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If we build it they will come: targeting the immune response to
breast cancer
Margaret E. Gatti-Mays1, Justin M. Balko 2, Sofia R. Gameiro 1, Harry D. Bear3, Sangeetha Prabhakaran4, Jami Fukui5, Mary L. Disis6,
Rita Nanda7, James L. Gulley8, Kevin Kalinsky9, Houssein Abdul Sater8, Joseph A. Sparano10, David Cescon 11, David B. Page12,
Heather McArthur13, Sylvia Adams14 and Elizabeth A. Mittendorf15,16*

Historically, breast cancer tumors have been considered immunologically quiescent, with the majority of tumors demonstrating low
lymphocyte infiltration, low mutational burden, and modest objective response rates to anti-PD-1/PD-L1 monotherapy. Tumor and
immunologic profiling has shed light on potential mechanisms of immune evasion in breast cancer, as well as unique aspects of the
tumor microenvironment (TME). These include elements associated with antigen processing and presentation as well as
immunosuppressive elements, which may be targeted therapeutically. Examples of such therapeutic strategies include efforts to (1)
expand effector T-cells, natural killer (NK) cells and immunostimulatory dendritic cells (DCs), (2) improve antigen presentation, and
(3) decrease inhibitory cytokines, tumor-associated M2 macrophages, regulatory T- and B-cells and myeloid derived suppressor cells
(MDSCs). The goal of these approaches is to alter the TME, thereby making breast tumors more responsive to immunotherapy. In
this review, we summarize key developments in our understanding of antitumor immunity in breast cancer, as well as emerging
therapeutic modalities that may leverage that understanding to overcome immunologic resistance.
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INTRODUCTION
Relative to melanoma, lung cancer, and other immunotherapy-
responsive cancers, breast tumors have a lower tumor mutational
burden, low tumor lymphocyte infiltration, and a low single-agent
anti-PD-1/L1 response, leading some to characterize breast
cancers as immunologically quiescent or “cold.” Recent evidence
argues against this historical convention. The immune landscape
of breast cancers is dynamic and heterogeneous, with significant
variation observed across patients, subtypes and disease settings
(early breast cancer v. metastatic). Using data on more than
10,000 samples across 33 different tumors available in The Cancer
Genome Atlas database, Thorsson et al.1 identified six distinct
immune subtypes including wound healing, interferon (IFN)-γ
dominant, inflammatory, lymphocyte depleted, immunologically
quiet and transforming growth factor beta (TGF-β) dominant.
Among breast cancers (n= 944), the most common immunoge-
nomic subtypes identified were IFN-γ dominant, followed by
wound healing, and inflammatory (Fig. 1).1 Sixty percent of basal-
like breast cancers were of the IFN-γ dominant subtype and a little
less than half of HER2-enriched (HER2+) and luminal B breast
cancers were of the IFN-γ dominant subtype. The IFN-γ dominant
subtype has the highest CD8+ T-cell (cytotoxic T lymphocytes;
CTLs) and M1 macrophage (pro-immune) density, as well as a high
degree of T-cell receptor (TCR) diversity. A higher lymphocyte
expression signature, defined as a higher number of unique TCR
clonotypes, higher cytokines made by activated Th1 and Th17

cells and more M1 macrophages, improved survival in the IFN-γ
dominant subtype as well as in the wound healing subtype.
Importantly, no breast cancers in this analysis were identified as

immunologically quiet.1 This highlights the importance of other
elements of the tumor microenvironment (TME; composed of
diverse immune cells, cytokines and stroma) in modulating the
immune response against breast tumors. Improved understanding
of the complexity of host-tumor interactions in the TME has led to
the possibility of targeting elements within the microenvironment
to expand clinical responses to immune therapies.1

ADAPTIVE IMMUNE RESPONSES
The adaptive immune system detects foreign cells through
recognition of non-self (such as viral or tumor proteins) or
through inappropriate expression of self or mutated antigens.
After successful clearance of these antigens, a pool of memory T-
cells are retained indefinitely and provide lasting immunity.
However, as is the case with inflammation resulting from chronic
infection, a system of checks and balances exists within the
normal functioning of adaptive immunity in order to limit
sustained tissue injury and generate tolerance to persistent
antigens. With a malignancy, multiple steps along this elimination
process can fail. Examples of such defects include failure to harbor,
express, or present immunogenic peptides, the increased secre-
tion of immunosuppressive cytokines (e.g. TGF-β, interleukin [IL]-8,
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IL-6, IL-10), the activation of regulatory T-cells (Tregs) or the
upregulation of immune checkpoints or their ligands on T-cells
and stromal/tumor cells, respectively.
Tumoral immune cell infiltration is predictive and prognostic in

some breast cancer subtypes. The importance of the composition
of the infiltrating immune cells (T-cell, B-cell, natural killer [NK] cell,
etc.) is still being determined; however, breast tumors with higher
tumor infiltrating lymphocytes (TILs) are more responsive to
treatments (e.g., immunotherapy, chemotherapy, radiation) than
those with low TILs. In tumors with few or no immune cells in the
TME, various methods can be utilized to help shift the balance and
attract immune cells. Methods to help mobilize professional
antigen presenting cells (APCs) (e.g. dendritic cells [DCs] and
macrophages) or effector cells (e.g. NK cells or CD8+ T-cells)
include therapeutic vaccines, monoclonal antibodies, and cyto-
kines (Fig. 2). Once these cells are in the TME, T-cells and B-cells
can be better engaged through the use of agents like immune
checkpoint blockade (ICBs).

Tumor infiltrating lymphocytes
Di Paola et al.2 reported more than 40 years ago that lymphocyte
infiltration in breast cancers and signs of immune activation in the
regional lymph nodes are highly predictive of better clinical
outcomes. Some degree of TIL infiltration is found in most breast
cancers, but the proportions vary greatly among breast cancer
subtypes.3 Standardized methodology for assessing TIL in
hematoxylin and eosin (H&E) sections is validated.4 Newer
techniques, such as multiplexed immunofluorescent (IF) staining,
allow for assessment of multiple cell types and markers on a single
histologic section (Fig. 35) and may provide a better under-
standing of the complexity of the immune microenvironment in
cancers.
TILs are classified as stromal or intratumoral and are graded

visually on H&E sections using a continuous scale.4 The degree
and type of lymphocytic infiltrate is prognostic in the neoadju-
vant,6 adjuvant7 and metastatic8 settings for triple-negative breast
cancer (TNBC) and HER2+ breast cancer as well as predictive of a
higher likelihood of a pathologic complete response (pCR) with
neoadjuvant chemotherapy.9

Single-cell approaches have not been thoroughly explored, but
preliminary reports show a high degree of B-cells and T-cells (as
well as macrophages, which are not included in standard TILs
scoring metrics) in the TME of primary breast cancers.10 TILs
isolated from breast tumors are mainly composed of memory
CD4+ and CD8+ T-cells. The significance of infiltrating FOXP3+

CD4+ T-cells (also known as Tregs) is somewhat paradoxical; it is

likely that the ratio to CD8+ is more important (Fig. 3). The
presence of Tregs is associated with a poor prognosis and
recurrence risk, especially for hormone receptor-positive (HR+)
breast cancer.11

Immune checkpoint blockade – PD-1/PD-L1, LAG-3, TIGIT
Single-agent ICBs have produced durable responses in a small
proportion of breast cancer patients.12,13 This may be augmented
by the addition of cytotoxic chemotherapy (see companion
manuscript; Page DB et al.), as evidenced by the recent FDA
approval of atezolizumab with nab-paclitaxel for first line,
metastatic, PD-L1+ TNBC using the Ventana assay (SP142).14

Among targetable checkpoints, both PD-1 and lymphocyte-
activation gene 3 (LAG-3) positive TILs have been noted in a
subset of patients with highly infiltrated tumors, but their
presence did not appear to impact prognosis beyond TILs
expression alone.15,16 Nonetheless, both PD-1 and LAG-3 are
well-established immunosuppressive molecules that can be
targeted by clinically available inhibitors, and may help define a
population of patients who could benefit from ICB combinations.
Recent studies have also intriguingly identified high expression of
B7-H4, a PD-L1 family member, on tumor cells of poorly immune
infiltrated breast tumors.17 However, the receptor for B7-H4
(analogous to PD-1 and presumably present on T-cells, which are
suppressed in the presence of B7-H418) has not yet been defined,
despite the clinical development of B7-H4-blocking antibodies.
Finally, the checkpoint TIGIT has been noted to be enriched in
ductal carcinoma in situ compared to invasive ductal cancers,
which were more enriched for PD-L1, but the implications of this
finding are currently unknown.19 There are ongoing, phase I
clinical trials involving anti-PD-1/L1 ICBs combined with LAG-3
(NCT03250832; Table 1), B7-H4 (NCT03514121), or TIGIT
(NCT03628677) blockade in solid tumors, with planned expansion
into breast cancer.

Adoptive T-cell therapy
Adoptive immunotherapy, the administration of immune effector
T-cells, has been assessed as an anticancer strategy for several
decades.20 Adoptive therapy approaches are classified according
to whether natural or genetically modified cell products are used.
The first approach involves the harvest, expansion and re-infusion
of autologous TILs. This method was pioneered at the National
Cancer Institute in the 1980s, and recently resulted in durable
remission of metastatic HR+ breast cancer in a patient treated
with autologous TILs enriched for T-cells reactive against
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Fig. 1 TCGA breast cancer subtype and percentage of corresponding immune subtype. (Generated from raw data in supplemental Fig. S1D in
Thorsson et al.1)
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autologous neoantigens and administered following lymphode-
pleting chemotherapy and in combination with pembrolizumab.21

Further validation, as well as characterization of the contribution
of pembrolizumab, is awaited.
The second major approach involves genetically engineered

therapeutic T-cell products that have been retargeted through the
transfer of either a tumor specific TCR, or a synthetic chimeric
antigen receptor (CAR) derived from an antibody’s antigen
binding domains.22 TCRs recognize major histocompatibility
complex (MHC) presented peptides (derived from intracellular
proteins), while CAR-T-cells directly recognize surface expressed
proteins, without the need for antigen presentation (often
downregulated in cancer). Although these strategies can be
transformative in the context of obligate, lineage-dependent
targets (e.g., CD19 in B-cells), the identification of universally
expressed tumor specific targets in solid tumors is a challenge,
and reactivity against normal tissues is a source of potentially
serious toxicity, as observed in a case of lethal toxicity (attributed
to lung epithelial expression) following treatment with HER2-
directed CAR-T.23 Multiple targets have been evaluated in
preclinical studies, including cMET (expressed in HER2+ and
TNBC) and mesothelin (expressed in TNBC) which are now
advancing to the clinic (NCT01837602 and NCT02792114,
respectively).

B-Cells
B-cells make up a significant portion of TILs in many cancers,
including breast cancer.24 Their ability to produce antibodies,
present antigens, secrete cytokines and interact with immune cells
allows for diverse functions that modulate the TME and immune
responses towards a pro-tumor or antitumor response.25 Mouse
models of solid tumor development show deficient tumorigenesis
in the absence of B-cells.26 Conversely, CD20+ B-cell TILs in breast

cancer are associated with improved survival and lower relapse
rates.27

There is emerging evidence for a regulatory B-cell subset
(Breg), with a distinct function in attenuating antitumor immune
responses. Bregs suppress immune responses via the release of
anti-inflammatory mediators, such as IL-10, IL-35, and TGF-β,
which trigger T-cell conversion to Tregs.25 In the 4T1 mouse
breast cancer model, the primary effect of tumor-evoked Bregs
within lung metastasis is the induction of TGF-β-dependent
conversion of resting CD4+ T-cells to FOXP3+ Tregs.28 Also in
the 4T1 model, inactivation of Stat3 with resveratrol decreased
metastases through inactivation of tumor-evoked Breg cells.29 In
breast cancer patients, metastasis-free survival was significantly
shorter for patients with the coexistence of Tregs and Bregs in
TIL aggregates compared to Tregs alone, suggesting their
interdependence in the development of breast cancer
metastasis.30

Ibrutinib irreversibly binds to Bruton’s tyrosine kinase and
inhibits B-cell development. Ibrutinib also promotes T-cell
cytotoxicity and an M1 macrophage phenotype31 leading to
potential therapeutic uses in solid tumors. Ibrutinib is being
evaluated in combination with the anti-PD-L1 antibody durvalu-
mab in solid tumors, including breast cancer (NCT02403271).

Bridging the adaptive and innate immune systems
Cytokines and APCs link the innate and adaptive immune systems.
Cytokines mediate this connection, while antigen processing and
presenting cells functionally bridge the innate and adaptive
immune systems.

Cytokines
Many cytokines function to recruit specific cell types to an
inflammatory microenvironment. Cytokines impact metastatic

Fig. 2 Interaction between the innate and adaptive immune system is vital for immune recognition and elimination of breast tumors.
Activation of antigen presenting cells, natural killer cells, macrophages and engagement of T-cells and B-cells through the release of host-
derived cytokines plays a central role to tumor destruction. To evade the immune system, tumors release cytokines and skew the tumor
microenvironment to a more immunosuppressive environment through inhibiting CD8+ T cells, NK cells, dendritic cell maturation and
through increasing Tregs and tumor associated macrophages (TAMs). Tumors also reduce antigen presentation of tumor-associated antigens
(TAAs) on the tumor surface, and major histocompatibility complex (MHC) expression and alter the antigen presentation machinery (effector
cells) to further reduce immune recognition. As this complex web of interactions demonstrates, there are multiple opportunities for the use of
immunotherapeutic drug combinations in breast cancer. Figure Key: Blue boxes= targets for immunotherapy drugs; Black boxes= cytokines
released by immune cells or tumor; green arrows= activation; red dotted line= inhibiton
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potential, tumor progression, and angiogenesis. Cytokines vary
among different breast cancer stages (early stage vs metastatic).32

Aberrant overexpression of a range of proinflammatory cytokines
by breast tumors has been reported.33–35 Cytokines may augment
or inhibit the host immune response,32 and many cytokines are
pleiotropic with both tumor-promoting and antitumor effects
(Table 2). Various cytokines that enhance antitumor activity have
been evaluated in the preclinical and clinical settings. While some
benefit has been documented, there is often a narrow therapeutic
window with systemic administration, making these agents

difficult to use. Subcutaneous and intratumoral administration
help avoid some of the systemic effects. However, regardless of
delivery method, one of the main limitations of cytokines is that
activity depends on the presence of an existing host immune
response.32

Many breast cancers exhibit an inflammatory signature within
the TME, which is associated with poor clinical outcomes.35,36

Decreased antitumor responses are due to (1) the release of
immunosuppressive cytokines (e.g., IL-4, IL10, IL-13, IL-33, IL-35, IL-
37, and TGF-β), (2) the recruitment of cells with immunosuppressive

Fig. 3 Innate immune cell infiltrates in breast cancer microenvironment. Triple negative breast tumors (CK) with natural killer cells (NK; CD16,
CD56), myeloid cells (CD16, CD11b), and macrophage (CD68) infiltration in addition to expression of the immune inhibitory enzyme
indoleamine 2,3-dioxygenase (IDO). a Breast tumor (CK) with a predominance of NK cells along with focal IDO expression by macrophages
and myeloid cells. b Breast tumor (CK) with a myeloid cell predominance (CD16, CD11b). c Breast tumor (CK) with NK cells (CD16, CD56),
myeloid (CD16, CD11b), macrophage (CD68) and tumor (CK) in addition to IDO expression. d Breast tumor (CK) with expression of major
histocompatibility 1 (MHC-1). The areas of tumor expressing both CK (red) and MHC-1 (yellow) markers result in an orange hue while areas of
tumor that have lost MHC-1 expression are of red color only. e Breast tumor (CK) with expression of CD3+ T-cells expressing lymphocyte-
activation gene 3 (LAG3) in contact with tumor cell nest. All images were created by Houssein Abdul Sater using MIBITracker open resource
software (https://mibi-share.ionpath.com) by IONPath.5 FFPE breast cancer tissue was stained and imaged using multiplexed ion beam
imaging by time-of-flight (MIBI-TOF)
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Table 1. Ongoing combination immunotherapy clinical trials in breast cancer

Trial target Trial information
(trial name)

Trial description Primary outcome(s) Open date
(estimated
completion)

Immune checkpoints NCT03250832 Status: recruiting
Setting: solid tumors including BC (n= 260)
Treatments: TSR-033 (anti-LAG3) +/− anti-PD-1

• Safety (TRAEs)
• ORR

Aug 1, 2017
(May 2021)

NCT03514121 Status: recruiting
Setting: solid tumors including BC (n= 278)
Treatments: pembrolizumab+ FPA150 (anti-
B7-H4)

• Safety (MTD, RP2D, TRAEs) Mar 27, 2018
(Jan 2024)

NCT03628677 Status: recruiting
Setting: solid tumors including BC (n= 242)
Treatments: AB122(anti-PD-1)+ AB154 (anti-
TIGIT)

• Safety (TRAEs) Aug 21, 2018
(Feb 2020)

Synthetic chimeric
antigen receptors (CARs)

NCT01837602 Status: completed, results not published.
Setting: advanced TNBC
Treatments: cMET RNA CAR T cells

• Safety (SAEs) Apr 23, 2013
(Oct 2018)

NCT02792114 Setting: recruiting
Setting: metastatic HER2+ BC (n= 36)
Treatments: mesothelin-targeted T-cells,
metronomic cyclophosphamide

• Safety (MTD) Jun 2016
(Jun 2020)

B-cells NCT02403271 Status: completed, results not published
Setting: solid tumors with TNBC and HER2+
BC (n= 124)
Treatments: ibrutinib+ durvalumab

• Safety (AEs, RP2D)
• ORR

Mar 2015
(Jan 2019)

Inflammatory cytokines NCT03135171 Status: recruiting
Setting: metastatic HER+ BC (n= 20)
Treatments: toclizumab (anti-IL-6)+
herceptin/pertuzumab

• Safety (RP2D) May 22, 2017
(Aug 2020)

NCT02370238
(FRIDA)

Status: active, not recruiting
Setting: metastatic TNBC (n= 156)
Treatments: reparixin (anti-IL-8)+ paclitaxel

• PFS Jun 2015
(Feb 2019)

NCT02672475 Status: recruiting
Setting: metastatic AR negative TNBC (n= 29)
Treatments: galunisertib+ paclitaxel

• Safety (AEs, MTD) Mar 2016
(Jun 2021)

NCT03524170 Status: recruiting
Setting: metastatic HR+ /HER2-BC (n= 20)
Treatments: M7824+ RT

• Safety (RP2D, tolerability) Apr 30, 2018
(Sep 2020)

NCT03579472 Status: recruiting
Setting: metastatic TNBC (n= 20)
Treatments: M7824+ eribulin

• Safety (RP2D, AEs) May 30, 2018
(Oct 2020)

NCT03620201 Status: recruiting
Setting: neoadjuvant HER2+ BC (n= 20)
Treatments: M7824 neoadjuvant

• Change in TILs Aug 3, 2018
(Dec 2019)

NCT03742349 Status: recruiting
Setting: metastatic TNBC (n= 220)
Treatments: spartalizumab+ LAG525 (anti-
LAG3)+ variety of IO agents including
canakinumab (anti-IL-1β)

Safety (AEs, SAEs, DLTs, dose
reduction/interruptions)

Jan 31, 2019
(Oct 2020)

NCT02983045
(PIVOT-2)

Status: recruiting
Setting: solid tumors including TNBC
(n= 480)
Treatments: NKTR-214 (anti-CD122)+
nivolumab +/− ipilimumab

• Safety and tolerability
(TRAEs, SAEs, DLTs,
discontinuation)

• ORR

Oct 2016
(Jun 2021)

NCT03435640
(REVEAL)

Status: recruiting
Setting: solid tumors including TNBC
(n= 393)
Treatments: bempegaldesleukin (IL-2)+
NKTR-262 (TLR 7/8)+/− nivolumab

• Safety (AEs, SAEs)
• Tolerability (DLTs, TRAEs,
SAEs, AEs)

• ORR

Mar 15, 2018
(Dec 2022)

NCT03328026 Status: recruiting
Setting: breast (n= 40)
Treatments: SV-BR-1-GM (vaccine with IFN-α
and post-treatment metronomic
cyclophosphamide)+ pembrolizumab

• Safety (AEs, SAEs) Mar 16, 2018
(Dec 2020)

NCT02675439 • Safety (TRAEs, DLTs, RP2D) Mar 2016
(Dec 2020)

M.E. Gatti-Mays et al.
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effects like Tregs, myeloid derived suppressor cells (MDSCs) or (3)
the lack of recruitment of cells with immunomodulatory effects like
CD8+ T-cells, NK cells and DCs.
Tumor plasticity (also known as epithelial-to-mesenchymal

transition) is driven by an autocrine loop involving multiple
proinflammatory cytokines, including IL-6, IL-8, and TGF-β.33,37 In
addition to release from effector cells (i.e., T-cells, B-cells, NK cells),
IL-6, IL-8, and TGF-β are also produced and released by tumor cells
and tumor-associated macrophages (TAMs). Overexpression of IL-
6 and IL-8 across multiple tumor types, including breast cancer, is
associated with tumor progression, metastasis, therapy resistance
and/or poor clinical outcomes.33,37–39 High circulating levels of IL-6

are associated with advanced disease, higher risk of recurrence
and aggressive phenotypes in breast cancer.39 Preclinical studies
have demonstrated that tumor secretion of IL-6 is related to
treatment resistance, including tamoxifen resistance in luminal
breast cancer cell lines and trastuzumab resistance in HER2-
overexpressing breast cancer cell lines.39 Administration of
tocilizumab, an IL-6 antagonist, reduced the cancer stem cell
population in mouse xenografts and reduced tumor growth and
metastasis.39 There are limited clinical data on IL-6 blockade in
breast cancer, with only one ongoing trial using tocilizumab in
combination with trastuzumab and pertuzumab in patients with
trastuzumab-resistant, metastatic HER2+ breast cancer

Table 1 continued

Trial target Trial information
(trial name)

Trial description Primary outcome(s) Open date
(estimated
completion)

Status: recruiting
Setting: solid tumors including BC (n= 75)
Treatments: MIW815+ /− ipilimumab

NCT03172936 Status: recruiting
Setting: solid tumors including BC (n= 150)
Treatments: MIW815+ spartalizumab

• Safety (DLTs) Sep 8, 2017
(Dec 2020)

Toll-like receptors (TLRs) NCT01042379
(I-SPY 2)

Status: recruiting
Setting: neoadjuvant BC (n= 1920)
Treatments: SD-101 + Pembrolizumab

• pCR
• RCB
• RFS
• OS
• Safety (AEs, SAEs)

Mar 2010
(Dec 2020)

Natural killer cells NCT02627274 Status: recruiting
Setting: solid tumors including HER2+ BC (n
= 205)
Treatments: RO6874281 +/− trastuzumab

• Safety (DLT, MTD, RP2D)
• PKs

Dec 7, 2015
(May 2020)

NCT03319459 Status: recruiting
Setting: solid tumors including HER2+ BC (n
= 100)
Treatments: FATE-NK100 (donor derived NK
cell product)+ trastuzumab

• Safety (DLT) Jan 18, 2018
(Oct 2022)

Myeloid-derived
suppressor cells

NCT02393794 Status: recruiting
Setting: metastatic TNBC (n= 54)
Treatments: romidepsin+ cisplatin +/−
nivolumab

• Safety (RP2D)
• ORR

Mar 19, 2015
(Jul 2020)

NCT02637531 Status: recruiting
Setting: solid tumors including TNBC (n=
220)
Treatments: duvelisib (IPI-549)+ nivolumab

• Safety (AEs, DLTs) Dec 2015
(Apr 2020)

Tumor-associated
macrophages

NCT02265536 Status: completed, results not published.
Setting: metastatic BC (n= 36)
Treatments: LY3022855 (anti-CSF1R)

• Changes in peripheral
immune cell subsets

• Changes in serum cytokines

Oct 2014
(Feb 2018)

NCT01596751 Status: active, not recruiting
Setting: metastatic TNBC (n= 68)
Treatments: eribulin+ PLX3397 (anti-CSF1/
CSF1R)

• Safety (MTD)
• PFS at 12 weeks

May 11, 2012
(May 2018)

NCT02435680 Status: active, not recruiting
Setting: metastatic TNBC (n= 50)
Treatments: MSC110 (anti-CSF1)+
carboplatin+ gemcitabine

• PFS May 6, 2015
(Jun 2019)

NCT02824575 Status: recruiting
Setting: metastatic HER2-BC (n= 60)
Treatments: rebastinib+ paclitaxel or eribulin

• Safety (RP2D) Jul 2016
(Jul 2020)

Of note, data presented in this table was confirmed from www.clinicaltrials.gov on August 13, 2019
AEs adverse events, AR androgen receptor, BC breast cancer, BOR best overall response, CBR clinical benefit rate, DLT dose limiting toxicity, DOR duration of
response, HR+ hormone receptor positive, HER2 human epidermal growth factor 2, IO immuno-oncology, MTD maximum tolerated dose, ORR objective
response rate, OS overall survival, pCR pathologic complete response, PD pharmacodynamics, PFS progression free survival, PKs pharmacokinetics, RCB residual
cancer burden, RFS recurrence free survival, RP2D recommended phase 2 dose, RT radiation therapy, SAEs severe adverse events, TIL tumor infiltrating
lymphocyte, TNBC triple negative breast cancer, TRAEs treatment related adverse events
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(NCT03135171).38,39 Preclinical neutralization of IL-8 with HuMax-
IL8 has been shown to reduce plasticity of claudin-low TNBC
in vivo, decrease tumor recruitment of MDSCs, and augment
tumor sensitivity to NK- and T-cell-mediated lysis.40 There are
multiple anti-IL-8 or IL-8 receptor (CXCR1 and CXCR2) blocking
agents being evaluated in the preclinical and clinical settings.
Anti-IL8 agents being evaluated in the clinical setting for breast
cancer include SX-682 (trial not yet open) and reparixin
(NCT02370238).
In early stages of malignant transformation, TGF-β is a tumor

suppressor. In later stages of tumor development, it promotes
tumor aggressiveness and metastasis. Loss of TGF-β inhibition and
increased TGF-β signaling have been associated with cancer
progression, stemness, therapeutic resistance as well as immune
suppression.41 Several TGF-β targeting agents are being examined
in breast cancer. Galunisertib, a TGFβRI/ALK5 inhibitor, is being
evaluated in combination with radiotherapy (NCT02538471; trial
terminated due to slow accrual) or with paclitaxel (NCT02672475). A
phase I study of M7824, a first-in-class bifunctional antibody
targeting TGF-βRII and PD-L1, in heavily pretreated, advanced
solid carcinoma patients showed a manageable safety profile and

signs of efficacy.42 There are multiple ongoing clinical trials
involving M7824 in combination with standard of care in breast
cancer (with radiation, NCT03524170; with eribulin, NCT03579472;
in a neoadjuvant window study, NCT03620201).
Cytokines can drive both innate and adaptive immune

responses, but they also play a role in Treg activation, tumor
invasion and angiogenesis. For example, IL-1 is released by effector
cells and plays a central role in immune and inflammatory
responses in breast cancer, specifically tumor invasion.34 Preclinical
studies of treatment with the IL-1 receptor antagonist anakinra
promoted significant breast tumor control in mice. A pilot study
evaluated anakinra followed by standard chemotherapy in women
with HER2-negative metastatic breast cancer and demonstrated a
sustained decrease in the expression of multiple genes for Toll-like
receptor (TLR) and IL-1β families, while increasing the expression of
NK and CD8+ T-cells genes that were associated with tumor lysis.36

The anti-IL-1β neutralizing monoclonal antibody canakinumab is
currently being evaluated in combination with various immu-
notherapy agents in TNBC (NCT03742349). Other therapeutic
approaches, including IL-1α blockade and a therapeutic vaccine
targeting IL-1β are in clinical development.43

Table 2. Cytokine effects on the breast tumor microenvironment

Cytokine Source Cytokine effect on tumor Clinical agents in development for use in breast cancer

IL-1 B-cells
Mature DCs
NK cells
Macrophages

Pro-Tumor
• Promotes tumor invasion
• Promotes inflammation

IL-1 Receptor Antagonist
• Anakinra (NCT01802970)
• IL-1 Neutralizing mAB
• Canakinumab (NCT03742349)

IL-2 Activated T-cells
NK cells
DCs
Macrophages

Antitumor
• Activates NK cells
• Activates CD8+ T-cells

IL-2 Analogues
• Aldesleukin (NCT00006228)
• Bempegaldesleukin (NCT02983045; NCT03435640)

IL-6 B-cells
TAMs
Breast tumor

Pro-Tumor
• Treatment resistance
• Increased tumor plasticity
• Promotes metastasis

IL-6 Antagonist
• Tocilizumab (NCT03135171)

IL-8 TAMs
Breast tumor

Pro-Tumor
• Increased tumor plasticity
• Increased MDSCs

IL-8 Neutralizing mAB
• Humax IL-8 (NCT02536469)
• IL-8 Receptor Antagonist
• SX-682 (protocol in development)
• Reparaixin (NCT02370238)

IL-10 TAMs
B-cells

Antitumor (pleiotropic)
• Pro-Tumor
• Promote Tregs
• Promote M2 phenotype

IL-10 Antagonist
• Pegilodecakin (NCT02009449)

IL-21 CD4+ T-cells
Breast tumor

Antitumor
• Stimulates NK cells
• Stimulates CTLs

IL-21 Analogues
• Recombinant IL-21 (no further clinical development at this time)

IFN DCs
NK cells
Macrophages
B-cells
T-cells
Breast tumor

Antitumor
• Enhanced antigen presentation
• Increased CTL-killing

IFN Analogues
• Human-leukocyte IFN (NCT03328026)
IFN Stimulating Agents

• MIW815 (NCT02675439)

TGF-β TAM
Breast tumor
Macrophages

Antitumor (Early Stage Disease; pleiotropic)
Pro-Tumor (Late Stage Disease)
• Promotes M2
• Therapeutic resistance
• Immune suppression

TGF-β Receptor 1 Inhibitor
• Galunisertib (NCT02538417; NCT02672475)
TGF-β Receptor 2 Inhibitor

• M7824 (NCT03579472; NCT-3524170; NCT03620201)

Analogues increase the activity (or concentration) of a specific cytokine within the TME
Antagonists and neutralizing antibodies decrease the activity (or concentration) of active cytokine within the TME
CTL cytotoxic T lymphocyte, DC dendritic cell, IFN interferon, IL interleukin, mAB monoclonal antibody, MDSC myeloid derived suppressor cells, NK natural killer,
TAM tumor associated macrophages, TGF-β transforming growth factor beta
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IL-21 is naturally produced by CD4+ T-cells and is a potent
regulator of NK cells and CD8+ T-cells. Recent reports in murine
models suggest that IL-21 may enhance trastuzumab efficacy in
metastatic HER2+ breast cancer through modulatory effects on
NK cells and CD8+ T-cells, Tregs, and macrophages.44 Due to
enhanced NK-cell directed lysis of tumor cells bound by
antibodies (also known as cell-mediated antibody-dependent
cellular cytotoxicity; ADCC), IL-21 was combined with cetuximab in
a phase I trial for patients with metastatic colorectal cancer, but
the trial was stopped prematurely due to toxicity.45 Despite initial
promise in clinical trials, dose-limiting toxicities and lack of
consistent clinical activity have hampered clinical development of
IL-21.32 There are no published clinical reports of IL-21 agents in
breast cancer.
IL-2 enhances NK cell and CD8+ T-cell function.34 Recombinant

IL-2 (aldesleukin) is an FDA-approved therapy for metastatic
melanoma and renal cell carcinoma. Results from a pilot phase I
study in metastatic HER2+ breast cancer indicated that IL-2
combined with trastuzumab was well tolerated and provided
clinical benefit.46 However, no responses were observed in the
subsequent phase II study for patients who progressed on
trastuzumab.47 Preclinical studies with PEGylated IL-2 (bempegal-
desleukin or NKTR-214) have demonstrated superior antitumor
activity and immune activation profile relative to aldesleukin.48 A
phase I trial examining PEGylated IL-2 as a single agent in
metastatic solid tumors showed evidence of antitumor activity
and a favorable safety profile.49 This agent is now being examined
in combination with multiple immuno-oncology agents (including
nivolumab) in TNBC (NCT02983045; PIVOT). An ongoing phase Ib
study (NCT03435640; REVEAL trial) is examining the combination
of PEGylated IL-2 with a TLR7/8 agonist in heavily pretreated
patients with metastatic solid tumors, with a planned trial
expansion in TNBC.
IL-10 is a pleiotropic cytokine that exhibits both tumor-

promoting and inhibitory properties. IL-10 is expressed in patients
with breast cancer and has been associated with poor prog-
nosis.35,50 A recent preclinical study combining PEGylated human
IL-10 (AM0010 or pegilodecakin) with docetaxel in 4T1 (TNBC)
mouse models demonstrated synergy, with complete responses in
75% of mice.51 However, given its paradoxical role in tumor
development and uncertainty about how best to shift activities to
tumor inhibition (rather than tumor promotion), few IL-10
targeting agents are in clinical development. One trial evaluated
PEGylated human IL-10 (AM0010) in solid tumors (n= 51) and
showed an acceptable toxicity profile with evidence of systemic
immune activation and antitumor activity (27% overall response
rate).52 To the best of our knowledge, there are no plans for
further evaluation of PEGylated human IL-10 in breast cancer
patients.
Clinical trials with type I and II IFNs in solid malignancies have

had variable success, and are associated with moderate-to-severe
toxicities. Non-inflamed human tumors lack type I IFNs, which are
important in both innate and adaptive immune-mediated tumor
eradication.53 IFN-α and IFN-β enhance tumor antigen presenta-
tion and increase cytotoxic killing of tumor cells.34 Despite a
promising 20–40% response rate in pilot studies with human
leukocyte IFN (a mixture of IFN-α subtypes), subsequent mono-
therapy studies in advanced breast cancer patients were
unsuccessful.54 There is one ongoing clinical trial using IFN-α with
pembrolizumab and a therapeutic breast cancer vaccine
(NCT03328026) in metastatic breast cancer. Combination therapy
with low-dose IFN-β, IL-2 and tamoxifen was well tolerated, had
immunostimulatory effects, a 46% response rate and a survival
benefit in advanced breast cancer.55

Therapeutic strategies aimed at restoring type I IFNs through
Stimulator of Interferon Genes (STING) signaling are being
investigated in human malignancies.56 Intratumoral injection of
the STING agonist, ADU-S100/MIW815, has been demonstrated to

inhibit the growth of breast tumors in mice.57 A clinical trial
investigating MIW815 combined with ipilimumab(NCT02675439)
as well as a trial with MIW815 combined with spartalizumab (anti-
PD-1; NCT03172936) are currently ongoing in advanced solid
tumors.

Antigen presentation
Recognition of antigens on the surface of tumors or presentation
by APCs results in the generation of antigen-specific T-cell
responses and potentially T-cell-mediated lysis. Common breast
tumor-associated antigens (TAAs) include HER2, MUC1, CEA, NY-
ESO-1, MAGE, brachyury, cMET, and mesothelin. Priming T-cells
through vaccination to recognize tumor antigen and to eliminate
cancer cells could prevent the development of metastasis.
Vaccines elicit T-cells or B-cells that produce antibodies directed
against immunogenic proteins. Although vaccine-induced anti-
bodies specific for proteins such as growth factor receptors may
have an impact on cancer cell signaling and limit tumor growth,
CD8+ and T-helper 1 (Th1) cells secreting inflammatory cytokines
are needed for tumor destruction.58 The administration of vaccine
adjuvants like granulocyte-macrophage colony-stimulating factor
(GM-CSF), IL-2 or T-cell costimulatory molecules may help to
augment the immune response, including the recruitment of
more DCs, CD8+, and Th1 cells to the TME.
Transgenic mouse models of breast cancer show that vaccina-

tion against multiple tumor antigens is superior to immunizing
against a single protein.59 Vaccination against MUC1 and CEA
results in generation of T-cell responses to a cascade antigen
called brachyury.60 Brachyury is a transcription factor associated
with tumor plasticity61 and is overexpressed in breast cancer,
particularly TNBC. High brachyury expression is associated with
therapeutic resistance and a poor prognosis.61 Vaccines targeting
the tumor plasticity autocrine loop (Fig. 2) and breast cancer stem
cells are under development.62,63

As effective antigen combinations are being evaluated, new
methods of antigen delivery to enhance T-cell immunity are also
advancing in the clinic. Most novel approaches have focused on
improving “signal 1” (antigen recognition) or “signal 2” (co-
stimulation of) T-cells. One method to improve antigen recogni-
tion is to identify tumor mutations seen by the immune system as
“foreign.”64 However, with only 3.2% of breast cancers containing
the number of nonsynonymous mutations that allow for neoanti-
gen formation, this approach is limited.65

Trastuzumab is a monoclonal antibody that is the backbone of
almost all HER2+ breast cancer treatment regimens. Although
antibody blocking of cell signaling through the HER2 tyrosine
kinase has long been considered to be the major mechanism of
action, recent evidence indicates that the generation of adaptive
immunity plays an important role in the clinical efficacy of
trastuzumab. In vivo trastuzumab binds to HER2 and activates NK
cells, increases HER2 uptake and processing by DCs, and enhances
the generation of CD8+ T cells (e.g., ADCC).66,67 Trastuzumab
treatment results in the development of T-cell and antibody
immunity directed against HER2; in essence, trastuzumab binding
to HER2 on breast cancer cells acts as a vaccine.68,69 In a
neoadjuvant trastuzumab trial, the development of high levels of
HER2-specific Th1 cells independently associates with pCR at the
time of definitive surgery.70 Furthermore, trastuzumab treatment
significantly increases the number of Tbet+ (a marker for Th1 and
CD8+) T-cells infiltrating the tumor, and an increase in relapse-free
survival is noted in those patients who have Tbet+ TIL induced.71

A recent trial with trastuzumab plus the HER2-targeted vaccine
nelipepimut-S and GM-CSF suggests clinical efficacy in HER2+
patients and, interestingly, a significant improvement in disease-
free survival in patients with TNBC,72 reinforcing the importance of
the off-target immune effects of HER2-targeted antibodies for
disease control.
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Toll-like receptors
Antitumor innate immune responses are in part regulated by TLRs,
RIG-I–like receptors (RLRs), and the STING signaling pathway.56,73

Emerging data indicate that targeting TLRs, RLRs, and STING
signaling may be a promising approach in the treatment of
cancer, either alone or in combination with other immunotherapy
agents. TLRs are expressed on both immune cells and tumor cells.
Activation of specific TLRs on tumor cells results in immune
evasion.73 TLR activation, conversely, also stimulates antigen
presentation, DC maturation, and priming of CD8+ T-cells. A
TLR7 agonist has been shown to be synergistic with other
treatment modalities in a mouse model of breast cancer.74 The
combination of pembrolizumab and intratumoral SD-101 is being
investigated in the I-SPY2 neoadjuvant clinical trial for women
with early stage HER2-negative breast cancer (NCT01042379).

Innate immunity
The innate immune system includes granulocytes (neutrophils,
eosinophils, and basophils), DCs, NK cells, MDSCs, and macro-
phages. As illustrated in Fig. 2, this cellular network plays a vital
role in antitumor immunity through direct tumor killing as well as
initiating, supporting and skewing the adaptive immune response
through secreted cytokines.

Dendritic cells
DCs are a critical component of antitumor immunity and are the
most efficient APCs. DCs play a large role in antigen-specific
(cancer) immune tolerance. DCs are present in peripheral tissues
in the immature form and mature with the assistance of
proinflammatory cytokines such as IL-1, IL-6, IFN-γ, and TNF-α, as
well as in response to damage-associated molecular pattern
(DAMP) signals.75 Immature DCs are not as efficient as mature DCs,
and accumulation of immature DCs induced by tumor-produced
granulocytes leads to decreased immune surveillance.76 Mature
DCs infiltrate tumors, stimulate CD8+ T-cells, increase antigen
presentation and assist with T-cell expansion.77,78 There are
various methods to help augment the conversion to mature
DCs, including the supplemental use of GM-CSF, cytokines and the
administration of DC-based vaccines.
Single-agent DC vaccines enhanced for antigen presentation

(i.e., HER2, MUC1) have been evaluated in the preclinical and
clinical settings. Promising preclinical data have not translated to
clinical benefit. However, therapeutic strategies aimed at increas-
ing the abundance of mature DCs in the TME may increase
responses to anti-PD-1 therapy.77 There are multiple ongoing trials
involving autologous DC vaccines in combination with various
other treatment modalities.

Natural killer cells
NK cells are innate lymphocytes that recognize and kill tumor
targets directly or upon CD16 engagement on antibody-bound
cells, triggering the release of cytotoxic granules, chemokines, and
proinflammatory cytokines.79 The strongest data supporting the
role of NK cells in breast cancer are in HER2+ breast cancer. In
preclinical models, NK cells are critical in the antitumor responses
mediated by HER2-targeting antibodies.77,78 Trastuzumab induces
ADCC, which leads to antigen release, cross-presentation by DCs,
and increased NK cell activation and migration. Baseline tumor-
infiltrating NK cells in primary HER2+ breast cancers are a
predictive biomarker for pCR to anti-HER2 antibody therapy.80 In
breast cancer patients, increased NK infiltration in the TME has
been observed upon treatment with HER2-targeting agents,
supporting the notion that NK cells are important contributors
to the antitumor activity observed with currently approved HER2-
targeted therapies.81 Multiple ongoing clinical trials are evaluating

the impact of NK-directed treatment on the efficacy of HER2-
targeting agents (NCT02627274; NCT03319459).

Myeloid-derived suppressor cells
MDSCs are a heterogeneous population of cells that inhibit T-cell
function. MDSCs increase with stage and metastasis,82 and may
serve as potential target for amplifying host immunity.83–86 There
are no known selective MDSC inhibitors in development; however,
many existing drugs have effects on MDSCs. For example, DNA
methyl transferase inhibitors and histone deacetylase (HDAC)
inhibitors reduce systemic and intratumoral MDSCs, resulting in
augmentation of immunotherapy over time.83,87 Chemotherapeu-
tic agents that suppress/deplete MDSC and may augment the
impact of immunotherapy include gemcitabine, doxorubicin, and
5-fluorouracil.85,88,89 Romidepsin, an HDAC inhibitor, is being
evaluated in combination with cisplatin and nivolumab in TNBC
(NCT02393794). Another agent that decreases MDSCs and
enhances anti-PD-l efficacy preclinically90 is IPI-549 (IPI-145 or
duvelisib). IPI-549 is an inhibitor of PI3Kδ and PI3Kγ isoforms and is
being evaluated with nivolumab in solid tumors (NCT02637531).

Tumor-associated macrophages
In breast cancer, the dominant TAM phenotype is tumor
promoting (also known as M2 macrophages).91 TAMs promote
tumor growth, angiogenesis, invasion, metastasis, as well as
resistance to therapy.44,92 The underlying mechanisms include
inhibition of CD8+ T cells, degradation of extracellular matrix,
stimulation of angiogenesis and inhibition of phagocytosis.92 In a
meta-analysis including over 2000 breast cancer patients, high
TAM density in the primary tumor predicted worse patient
prognosis.92,93 Furthermore, expression of macrophage colony-
stimulating factor (CSF1) and its receptor (CSF1R) on TAMs has
been correlated with poor prognosis in breast cancer.94

Preclinical studies of TAM-targeted therapies are primarily
aimed at inhibiting macrophage recruitment, survival, and
tumor-promoting activity in tumors, but the most potent
antitumor strategy could be skewing tumor-promoting M2 TAMs
to tumor-suppressing, immunostimulatory M1 macrophages.
TAM-targeting strategies (e.g. TAM depletion/reprogramming/
targeting functional molecules) have been proposed to enhance
the efficacy of ICB.95 Targeting TAMs with CSF1 inhibitors leads to
decreased TAM infiltration, reduced tumor growth, reduced
metastases and prolonged survival in a breast cancer xenograft
mouse model.92 There are multiple ongoing trials involving CSF1/
CSF1R-targeting agents in breast cancer as monotherapy
(NCT02265536) and in combination with chemotherapies
(NCT01596751; NCT02435680). Macrophages can also be ther-
apeutically targeted by inhibition of Tie2 kinase on Tie2-High/
VEFG-High TAMs. This subpopulation of TAMs form microanatomic
structures that act as sites for cancer cell dissemination when in
direct contact with endothelial cells. Furthermore, tumor cells can
express invasive isoforms of the Mena protein, which creates a
tumor microenvironment of metastasis (TMEM).96 Higher TMEM
density is associated with higher risk of distant recurrence in
localized breast cancer.97,98 Neoadjuvant chemotherapy can lead
to a higher TMEM density,98 suggesting a previously unrecognized
mechanism of resistance to cytotoxic therapy.99 Rebastinib is a
Tie2 kinase inhibitor that targets these TAMs and reduces
hematogenous seeding at intravasation sites.100 Rebastinib is
being evaluated in combination with paclitaxel and eribulin
mesylate (NCT02824575).

Intrinsic vs acquired resistance to immunotherapy in breast cancer
The low response rates achieved with single-agent ICB in breast
cancer reflects intrinsic or innate resistance,12,13 and under-
standing the mechanistic basis of resistance will inform future
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therapeutic strategies, including the development of rational
combinations. Presently, little is known about acquired resistance
to ICB in breast cancer. The largest clinical trials of anti-PD-1/L1
antibodies suggest that duration of response may be shorter on
average that in other cancers, but these trials have not
characterized the clinical or molecular features of resistant disease.
In cohorts of patients with melanoma and non-small cell lung
cancer (NSCLC), acquired resistance often presents as progression
at a limited number of sites, implying that local immune or tumor
heterogeneity underlies this phenomenon.101,102 Other mechan-
isms that may contribute to acquired resistance include loss of T-
cell function, loss of T-cell tumor recognition and resistance to the
effects of IFNγ produced by T-cells.103

Adaptive changes in immune checkpoint expression have also
been identified as a potential mediator of acquired resistance to
ICB. For example, upregulation of TIM-3 on T-cells has been
observed in mouse models as well as in human NSCLC
progressing after initial brief responses to ICB.104 Chronic IFN
signaling resulting in multigenic adaptive changes in expression of
T-cell inhibitory ligands is one mechanism shown to underlie the
emergence of such resistance.105

Understanding the ‘cold’ immune microenvironment is the
subject of intensive ongoing research. The absence of TILs in the
microenvironment could point to defects in the adaptive immune
cycle. First, it could suggest that too few neoantigens are present
in order to signal a non-self. Strategies to overcome defects in this
area include tumor foreignization, activation of endogenous
retroviral sequences,106 or direct agonists of innate immunity
(e.g. STING agonists). Secondly, it could suggest defects in the
antigen presentation process. For instance, genomic loss of β2-
microglobulin, a prerequisite component of MHC-1/peptide
complexes, has been identified in relapsed melanoma and
microsatellite high colorectal tumors after initial response to
immunotherapy.107,108 Thirdly, a poor TIL presence could indicate
suppressive signals in the breast cancer microenvironment that
exclude T-cells and other effector cells109 from intratumoral
regions. Examples include TGFβ and B7-H4 expression by breast
tumor cells, each of which could be targeted by the immunother-
apeutic strategies described above.

CONCLUSION
In this review, we have highlighted only a few of the preclinical
approaches and ongoing clinical trials in breast immuno-
oncology. Currently, there are hundreds of ongoing clinical trials
in the field of breast immuno-oncology with many of these trials
combining immuno-oncology agents and/or standard of care
regimens.110 Similar to current standard of care breast cancer
treatment, a single approach for all breast cancers will likely not
work. Breast cancers are complex with different subtypes not only
harboring varying expression of targetable receptors (i.e., ER, PR,
HER2) but also varying expression of PD-L1 and TAAs. Tumor
mutational burden varies significantly by breast cancer subtype.
Inflammatory cytokines also appear to have varying expression by
breast cancer subtype.
Breast cancers are not cold tumors devoid of immune

infiltration. Rather, immune cells are present in the tumor and
the TME, but the environment is often immunosuppressive.
Understanding the role of the innate and adaptive immune
systems in breast cancer may provide guidance to improving the
antitumor immune response by (1) intentionally expanding
effector T-cells, NK cells and immunostimulatory DCs, (2) improv-
ing antigen presentation, and (3) decreasing inhibitory cytokines,
tumor-associated M2 macrophages, MDSCs and Treg cells. These
interventions, in turn, can shift the balance in the TME, and make
breast cancers more responsive to immunotherapy. Perhaps, if we
build it (an immuno-permissive TME) through these multiple
approaches, they (TILs) will come.
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