, and as such
are at elevated risk of developing invasive breast cancer. We aim
that by identifying validated histological features at the time of
clinical biopsy following an abnormal mammogram, we may be
able to discriminate women at highest risk. Increased efforts are
ongoing to include histological information, as well as mammo-
graphic density, in risk prediction tools as evidenced by the BCSC-
BBD model.31 However, these current risk models do not yet

incorporate detailed histology in risk estimates. The integration of
biopsy histological features to current risk models that assess
radiological and risk factor information may ultimately improve
risk assessment and inform clinical management strategies by
providing additional risk information on the increasing number of
women undergoing breast biopsies after a mammogram.
Furthermore, the application of deep learning models that can
utilize histological breast biopsy features to predict future risk of
breast cancer among women with dense breasts will be important
among the growing population of women who experience an
initial benign breast biopsy diagnosis. Future expanded studies
will address these questions.
Our study has many strengths. Firstly, this analysis is one of the

largest breast tissue studies to date to apply convolutional neural
network models for the identification of tissue correlates of
mammographic breast density. Further, from a biological mechan-
istic perspective, the ability to examine relationships between
breast tissue features and localized fibroglandular volume
measures allows the additional assessment of characteristics of
the microenvironment of the suspect lesion, particularly factors
that cannot be quantified by visual assessment but that may be
important markers of cancer. Of note, we observed similarities in
the top identified histologic correlates of both global and localized
% fibroglandular volume, supporting the utility of biopsy tissues in

Table 3. Summary of top 10 ranked histologic features identified in the random forest model for the prediction of invasive cancer status among
women with high and low % fibroglandular volume

Feature Name High global FGV (%)
(> median)

Low global FGV (%)
(≤median)

High localized FGV (%)
(>median)

Low localized FGV (%)
(≤median)

Global tissue amount

Fat amount (µm2) − 8 − 5

Fat amount normalized (%) − 3 − 7

Stroma amount (µm2) − 9 − −

Stroma amount normalized (%) − 4 10 3

Epithelium amount (µm2) 4 − 4 1

Epithelium amount normalized (%) 6 − 7 8

Morphology

Epithelial regions (IQ µm2) − − 1 4

Epithelial regions (max µm2) 9 − − −

Ecc epi regions (mean) 10 − 3 9

Ecc epi regions (median) − − 2 2

Ecc epi regions (IQ) − − 5 10

Spatial arrangement of the epithelial regions
(Area-Voronoi diagram)

Voronoi area (mean µm2) 5 7 6 −

Voronoi area (median µm2) 3 5 − −

Voronoi area (SD µm2) − − 9 −

Voronoi area (IQ µm2) 7 6 − −

Ratio epi to Voronoi (mean) 1 2 8 −

Ratio epi to Voronoi (median) 2 1 − −

Ratio epi to Voronoi (IQ) − 10 − −

Ratio epi to non-epi (median) 6

Spatial arrangement of the epithelial regions
(Delaunay Triangulation)

Neighbors (mean number) 8 − − −

Ecc eccentricity, Epi epithelial, IQ interquartile, FGV fibroglandular volume, SD standard deviation
Only histologic features ranked within the top 10 for prediction of each density measure are included in the table
Features are ranked numerically and sequentially from 1–10, with 1 representing the most important feature and 10 representing the 10th most important
feature
The median cut points of breast density used in stratification were: global FGV (%) 34.4, localized FGV (%) 40.0
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understanding the global breast milieu. Further strengths of this
study included the use of deep learning for delineating
characteristics of tissue organization as well as for quantification
of tissue components. Additionally, the utilization of diagnostic
H&E whole slide images supports investigations of samples that
are routinely collected during the clinical investigation following a
biopsy, which suggests this approach may have clinical applic-
ability and could compliment routine diagnostic assessment. This
study related volumetric measures of breast density, determined
from FFDM images, to 2D histological images from FFPE tissues,
providing an important step toward a novel and complex
approach to understanding breast cancer lesions and their
relationships with breast density. Additional understanding of
volumetric breast density would be gained by examining the 3D
architecture of the BBD and breast cancer diagnoses. For example,
future studies that incorporate volumetric density measures from
3D imaging modalities along with fresh tissues will provide a
complementary extension to these findings.
However, this study also has limitations. While random forest

approaches are effective in deciphering which histological
features contribute most to model prediction, they do not yield
easily quantifiable results for strengths of association. Our
investigation of deep learning approaches to identify histologic
features associated with cancer among women with high versus
low breast density, while promising, was hampered by sample
size. In our current sample set, the number of cancer cases within
the testing dataset was limited in order to maximize the reliability
of model training. Thus, additional, larger prospective studies are
needed to identify biomarkers for cancer risk stratification among
women with high breast density who may be referred to
diagnostic biopsy following an abnormal mammogram. While
the BREAST-Stamp participants are a representative sample of the
population of women undergoing diagnostic investigation after
an abnormal breast imaging exam, the women enrolled within the
study were primarily white (91.3%), which is reflective of the
catchment area of the University of Vermont Cancer Center.
Further, detailed information on lifestyle factors including alcohol
consumption and smoking were not available for the full study
population in this analysis. Thus, additional studies among more
diverse populations are warranted to determine the general-
izability of study findings and to determine whether tissue
correlates of mammographic density vary by race and also by
lifestyle breast cancer risk factors. In addition, our analysis was
restricted to H&E-stained tissue sections. While using H&E sections
is important as they are clinically meaningful and routinely
prepared following biopsy, investigation of features associated
with complementary histological stains to characterize the breast
microenvironment may also be informative. An additional
consideration is the applicability of this approach to other
populations. This investigation included breast tissue sections
from a single cross-sectional study, for which standardized

protocols were followed for specimen preparation, tissue section-
ing and staining, and were completed in the same laboratory at
the University of Vermont Medical Center. While this rigorous
methodology reduced potential variability in the tissue samples
being assessed, it may limit the generalizability of the findings.
The approach applied in this current study used extensive contrast
and color augmentation during training. This method increases
the robustness of the deep learning model against staining
variations, but may not be sufficient when dealing with external
datasets with significant staining variations. Therefore, additional
validation studies are needed that include tissue sections
prepared in multiple laboratories. Such studies would be highly
informative for determining the robustness of deep learning
within diverse pathological clinical settings.
In conclusion, we highlight the potential of applying convolu-

tional neural network models to digital pathology to gain insights
into histological correlates that correspond to radiologic measures
of breast fibroglandular volume, and to cancer risk. In doing so, in
a population of women undergoing diagnostic breast biopsy, we
found that epithelial organization was the strongest correlate of
invasive cancer irrespective of fibroglandular volume. In addition,
we found in agreement with prior studies that fat and non-fatty
stromal features were important determinants of radiologic
fibroglandular volume. As radiologic density alone may not be
capable of defining epithelial organization, these findings suggest
opportunities for future efforts using neural networks for
enhanced capture of novel histologic as well as breast imaging
features that may advance our understanding of breast
tumorigenesis.

METHODS
Study population
This study included women referred for diagnostic image-guided breast
biopsy after an abnormal breast imaging exam between October 2007 and
June 2010 at the University of Vermont Medical Center, and were enrolled as
part of the National Cancer Institute’s (NCI) cross-sectional, molecular
epidemiologic Breast Radiology Evaluation and Study of Tissues (BREAST)-
Stamp Project. Details of the BREAST Stamp Project and study eligibility
characteristics have been described previously.25,29,32 Eligible participants
were women aged 40–65 years referred for image-guided biopsy who did
not have breast implants, had not been diagnosed with breast cancer or
received cancer treatments, had not undergone breast surgery within one
year and had not received chemoprevention. During the enrollment period,
mammography registry data indicated that 1227 patients met these
eligibility criteria. Information supplied by the radiology facility included
final assessment of the mammogram, in BI-RADS categories: 3, “probably
benign finding”; 4, “suspicious abnormality”; and 5, “highly suggestive of
malignancy”.33 A standard health history questionnaire which assessed
established breast cancer risk factors was collected at the time of the
mammogram,34 and upon providing consent to be enrolled in the study,
additional detailed breast cancer risk factor information was collected by the
research coordinator.29 The distribution of the collected breast cancer risk
factor information, including the demographic and lifestyle characteristics of
the enrolled BREAST Stamp study population, has been previously
described.25,29,32 Details of the analytical population included in this current
analysis are outlined in more detail below and described in Table 1. The
Institutional Review Boards at the NCI and the University of Vermont
approved the protocol for this project for either active consenting or a waiver
of consent to enroll participants, link data and perform analytical studies.

Breast biopsy specimens
Breast tissues obtained from ultrasound-guided core needle (14-gauge) or
stereotactic-guided vacuum-assisted (9-gauge) biopsy, were routinely
processed, and representative H&E-stained breast tissue sections were
obtained from the formalin-fixed paraffin-embedded target blocks for each
biopsy and, when collected during biopsy, from non-target blocks
representing surrounding non-target tissue. The diagnosis was confirmed
following pathological report review. For women who had ≥ two unilateral
biopsy targets, the two targets with the most severe diagnoses were

Fig. 1 Workflow overview utilizing training and testing sets for the
prediction of global and localized fibroglandular volume (FGV)
measures from identified convolutional neural network model
features
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Fig. 2 a, b Representative histological whole slide H&E images of breast biopsies and corresponding full-field digital mammograms from
patients with similar radiological global fibroglandular volume but whose biopsies yielded different diagnoses of atypical ductal hyperplasia
a and invasive carcinoma b

Fig. 3 ROC curves (AUC with 95% confidence intervals) for the prediction of invasive cancer among women with high a and low b percent
global fibroglandular volume, high c and low d percent localized fibroglandular volume. AUC area under the curve, ROC receiver-operating
characteristic
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selected. If there were ≥ two bilateral targets, then one target from each
breast was selected, sampling the tissues with the most severe diagnoses.
H&E-stained breast biopsy tissue sections were digitized at ×20
magnification using the Aperio (47.7%) or Hamamatsu scanning systems
(52.3%).

Assessment of breast density
Assessment of breast density was conducted at the University of California,
San Francisco on pre-biopsy raw digital mammograms from full-field
digital mammography systems.25,29,32,35,36 Briefly, quantitative global29 and
localized25 fibroglandular tissue volume (cm3) measures were determined
using craniocaudal mammograms of the ipsilateral breast, taken at the
time-point prior but nearest to the biopsy date. Percent (%) global
fibroglandular volume was estimated using Single X-ray Absorptiometry,
which utilized a breast density phantom attached to the compression
paddle of the mammography machine.25,29,32,35,36 For the assessment of %
localized peri-lesional fibroglandular volume measurements, the biopsy
location and radius were identified on the pre-biopsy mammogram by the
study radiologist.25 Localized % fibroglandular volume measurements at a
volume ~0–2mm3 surrounding but excluding the biopsy target location
were utilized in this analysis.

Analytical population
Of the women eligible for this study, 882 (69%) had Single X-ray
Absorptiometry fibroglandular volume results available for the ipsilateral
breast within the year before their breast biopsy. Of these, 852 women had
target and non-target H&E slides from 1036 breast biopsies available for
assessment. For convolutional neural network model training and
assessment, as outlined in more detail below, the study population was
randomly subdivided into a training dataset (n= 588; 69%) and a testing
dataset (n= 264; 31%). Overall, the 588 women in the training set had 687
biopsies which encompassed 1587 H&E stained sections (667 from the
target and 920 from the non-target blocks). For the testing group of 264
women, there were 349 biopsies (454 sections from non-target blocks). An
overview of the study design is shown in Fig. 1.

Development of the deep learning convolutional neural network
model
Using the digitized H&E whole slide images from 588 women included in
the training set, a deep convolutional neural network was trained to
generate maps of tissue composition that classified whole slide images as
epithelial, stromal and fat tissue.16,17 For model training, both target and
non-target slides were included. The trained model was an 11-layer fully
convolutional VGG-like network, a neural network architecture developed
by Oxford’s Visual Geometry Group (VGG).37 The performance of the
convolutional neural network model for generating whole slide image
maps of epithelial, stromal and fat tissue has been outlined previously,16

and an example of the classification is shown in Supplementary Fig. 1.
Briefly, the initial classification of the breast tissue (epithelial, stromal and
fat composition) was completed through training of the convolutional
neural network model based on manual annotation of these regions in
100 whole slide images, by trained students; these annotations were
furthered reviewed by a pathologist. The AUC of the model for the
classification of the breast tissue was 0.95.16 Following the generation of
the whole slide image maps, features were extracted from the output of
the convolutional neural network. These features were grouped into
three main categories, describing global tissue quantities, the morphol-
ogy of the epithelial regions, and spatial arrangements of epithelial
regions. To examine spatial arrangements of epithelial regions, region
adjacency graphs were used including area-Voronoi diagrams and
Delaunay triangulation.18,19 The area-Voronoi diagram was utilized in
the context of spatial distribution analysis to define areas of influence of
epithelial regions in the image. Given a set of segmented epithelial
regions A1,…,An in a whole slide image, the area-Voronoi of a region Va
(Ai) is defined as the set of pixels in the image from which the distance to
Ai is less than or equal to any other regions in the image. Overall, 37
features were extracted within these three categories; a description of
the 37 features and their distributions in the training and testing sets are
shown in Supplementary Table 1.

Statistical analysis
Patient characteristics were compared between the training and testing
sets using chi-square or Fisher’s exact tests for categorical variables and
Wilcoxon rank sum tests for continuous variables. Using the 37 features
extracted from the output of the convolutional neural network, a random
forest regression model was used to predict global fibroglandular volume
(%) and a separate random forest model was used to predict localized
fibroglandular volume (%) (i.e., in the region of the biopsy target). The
scikit-learn21 Python method was used for training of the random forest
models. These models were then applied to the independent testing set to
predict the fibroglandular volume measures. We chose random forests as
this approach can account for any non-linear relationships between the
features and has been shown to work well even when the number of
features exceeds the number of observations.38 The output from the
random forest model includes the Gini index plot as a measure of the
predictive importance of the features. Supplementary Fig. 2 shows the Gini
index results for features associated with global and localized %
fibroglandular volume. Relationships between the predicted and radi-
ologically quantified (actual) fibroglandular volume measures were
assessed using Spearman rank correlations (r). Several sensitivity analyses
examined the potential influence of participant characteristics known to be
associated with fibroglandular volume on observed findings: (a) we
additionally included body mass index (BMI) in the random forest
regression model; and (b) we stratified analyses by menopausal status.
We also assessed the potential influence of histologic features that were
strongly correlated with each other in the prediction model. For highly
correlated feature pairs (Spearman correlation: r ≥ 0.85), one feature was
randomly selected to be excluded from the model. We then retrained the
random forest models on the remaining 25 features. We also used the 25
features to separately predict each fibroglandular volume measure. When
the number of features in the prediction model was reduced to include
only one from among highly correlated features, the top selected features
for fibroglandular volume prediction were similar; therefore, we present
results from random forest analyses including all 37 features.
In an exploratory analysis, we examined the potential of the extracted

histologic features for predicting cancer status (benign vs. invasive
biopsy diagnosis) among women with high and low fibroglandular
volume. Firstly, the patient population was stratified by fibroglandular
volume (high vs. low), using the median cut point of global (34.4%) and
localized (40%) fibroglandular volume from the training population. For
this analysis, all in-situ diagnoses were excluded from both model
training and testing. Thus the cancerous group was restricted to biopsy
diagnoses of invasive carcinoma and the benign group included
diagnoses of non-proliferative and proliferative benign breast disease
(with and without atypia). Using the 37 features previously extracted
from the convolutional neural network output, a random forest classifier
was trained to predict cancer status separately among women with high
and low fibroglandular volume. The classifier performance for cancer
status prediction was assessed using area under the receiver-operating
characteristic (ROC) curve (AUC) analysis on the probabilities generated
by the random forest classifier. 95% confidence intervals (CIs) were
generated using a patient-stratified percentile bootstrapping method.39

ROC curves of the cancer detection systems among patients with high
and low global or localized % fibroglandular volume were compared
using the bootstrap method in R package “pROC”, which computes,
stores and compares the AUC of each ROC curve.40
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