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A manifold-based framework for studying the dynamics of the
vaginal microbiome
Mor Tsamir-Rimon1 and Elhanan Borenstein 1,2,3✉

The vaginal microbiome plays a crucial role in our health. The composition of this community can be classified into five community
state types (CSTs), four of which are primarily consisted of Lactobacillus species and considered healthy, while the fifth features non-
Lactobacillus populations and signifies a disease state termed Bacterial vaginosis (BV), which is associated with various symptoms
and increased susceptibility to diseases. Importantly, however, the exact mechanisms and dynamics underlying BV development
are not yet fully understood, including specifically possible routes from a healthy to a BV state. To address this gap, this study set
out to characterize the progression from healthy- to BV-associated compositions by analyzing 8026 vaginal samples and using a
manifold-detection framework. This approach, inspired by single-cell analysis, aims to identify low-dimensional trajectories in the
high-dimensional composition space. It further orders samples along these trajectories and assigns a score (pseudo-time) to each
analyzed or new sample based on its proximity to the BV state. Our results reveal distinct routes of progression between healthy
and BV states for each CST, with pseudo-time scores correlating with community diversity and quantifying the health state of each
sample. Several BV indicators can also be successfully predicted based on pseudo-time scores, and key taxa involved in BV
development can be identified using this approach. Taken together, these findings demonstrate how manifold detection can be
used to successfully characterize the progression from healthy Lactobacillus-dominant populations to BV and to accurately quantify
the health condition of new samples along the route of BV development.
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INTRODUCTION
The human body is inhabited by bacterial communities, collec-
tively known as the human microbiome. These communities
inhabit multiple sites, including the human gut, skin, and vagina.
The composition of the vaginal bacterial population, specifically,
can have a major impact on women’s health in multiple ways, for
example, by interfering with the proliferation of harmful
organisms1,2.
In an attempt to better understand and characterize the

composition of the vaginal microbiome, researchers have sought
to cluster the various compositions observed in this community
into distinct groups. Such studies have shown that there are at
least five major typical compositions of the vaginal microbiota,
referred to as community state types (CSTs)3,4. Each CST is defined
according to the dominant species in the community or the
combination of species in this state (see also Table 1). Specifically,
several Lactobacillus-dominated compositions exist, including L.
crispatus-, L. gasseri-, L. iners-, and L. jensenii-dominated commu-
nities, and are referred to as CST I, CST II, CST III, and CST V,
respectively. Populations composed of other anaerobes (i.e., non-
Lactobacillus-dominated), such as Gardnerella, Prevotella, and
Atopobium, are referred to as CST IV. CSTs can be further
separated into subgroups (subCSTs). For example, CST IV is further
stratified into CST IV-A (dominated by Lachnocurva vaginae; BVAB),
CST IV-B (dominated by Gardnerella vaginalis), or CST IV-C (a
diverse collection of anaerobes)5. Similarly, within the Lactoba-
cillus-dominant CSTs, CST I and III are divided into two subgroups,
A and B. Subgroup A is composed of a higher abundance of the
focal Lactobacillus species, while the subgroup B is composed of a
lower abundance of that species. Finally, CST IV-C is also divided
into five groups (labeled 0 to 4), while IV-C0 is a more diverse

population and the other groups are dominated by a BV-related
bacterium which is not G. vaginalis or BVAB.
Notably, different CSTs are also tightly associated with various

physiological and clinical phenotypes. Lactobacillus-dominant
CSTs, for example, are generally characterized by low levels of
pro-inflammatory cytokines and low pH, which is ascribed to the
production of lactic acid by the dominating Lactobacillus
species3,6. Non-Lactobacillus CSTs, in contrast, can be accompa-
nied by high pH and unpleasant symptoms, such as mal-odor and
abnormal discharge. CST IV is often referred to as Bacterial
Vaginosis (BV), a common dysbiotic condition. BV is also
associated with multiple adverse gynecologic consequences,
including an increased risk of preterm birth7, pelvic inflammatory
disease8, acquisition of STIs including HIV9, and human papillo-
mavirus10. Unfortunately, even though BV is very common, its
etiology and development are still not clear, calling for a more
principled mapping of its dynamics.
Indeed, the composition of the vaginal microbiome is not static,

and changes throughout a woman’s life, from childhood to
reproductive age, and during pregnancy and menopause11. These
changes are ascribed to resource availability in the vaginal
environment, such as the abundance of glycogen in the vaginal
epithelium, which in turn seems to be highly affected by estrogen
levels12. Changes may also occur at much shorter timescales, for
example, in correspondence to the menstrual cycle13. Sharp
compositional shifts can also be observed, for example, following
sexual intercourse and other host habits13–16. These various
processes and factors are clearly not independent, making the
dynamics of the vaginal microbiome challenging to comprehen-
sively characterize, in spite of the relatively simple composition of
that microbiome.
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Clearly, while changes in the composition of the microbiome
occur in a high-dimensional space (i.e., spanning all possible
community compositions), microbial dynamical processes (such as
the transition from a healthy state to BV) may potentially follow
relatively common patterns, and accordingly, likely progress along
a low-dimensional trajectory embedded in this high-dimensional
space. The detection and characterization of such trajectories,
however, is a challenging task as the vaginal microbiome is
affected and may be perturbed by many factors. Indeed, several
approaches were used to describe the dynamics of the vaginal
microbiome. Gajer et al., for example, have used an ordination
analysis to show a low dimension representation of vaginal
microbiome compositions (based on cross-sectional and long-
itudinal data) and the progression of each woman’s microbiome
over time3,13. This study clearly illustrated the continuous nature
of transitions between CSTs, albeit, without a qualitative
interpretation of intermediate stages. Other studies used integra-
tion of time-series data across individuals by alignment of
longitudinal vaginal samples17,18. The aligned data in these
studies revealed some interesting insights, including, for example,
an antagonistic behavior between L. iners and Atopobium. An
additional longitudinal metagenomic study of healthy women
with high risk for BV proposed that BV formation is initiated by
early colonizers (such as Gardnerella vaginalis), creating a more
favorable environment for other BV-related bacteria19. However,
to date, a rigorous approach for describing the route of transition
between Lactobacillus- and non-Lactobacillus- dominant CSTs has
not yet been presented, calling for a robust framework that
enables identification of complex dynamical processes in this
high-dimensional data.
Interestingly, dynamical processes and progression trajectories

can be potentially identified not only via longitudinal data
analysis, but also via the analysis of massive cross-sectional
datasets. Such datasets can be viewed as a collection of snapshots
into the underlying dynamical process, such that each sample
provides information about a specific point along the progression
trajectory. Identifying low-dimensional trajectories embedded in
this high-dimensional space and ordering samples along the
identified trajectories can therefore both help characterizing the
dynamical processes involved and enable labeling samples
according to their location along such processes. An example of
this approach has been presented in a study by Li et al., who
suggested a model that recapitulated longitudinal progression of
the gut microbiome in Crohn’s disease20. Based on a combination
of clustered samples and a principal tree (which represents the
topology of trajectories and alterations in the microbial composi-
tion), they proposed a double bifurcating model of microbial
alterations that occur during Crohn’s development. While this
model successfully captures the complex structure of disease
progression, the low sample size limits the model’s robustness and
applicability. Another study applied the pseudo-time approach to
examine the structure of the gut microbiome throughout the
human lifespan21. This research discovered distinct clusters within
the microbial structure that were linked to the proportions of

specific bacterial genera, along with associations between several
functional characteristics and the endpoints of these clusters.
While yielding intriguing findings, pseudo-time analysis in this
study was not designed to be associated with a disease state, but
rather to examine microbiome alteration along various branches
in the low-dimensional space. Similar analyses of dynamical
processes in complex biological systems are also common in
single-cell studies, where high dimensionality and high resolution
data provide snapshots of single-cell states along some processes,
such as cell maturation or differentiation22,23. Such analyses then
aim to identify the low-dimensional trajectory (or “manifold”)
embedded in the high-dimensional space of cell states and label
each cell according to its location along this trajectory.
In this study, we similarly use a framework inspired by single-

cell analysis approaches for manifold detection to identify and
characterize the dynamics of the vaginal microbiome. Specifically,
we aim to characterize the trajectories of progression from
Lactobacillus-dominant populations to a non-Lactobacillus popula-
tion. Identifying low-dimensional trajectories in the vaginal
microbiome composition space and projecting new cross-
sectional or longitudinal samples on these trajectories allow us
to both map the potential routes of the vaginal microbiome and
to trace the dynamics along these trajectories (e.g., by examining
the progression of a certain woman along these trajectories over
time). Moreover, combining cross-sectional and longitudinal data
allows us to quantitatively characterize the dynamics of various
women, and to compare, for example, the progression along
various trajectories to multiple clinical variables. Combined, our
findings provide a more principled perspective for examining the
vaginal microbiome dynamics, including complex transitions
between CSTs and BV development.

RESULTS
A manifold detection approach for characterizing the
dynamics of the vaginal microbiome
Aiming to comprehensively characterize the dynamics of BV
development, we utilized a computational framework that can
both identify various possible low-dimensional routes in the
microbiome compositional space, and place each sample along
these routes. This framework first takes as input a large collection
of microbiome samples (from either cross-sectional or longitudinal
studies; Fig. 1a) and utilizes a previously introduced manifold
detection algorithm24 to reduce the dimensionality of the data
and to identify a low-dimensional manifold that describes the
distribution of all input samples in this space (Fig. 1b). This
algorithm further labels each sample according to its location on
the manifold and the distance of this location to a pre-defined set
of root samples (Fig. 1c). This label, referred to in the single-cell
literature as pseudo-time, quantitatively assess how close, along
the manifold’s available routes, is the sample of interest from
some given state. In our analysis, we used highly diverse BV
samples (mostly assigned with CST IV-B) as root and defined

Table 1. Dominant taxa and key characteristics in main CSTs (as previously described5,38).

CST Dominant taxa Key characteristics

I L. crispatus Healthy state, low pH

II L. gasseri Healthy state, low pH

III L. iners Healthy state with high probability of changing to unhealthy state

IV-A High abundance of BVAB1 and moderate abundance of G. vaginallis Unhealthy state

IV-B High abundance of G. vaginallis and low abundance of BVAB1 Unhealthy state

IV-C Diverse array of bacterial taxa Unhealthy state

V L. jensenii Healthy state, low pH
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pseudo-time between 0 and 1, such that 0 denotes a sample far
from the BV state (the “healthiest” composition) and 1 as the root
(a BV composition). Specifically, in this study, we used the
Partition-based graph abstraction (PAGA) manifold detection
algorithm24, which projects the samples on a low-dimensional
space and then utilizes the distance matrix based on the low-
dimensional graph to produce pseudo-time labels (see “Methods”
for full details).
In addition, we also use a previously developed method for

determining the CST of each sample5. Since samples from a given
CST are also generally more similar to one another than to
samples from a different CST, samples from each CST tend to form
a distinct route (or an “arm”) in the above identified manifold
(Fig. 1d). Finally, given a new set of samples (i.e., that were not part
of the input and the detected manifold, such as samples from
some women in a new longitudinal study), we match each new
sample to its nearest neighbor sample on the manifold, using the

location and pseudo-time label of this nearest neighbor to label
the new sample (Fig. 1e).
Combined, this procedure assigns each sample a quantitative

measure of its progression along possible routes from healthy to
BV states, allowing us to study the dynamics of the vaginal
microbiome. For example, focusing on longitudinal samples from
a single woman, and comparing the pseudo-time label of these
samples to the chronological time in which they were obtained,
allow us to comprehensively map each woman’s trajectory along
the route of BV development (Fig. 1f). In addition, we can compare
samples’ pseudo-time labels to various clinical parameters, to
examine correspondence with BV progression (Fig. 1g), or use
pseudo-time to predict clinical BV-related variables.

Analysis of vaginal community dynamics in a large-scale
dataset collection via manifold detection framework
To assess the ability of the framework described above to identify
BV developmental trajectories in the vaginal microbiome, we
analyzed five different datasets, including three cross-sectional
datasets and two longitudinal datasets (Table 2). Briefly, the cross-
sectional datasets, combined, include thousands of samples,
mostly from reproductive-age asymptomatic women. The long-
itudinal datasets, include again thousands of samples combined,
with one dataset of 83 women sampled daily (with ~70 samples
per woman), and another of 84 women sampled bi-monthly (with
2–7 samples per woman). Samples with insufficient coverage were
filtered and discarded from downstream analyses. In total, our
dataset collection after filtration included 8541 samples. Available
metadata varied across datasets, with some datasets providing
detailed data about age, ethnicity, and various clinical BV
indicators and criteria, while others included more limited
metadata. Complete information about these datasets and
available pertaining information can be found in the Methods.
The CST of each sample in our dataset collection was

determined using the VALENCIA algorithm5. Across all five
datasets, 57% of the samples were assigned to Lactobacillus-
dominant CST, in general agreement with other studies3,25

(Supplementary Fig. 1a). CST assignment also produced a
similarity score for each sample, indicating how much the sample
resembled the core CST as defined by VALENCIA5 (see “Methods”).
The mean similarity score across all samples was 0.75, and varied
between CSTs, with a mean similarity of 0.86 in the main
Lactobacillus CSTs (I-A, II, III-A and V; Supplementary Fig. 1a), 0.79
in the secondary Lactobacillus CSTs (I-B and III-B), and 0.56 in non-
Lactobacillus CSTs (IV-A, IV-B and IV-C), again in accordance with
similarity scores reported by other studies26. We also calculated
the Shannon-diversity index for each sample. As expected,
Shannon-diversity index varied substantially between commu-
nities, with CST IV-C0 and IV-A exhibiting the highest mean
diversity (2.75 and 2.24, respectively), and CST I-A and III-A the
lowest diversity (0.29 and 0.47, respectively; Supplementary Fig.
1b). These values match variation in diversity across CSTs as
previously reported5.

Table 2. Details of the five datasets included in the analysis.

Ref # Samples (after filtering) # Women/Samples (longitudinal data) Additional Information

VCU Serrano et al.44 3879 – –

AVPVC Ravel et al.3 385 – Nugent, pH

PHS Srinivasan
et al.45

185 – Amsel’s criteria

UAB Ravel et al.27 3597 83 women, ~70 daily samples per women Nugent, pH, menstruation

PVI Carter et al.28 495 84 women, 2–7 bi-monthly samples per woman Amsel’s criteria

Fig. 1 Analysis scheme of the manifold detection framework.
a The framework takes as input a high-dimensional microbial data
table, describing microbial features of each sample. b Data are then
projected onto a lower dimensional space, resulting in a composi-
tional manifold. c Each sample is labeled with a pseudo-time score,
calculated based on its distance along the manifold from a pre-
defined group of root samples. d The manifold is also partitioned
into “arms” (which represent distinct routes on the manifold and
different possible routes to BV), based on the assigning CSTs to the
various sample. e New samples are matched to their nearest
neighbor on the manifold, obtaining their pseudo-time label and
location on the manifold from their nearest neighbor. f Samples
from a longitudinal dataset can be mapped to this manifold and
used to characterize the trajectory of each woman along the
manifold, comparing samples’ pseudo-time labels to the chronolo-
gical time in which the sample was obtained. g Pseudo-time labels
associations with various clinical BV-related variables, including
community diversity, Nugent score, and pH, can be examined.
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Additionally, to allow us to evaluate the capacity of our
framework to assign meaningful pseudo-time labels to “new”
samples, we held out a set of samples from our dataset, using only
the remaining samples for identifying and characterizing the
manifold as described above. Specifically, we randomly selected
30 women from one of the cross-sectional datasets (AVPVC)3 and
12 women from one of the longitudinal datasets (UAB27; each with
multiple daily samples), for a total of 515 samples. These held-out
samples were not included in our pseudo-time analysis, and
instead were each mapped to its nearest neighbor (using the Bray-
Curtis distance metric) on the manifold and assigned the pseudo-
time and CST of that nearest neighbor.
Having constructed and processed this dataset collection, we

finally applied the framework described above to samples from
the five datasets. Dimensionality reduction, as a part of the PAGA
package, resulted in a graph with distinct “arms”, each could be
assigned to a specific CST (Fig. 2a, inset). The arms of CST-I and III
were the longest, and each could be further partitioned into the
main subCST, A (with sample located closer to the periphery of the
graph), and the secondary subCST, B (with samples closer to the
center of the graph and to BV state samples). This illustrates the
gradual changes in vaginal community along routes of BV
development, as well as the prevalence of these CSTs3,5. Notably,
samples from the five different datasets were relatively well-
spread across the UMAP space (Fig. 2b), confirming that the result
manifold is not an artifact of some study-specific bias. This
manifold was then used to calculate the pseudo-time of each
sample, based on provided root samples (Fig. 2c; see “Methods”).
In our analysis, we defined samples with positive Amsel’s test (i.e.,
three positive criteria out of four) and with Shannon-diversity
index >3.5 (considered less healthy), as root samples.

Pseudo-time labels’ association with BV-related
clinical indicators
One of the potential advantages and application of our pseudo-
time approach is that it provides an objective quantification of a
sample’s progression toward a BV state, based solely on observed
trajectories along the vaginal microbiome compositional space.
Indeed, for example, we found that the mean pseudo-time of
Lactobacillus-dominant CSTs was 0.72, whereas that of non-
Lactobacillus CSTs was 0.91, indicating that Lactobacillus popula-
tions are further away from an unhealthy state, as expected. As
stated above, in our work, lower pseudo-time signifies greater
distance from the BV state, and hence a lower mean pseudo-time

of samples from a particular CST suggests that these samples are
on average closer to the healthy state. To further confirm the
utility of the obtained pseudo-time label as markers for BV
progression, we next examined how they correlate with various
ecological and BV-related features, such as Shannon-diversity
index, Nugent score, and Amsel’s criteria. We first focused on
community diversity, acknowledging that a diverse vaginal
population is generally considered less healthy and closer to BV
state. This analysis was conducted separately for each arm on the
manifold (based on Fig. 2a), since BV developmental patterns may
vary across different source CSTs. As expected, we found that
Shannon-diversity index was highly correlated with pseudo-time
across all arms, with R2 of 0.79, 0.66, 0.8 and 0.69 in arms of CST I,
II, III and V, respectively (Fig. 3a). To evaluate whether the
correlation between Shannon-index with pseudo-time is influ-
enced by potential dataset effects, we also applied a random
effects model, using the dataset identity as a random effect, and
found that this correlation was still significant (p < 0.0001). As an
additional evaluation, we also confirmed that the correlation
between Shannon-diversity and pseudo-time remains significant
when calculated for each dataset separately (Supplementary Table
1). Moreover, held-out samples (see above) that were assigned
with pseudo-time labels according to their nearest neighbors’
labels have also exhibited a high correlation between their
Shannon-diversity values and the assigned pseudo-time label in
the healthy available arms (CST I and III; Supplementary Fig. 2).
Since root samples in our manifold were also defined as those
with the highest Shannon-diversity index (along with positive
Amsel’s test result), and other CSTs are generally defined by the
dominance of one phylotype (and are hence less diverse), these
correlations are not necessarily surprising, yet, the strong
correlation suggests a good fit of the samples’ placement along
the manifold and their bacterial population’s composition.
Importantly, however, examining the relationship between
pseudo-time and clinical BV indicators, we again found similar,
albeit somewhat weaker correlations. Specifically, Nugent score in
all arms, except for IV-C, exhibited a significant correlation with
pseudo-time values (Spearman correlation; FDR < 0.05). Further-
more, pseudo-time labels significantly differed between samples
with positive and negative Amsel’s test results in arms I, III, IV-A,
and IV-B. Arms II and V were excluded from this analysis due to
insufficient sample size, while arm IV-C showed no significant
difference (Supplementary Table 2). As for Amsel’s specific criteria,
we found that pseudo-time showed significant correlations with
pH in three arms (III, IV-B, and IV-C) and significant differences

Fig. 2 Visualization of the vaginal microbiome composition manifold and its relation to various sample properties. Each point represents
a single sample (from the pooled set of 8026 samples from the five datasets analyzed), where its location was determined by low
dimensionality reduction using the PAGA algorithm. a Colors indicate the subCST determined for each sample based on VALENCIA. The inset
on the bottom left corner represents the partition of the samples into the different manifold’s arms, where each arm is associated with a
different CST. b Colors indicate the dataset each sample was obtained from. The UAB dataset was further partitioned according to the
sequencing method that was used. c Colors indicate the pseudo-time label that was assigned to each sample based on results from the PAGA
algorithm. Black points denote root samples, defined as highly diverse samples (Shannon diversity index >3.5) with positive Amsel’s test.
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between positive and negative clue cells, whiff, and abnormal
vaginal fluid tests in arm III.
Given our primary objective, which is to elucidate the

development of BV through pseudo-time analysis, we next aimed
to examine how well BV-indicators can be predicted using
pseudo-time labels. To this end, we calculated for each BV-
indicator a Receiver Operating Characteristic (ROC) curve,
describing how well can the pseudo-time label separate between

positive and negative values of this indicator given different
pseudo-time thresholds (Fig. 3b). Then, the area under the ROC
curve (AUC) was calculated to quantify the overall predictive
accuracy. To further assess the information captured in the
pseudo-time labels, we compared the obtained ROC AUC to
predictions using shuffled labels. Notably, samples defined as root
samples for the manifold detection analysis were discarded from
this analysis. Here, we focused on six BV indicators: high Nugent

Fig. 3 Association between pseudo-time labels and BV-related clinical indicators. a Shannon-diversity index as a function of pseudo-time
label in healthy arms. Each plot represents a different CST arm and colors indicate subCST, including in total 4627 healthy samples from all five
datasets. The black line represents a linear regression to transformed polynomial values of pseudo-time. The R2 and p value presented in each
panel were determined by Spearman correlation test. b Receiver operating characteristic (ROC) curves for predicting six BV indicators with
pseudo-time labels. The area under the ROC curve (AUC) is presented at the bottom of each plot. Colored curves represent prediction
obtained using shuffled indicator labels. Bottom plots represent similar analysis, based only on held-out samples. The manifold-based curves
are constructed using a range of 677–4055 samples (depending on the datasets that included the required data), while the held-out-based
curves are generated using between 251–501 samples.
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score, positive Amsel’s test, and the four criteria of Amsel (elevated
pH, positive whiff test, presence of clue cells, and abnormal
vaginal fluid). Since not all indicators were available in all datasets,
we limited the analysis of each indicator to the dataset in which it
was provided. Specifically, Nugent score was available only in the
UAB study, Amsel’s test and pH were available in the PHS, UAB,
and PVI studies, and the remaining Amsel’s criteria were available
only in the PHS and PVI datasets. Evidently, our analysis revealed
that pseudo-time could effectively predict all BV indicators, with
ROC AUC ranging between 0.65 (and for all indicators except
vaginal fluid, 0.72) to 0.88. The relatively low predictability of
vaginal fluid, may be attributed to the dispersed distribution of
samples with abnormal fluid on the manifold, and in agreement
with one dataset from the original PVI study, where only BVAB1
was associated with abnormal vaginal fluid, compared to more
than ten taxa significantly associated with other Amsel’s criteria28.
Repeating this analysis using only the held-out samples, we
observed similar predictability (since held-out samples were
chosen from the AVPVC and UAB datasets, only the high Nugent
score, positive Amsel’s test, and elevated pH indicators were
available, with only 7 samples positive for Amsel’s test).

Pseudo-time labels’ association with menstrual cycle and
BV-related metabolites
Given the significant influence of the menstrual cycle on
fluctuations in vaginal population composition13,29, we next
aimed to investigate the relationship between pseudo-time labels
and menstruation. We hypothesized that pseudo-time would
exhibit larger fluctuation toward unhealthy state (i.e., higher
pseudo-time) prior to and during menstruation in comparison to
fluctuations in other times. To investigate this, we calculated the
difference in pseudo-time between each two consecutive
samples, and compared the observed differences in the period
ranging from 2 days before menstruation to the end of
menstruation with differences observed in all other times. Our
analysis indeed demonstrated a statistically significant increase in
fluctuation toward higher pseudo-time in menstruation com-
pared to non-menstruation periods. This difference was observed
among the samples used in our manifold detection analysis
(Wilcoxon test, Supplementary Fig. 3), with a similar trend
observed in the held-out samples (but did not reach statistical
significance).
In order to validate the effectiveness of our pseudo-time

framework, we next examined the relationship between pseudo-
time labels and BV-associated metabolites, such as biogenic
amines30–33. These amines include, for example, the metabolites
cadaverine, putrescine, and tyramine, which were previously
linked to increased likelihood of transitioning from Lactobacillus-
dominant CST to non-Lactobacillus CST. Indeed, data about the
level of five biogenic amines (cadaverine, putrescine, spermine,
spermidine, and tyramine), was available for samples from the
UAB dataset used in our pseudo-time analysis31. We found the
levels of cadaverine, putrescine, and tyramine (but not spermidine
and spermine) were significantly higher in samples labeled with
high pseudo-time (>0.9), compared to samples with low pseudo-
time (p= 0.00001, 0.00029, 0.0044, respectively; Wilcoxon test;
Supplementary Fig. 4), in agreement with the association between
BV and these three biogenic amines reported above30–33.
Combined, these analyses revealed robust correlations between
pseudo-time labels and multiple key indicators of BV and BV-
related metabolites.

Individual trajectories of women from the longitudinal
dataset along the manifold
Since our dataset collection includes longitudinal samples,
wherein multiple samples were obtained from some women over
time, we compared for each such woman the calculated samples’

pseudo-times with the chronological time at which the samples
were obtained, thereby characterizing the specific trajectory of
each woman along the manifold. Importantly, our pseudo-time
calculation did not utilize information about which sample
originated from which woman or at what chronological time in
any way. As evident from the top plots in Fig. 4, observed
trajectories varied substantially between women. For example,
woman UAB103 (Fig. 4a) demonstrated a relatively stable
trajectory, remaining on the same healthy arm of the manifold
(CST I) throughout the experiment’s duration, although moving
back and forth (i.e., closer and further from the BV state) along this
arm. In contrast, woman UAB059 (Fig. 4b) exhibited a recurrent
transition from a healthy state to a BV state (generally in sync with
the menstrual cycle), moving from one arm to another. Finally,
woman UAB002 (Fig. 4c) demonstrated frequent sharp transitions,
moving between multiple arms on the manifold (including three
different healthy arms and two BV-associated arms) without any
discernible pattern. The trajectories of all women from this dataset
on the manifold can be found in Supplementary Fig. 5, and
pseudo-time progression along chronological time can be found
in Supplementary Fig. 6.
These observed differences in women’s trajectories may reflect

various factors that affect community behavior. For example, a
continuous increment in pseudo-time along chronological time
(as seen, for example, in subjects UAB001; Supplementary Fig. 6)
may represent a gradual progression toward BV, whereas, a sharp
increase in pseudo-time (as seen in subject UAB075) might imply a
specific event or exogenous perturbation that caused this shift.
One such perturbation, for example, may be the use of
medications for treating BV, aiming to shift the microbial
population toward a healthier state. Although the efficacy of such
medications can vary among women34,35, we hypothesized that
the use of such medications should lead to a decrease in pseudo-
time (i.e., a movement along the manifold toward a healthier
state). To test this hypothesis and investigate the impact of BV
medication on pseudo-time, we used available data from the UAB
dataset, and analyzed samples collected during medication use, as
well as 1 day before and after treatment. Among the ten instances
of BV medication usage across 13 incidents of 11 women, nine
indeed showed a consistent decrease in pseudo-time during this
period (Supplementary Fig. 7), highlighting the potential of our
pseudo-time labels as an effective model of temporal microbiome
dynamics.

Shifts in taxa abundances during BV development
Even though BV is a highly common disease worldwide, its
etiologic agent is yet unknown. Specifically, our understanding of
disease development in women with recurrent BV or with slow
progression toward disease (i.e., in women not affected by sexual
intercourse or another unique event36), is lacking. The vaginal
microbiome composition manifold, presented in Fig. 2, can serve
as a comprehensive map of the potential routes of the vaginal
microbiome, allowing us to quantify changes in bacterial
abundances along various manifold’s arms, each representing a
different route of BV development. For this purpose, samples were
separated again into the different arms and ordered by pseudo-
time label. To address the noisy and stochastic nature of the data,
we further used a sliding window and calculated the average
relative abundance of each taxon along pseudo-time (see
“Methods”; Fig. 5). An increase in a taxon’s abundance with
pseudo-time values implies a potentially important role in BV
development, especially if this increase is observed in multiple
arms. For example, G. vaginalis, Finegoldia, and Streptococcus
increased in abundance with pseudo-time in all arms. G. vaginalis,
specifically, increased in abundance substantially with pseudo-
time, reaching a relative abundance of 2.3–11% in the samples
with the highest pseudo-time, although these samples are still
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classified as being in a healthy CST. This finding supports the
association between G. vaginalis and BV that was previously
shown37, and suggests it has an important role in BV development
from all healthy CSTs. Interestingly, all Lactobacillus species also
tended to increase in abundance in the arms in which they were
not the dominant species, potentially owing to a general increase
in diversity and a corresponding shift from a single Lactobacillus
species-dominant community to a more diverse community.
Lastly, the abundance of several taxa increased in specific arms,
such as Corynebacterium (arms I, II and V), Bifidobacterium (II and
V), Anaerococcus (I and II), Prevotella (II), and Megasphaera (III). Even
though these taxa’s abundances were relatively low throughout
the trajectory, this might suggest different mechanisms of BV
progression (that are driven by different bacterial species) from
different healthy CSTs.

DISCUSSION
With the goal of comprehensively characterizing the dynamics of
the vaginal microbial population, we applied a framework of
manifold detection inspired by common single-cell analysis. The
detected manifold can serve as a map of potential routes from
healthy CSTs to BV. Moreover, this approach allows us to assign
each sample with a pseudo-time label, describing the location of
each sample on the manifold in relation to healthy vs. BV states,
hence offering a proxy for the status of the sample. Our findings
provide insights into the structure of vaginal microbiome
dynamics and shed light on common vaginal trajectories and BV
etiology, while offering an ability to evaluate the state of new
samples.

Our analysis of the obtained pseudo-time labels revealed a
robust association between these labels and multiple BV-related
clinical parameters. With that in mind, it is worth noting that
pseudo-time labels are obtained based on the bacterial composi-
tion alone, suggesting that our framework can be used to provide
complementary and valuable insights into the health status of a
given sample, and to infer the condition of a sample with respect
to BV development stage.
Notably, amongst the BV indicators we examined, abnormal

vaginal fluid exhibited only limited association with pseudo-time.
Indeed, as shown in the original PVI study28, only BVAB1 was
associated with abnormal vaginal fluid in the PVI dataset, in
contrast to the PHS dataset, suggesting that this symptom needs
to be further explored in different contexts. Specifically, the PVI
dataset was obtained mostly from women of African ethnicity, and
given the observed variation in the vaginal microbiome across
ethnicities3, a larger dataset of more diverse ethnicities may be
required. Unfortunately, the majority of samples in our study
lacked accessible ethnicity data or reported ethnicity using
different labeling systems, impeding our assessment of the impact
of ethnicity in relation to pseudo-time.
Our analysis of microbial compositions along the vaginal

microbiome manifold further revealed bacterial taxa whose
abundances change in association with pseudo-time in the
different manifold arms, potentially highlighting the role of
various microbes in BV development. Interestingly, while the
abundances of G. vaginalis, Finegoldia, and Streptococcus increased
with pseudo-time in all arms, shifts in the abundances of other
taxa arm-specific, suggesting different mechanisms of transition
from the distinct Lactobacillus CSTs toward BV. G. vaginalis was
considered associated with BV, however, its association with BV

Fig. 4 A manifold-based characterization of the trajectories of three representative women from the daily longitudinal dataset (UAB).
The top plot in each panel (a–c) illustrates the trajectory of the woman on the detected manifold. Gray dots represent the UMAP visualization
of the vaginal microbiome composition manifold, and colored dots represent the locations of samples obtained from a specific woman, where
each color represent the determined subCST of the sample. Black arrows denote the direction of the woman’s trajectory, showing the order of
the samples based on the time they were obtained in the experiment. The bottom plot in each panel illustrates pseudo-time progression of
the woman, as a function of chronological time. Dots colors are as in the top plots. Red triangles at the bottom of the plot represent self-
reported menstruation, where size indicates menstruation spotting (small), medium or heavy bleeding (large).
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was shown to be strain-dependent38,39, therefore, further analysis,
for example using shotgun sequencing, is required to evaluate its
contribution to BV development. Finegoldia and Streptococcus
were also previously identified as BV-related bacteria, together
with many of the arm-specific taxa we report in our analysis27,28,40,
yet, the relation of the arm-specific taxa to BV development from a
specific CST source needs to be further evaluated. Notably,
Prevotella—a taxon that has been hypothesized to have a
dominant role in BV development (e.g., by creating a biofilm with
G. vaginalis19,41)—appeared in our analysis only in one Lactoba-
cillus-dominant arm (II), calling for further investigation into its role
in BV development from other healthy CSTs. Other species that
increased with pseudo-time might grow with G. vaginalis to form a
BV biofilm, including Finegoldia37, Streptococcus42 and Atopo-
bium43. These observations suggest that examining the progres-
sion of BV from the perspective of the previous healthy state is
essential for gaining insights into the interactions between
bacterial taxa and the changes in their abundance in the
formation of BV biofilm.
While the observed associations between pseudo-time labels

and various clinical parameters attest to the validity of our
approach, it is important to acknowledge the limitations of the
manifold framework. Specifically, it is worth noting that pseudo-
time labels are ultimately based on changes in the bacterial
composition of the microbiome, and hence correlations between
pseudo-time and measures closely related to the bacterial
population (such as Shannon-diversity or Nugent score) are
perhaps not surprising. As such, our framework and the obtained
pseudo-time labels can be viewed as a powerful approach to
summarize the complex and highly dimensional microbiome data,
into a meaningful, clinically-relevant metric, offering a spatial
perspective (i.e., manifold arm and location along the arm) for
these data. Another limitation in our framework is the need to

define root samples for the pseudo-time analysis. For our analyses,
we used Amsel’s positive samples with high diversity as root
samples, however, the ambiguous definition of BV, along with
missing information in our metadata, make it difficult to
determine the ideal root samples that should be used to represent
BV. Additionally, even though the datasets utilized in this study
provide a massive number of samples, they may still not describe
the full range of variation that may be present in the vaginal
human population. A larger and more diverse dataset may thus be
necessary to characterize the vaginal microbiome manifold more
precisely. Lastly, an important issue to consider in assessing the
utility of manifold detection approaches for studying the vaginal
microbiome is the marked differences between the properties of
microbiome data and that of single-cell transcriptome data, to
which manifold detection approaches are generally applied.
Specifically, while single-cell data often describe a pre-defined,
well-characterized process (such as cell differentiation), the
dynamics of microbial populations are generally more noisy,
including abrupt changes, exogenous perturbations, and
individual-specific variation. Furthermore, microbial processes
are generally not strictly regulated and not necessarily directional,
and hence might exhibit back and forth transitions between
different states. However, despite these differences, our study
suggests that a manifold detection framework can still be applied
to vaginal microbiome data and to reveal valuable insights into
important microbial processes.
Combined, our analyses and findings above provide a proof of

concept for the use of manifold detection methods to map vaginal
bacterial samples onto a low-dimensional space, enabling the
characterization of potential routes from healthy vaginal states to
BV and offering a deeper understanding of vaginal microbiome
dynamics. Moreover, the pseudo-time labels obtained using this
approach can serve as a powerful indicator of vaginal microbiome
status, and enhance our ability to assess a woman’s health,
potentially facilitating early diagnosis and treatment.

METHODS
Datasets and data processing
Five datasets were analyzed, three cross-sectional and two
longitudinal (see also Table 2). The first cross-sectional dataset,
termed VCU (Bioproject PRJNA46877), is a part of the VaHMP
study44, which includes 3956 samples. The data was collected
from women of reproductive age, and the metadata was not
published. The second dataset3, termed AVPVC (Bioproject
SRA022855), is composed of 396 women of reproductive age,
and includes information about Nugent score, pH, age, and
ethnicity. The third cross-sectional study, termed PHS45 (Bioproject
SRA051298), includes 242 women and information regarding
Amsel’s criteria such as pH, clue cells, vaginal fluid and whiff test.
The first longitudinal dataset27, termed UAB (Bioproject
PRJNA208535), included 3700 samples and was partitioned into
two subsets for processing, due to differences in the sequencing
platform and sequenced region. The first subset includes
1658 samples sequenced with 454 pyrosequencing of the V1–V3
region. It was collected from 25 women of reproductive age every
day for 70 days, and contains data regarding menstruation, age,
ethnicity, Nugent score, pH, as well as additional important BV-
related information such as BV medication, Amsel’s test results,
and specific BV self-reported symptoms. The second subset
includes 2042 samples from 176 women of the V3–V4 region,
sequenced via Illumina. It contains data regarding menstruation,
Nugent score, and pH, however, does not include BV-related
information. The second longitudinal dataset, termed PVI, includes
497 samples from 84 women (Bioproject PRJNA638104)28.
Samples were collected from four clinics, three clinics in Kenya
and one in Alabama. Samples were collected once in 2 months,

Fig. 5 Bacterial taxa’s relative abundances as a function of by
pseudo-time. Each plot represents the taxa’s abundances in each
healthy manifold arm (I, II, III, and V). Taxa’s abundances were
averaged using a sliding window approach to reduce noise.
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with 2–7 samples per woman. This dataset includes information
about specific Amsel’s criteria state, such as pH, clue cells and
vaginal discharge.
Data were acquired from NCBI as fastq files and were processed

via DADA246, resulting in amplicon sequence variants (ASVs) at
high resolution. All datasets were filtered for more than 1000
reads in each sample and more the 100 reads for each ASV, to
exclude very rare ASVs in each dataset. The filtration step resulted
in 3879 samples in the VCU dataset, 385 samples in the AVPVC
dataset, 185 of the PHS dataset, 3597 samples in the UAB dataset
and 495 samples from the PVI dataset. In total, 8541 samples were
processed. Taxonomic classification was assigned to each ASV
using the RDP Naïve Bayesian Classifier47 trained with the SILVA
16S rRNA gene database (version 138.1)48. Further important
species classification (Lactobacillus, Gardnerella, Prevotella, Atopo-
bium, Shuttleworthia and Sneathia) was done with speciateIT
(https://github.com/Ravel-Laboratory/speciateIT). In the second
cross-sectional dataset and the subset sequenced with Illumina,
ASVs assigned to L. ultunensis were changed to L. crispatus, due to
their observed part in the population compared to the results.
Then, samples were assigned to a specific community state type
(CST) using the VALENCIA algorithm5. VALENCIA implements a
distance-based metric to classify each sample, based on the
similarity score to the centroid of CSTs identified in a reference set.
Notably, the VALENCIA method is well-established and enjoys
widespread adoption in the vaginal microbiome research com-
munity. It specifically minimizes potential dataset variability by
utilizing pre-defined centroids that are based on a large-set of
vaginal microbiome samples, in contrast to methods such as
Dirichlet multinomial mixture models (DMM)49, which may form
new clusters based on community composition. All taxonomic
units were transformed to relative abundances in each sample.
Rare species were removed based on their prevalence (ratio of
non-zero samples to total number of samples >0.0001) and their
average abundance (>0.00005) across all samples, resulting in 373
taxa in the final analysis.

A framework for vaginal microbiome manifold detection and
pseudo-time labeling
Aiming to map the potential routes of the vaginal microbiome
dynamics, we applied the PAGA24 algorithm, which is a common
approach in the single-cell RNA-sequencing field50. The first step
of the PAGA algorithm includes dimensionality reduction using
PCA. Then, PCA values are projected onto a lower dimensional
space (i.e., a manifold) using UMAP51 (Uniform Manifold Approx-
imation and Projection). UMAP is the default method for
dimensionality reduction used in PAGA, and was therefore applied
in our analysis rather than other available methods, such as
PHATE52. Finally, the samples are ordered along the manifold and
a pseudo-time label is assigned to each sample using an extension
of diffusion maps53. Notably, the diffusion-map algorithm requires
a pre-defined group of cells/samples denoted as root samples,
which represent the beginning of the manifold. In our analysis, we
defined root samples as samples with positive Amsel’s test and
high Shannon-diversity (>3.5). A positive Amsel’s test is the best
clinical evaluation for BV and high diversity of the microbiome is
also considered as a sign for an unhealthy state5,38. Pseudo-time is
computed by defining coordinates as dominant eigenvectors of a
transition matrix that describes random walks between data
points, resulting in a quantitative measure of progress through the
biological process. In our analysis, the vaginal microbiome
composition manifold was detected using 8026 samples of the
five datasets mentioned. A total of 515 samples were held out
from the manifold analysis, with 485 samples selected at random
from the UAB longitudinal dataset representing 12 women, and 30
women selected at random from the AVPVC dataset with one
sample per woman. These samples were subsequently utilized to

evaluate the projection of new samples onto the manifold as
described below. To assign held-out samples with a location on
the manifold and a pseudo-time label, samples were mapped onto
the manifold using a nearest-neighbor approach, using Bray-Curtis
dissimilarity metric54 based on the microbial composition of the
samples. Then, pseudo-time and UMAP values of the nearest
neighbor were assigned to the held-out sample for further
analysis.

Evaluation of the association between pseudo-time labels and
BV indicators
To enhance the assessment of the predictive capacity of pseudo-
time labels, we focused on appraising the predictive abilities of
pseudo-time in conjunction with the Nugent score, Amsel’s test
result, and the specific Amsel’s criteria (i.e., pH, whiff test,
occurrence of clue cells, and abnormal vaginal discharge). For
this purpose, all BV indicators (including continuous indicators)
were categorized into pre-defined value options. A positive
Nugent score was defined as Nugent >7, an elevated pH value
was defined as pH >5.5, and a positive Amsel’s test result was
defined as positive symptomatic and asymptomatic Amsel’s test
outcomes. The utilization of Nugent score and pH values in
previous studies has established their relevance in describing the
vaginal microbiome state, particularly in relation to BV5. The
remaining Amsel’s criteria derived from the original analysis of the
PVI and PHS datasets, including identifying the presence of clue
cells at a rate exceeding 20% as a positive test, and categorizing
thin, gray, and homogeneous vaginal fluid as indicative of
abnormality. Worth to notice that BV indicators were available in
different datasets, therefore Nugent score was held from the UAB
study alone, pH and Amsel’s test from UAB, PVI, and PHS, and all
other Amsel’s criteria (whiff test, clue cells and vaginal fluid) were
obtained from both PVI and PHS studies. To evaluate the
prediction of BV indicators using pseudo-time, we employed a
receiver operating characteristic (ROC) curve analysis. The ROC
curve allowed us to assess the performance of pseudo-time in
distinguishing between positive and negative values of each BV
indicator. The area under the ROC curve (AUC) was then calculated
to quantify the overall predictive accuracy of pseudo-time for BV
indicator value classification. In addition, we shuffled indicator’s
values 100 times to generate ROC curves and AUC calculations
based on the shuffled data, to demonstrate the predictive
capability of pseudo-time in comparison to a random null. This
analysis provided valuable insights into the effectiveness of
pseudo-time in predicting BV indicators, aiding in the assessment
of its diagnostic potential for BV.

Assessing the interaction between pseudo-time labels and
menstrual cycle and biogenic amines
To investigate the association between menstruation and varia-
tions in pseudo-time, we computed a pseudo-time differentiation
value for each sample, representing the difference in pseudo-time
between the current sample and the earlier time-point within the
same woman. These pseudo-time differentiation values were
categorized into two groups: (1) samples from the previous 2 days
of and during the menstruation period, and (2) all other samples.
The difference between the pseudo-time differentiation values of
these two groups was evaluated using Wilcoxon test in R.
We also evaluated association of five biogenic amines

(cadaverine, putrescine, spermidine, spermine, and tyramine),
obtained from another study based on samples utilized in the
manifold detection framework31. These biogenic amines were
measured in 79 samples of 19 women, using targeted liquid
chromatography-mass spectrometry (LC-MS). Due to the uneven
distribution of the samples between CSTs, we have decided to
divide pseudo-time into two categories for this analysis. High
pseudo-time was defined as pseudo-time >0.9. Biogenic amines
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levels differences between pseudo-time categories were tested
using Wilcoxon test in R.

Bacterial taxa abundance changes along the manifold arms
Samples were categorized based on their respective manifold
arm, corresponding to their CST. Subsequently, the bacterial
taxa were segregated into different arms based on the location
of each sample on the manifold. To ensure a smoother
representation of bacterial abundance changes along the
manifold, taxa abundances within each arm were averaged
using a sliding window approach. Specifically, the abundances
were averaged over a window size of 0.2 units of pseudo-time
label, with a sliding increment of 0.01 units of pseudo-
time label.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All datasets analyzed in this study are available from the NCBI Sequence Reader
Archive (SRA) repository. Specifically, the VCU44 dataset (https://doi.org/10.1038/
s41591-019-0465-8) is available under the accession number PRJNA46877, the
AVPVC3 dataset (https://doi.org/10.1073/pnas.1002611107) under SRA022855, the
PHS45 dataset (https://doi.org/10.1371/journal.pone.0037818) under SRA051298, the
UAB27 dataset (https://doi.org/10.1186/2049-2618-1-29) under PRJNA208535, and the
PVI28 dataset (https://doi.org/10.3389/fcimb.2022.801770) under PRJNA638104.
Complete information about these datasets can be found in Table 2.

CODE AVAILABILITY
All code used in this manuscript has been made available at https://github.com/
borenstein-lab/vaginal_microbiome_manifold.

Received: 24 August 2023; Accepted: 28 November 2023;

REFERENCES
1. Alisoltani, A. et al. Microbial function and genital inflammation in young South

African women at high risk of HIV infection. Microbiome 8, 1–21 (2020).
2. Ziklo, N., Vidgen, M. E., Taing, K., Huston, W. M. & Timms, P. Dysbiosis of the

vaginal microbiota and higher vaginal kynurenine/tryptophan ratio reveals an
association with Chlamydia trachomatis genital infections. Front. Cell. Infect.
Microbiol. 8, 1–11 (2018).

3. Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad.
Sci. USA 108, 4680–4687 (2011).

4. Zhou, X. et al. Differences in the composition of vaginal microbial communities
found in healthy Caucasian and black women. ISME J. 1, 121–133 (2007).

5. France, M. T. et al. VALENCIA: a nearest centroid classification method for
vaginal microbial communities based on composition. Microbiome 8, 1–15
(2020).

6. Aldunate, M. et al. Antimicrobial and immune modulatory effects of lactic acid
and short chain fatty acids produced by vaginal microbiota associated with
eubiosis and bacterial vaginosis. Front. Physiol. 6, 1–23 (2015).

7. Fettweis, J. M. et al. The vaginal microbiome and preterm birth. Nat. Med. 25,
1012–1021 (2019).

8. Ravel, J., Moreno, I. & Simón, C. Bacterial vaginosis and its association with
infertility, endometritis, and pelvic inflammatory disease. Am. J. Obstet. Gynecol.
224, 251–257 (2021).

9. Jamieson, D. J. et al. Longitudinal analysis of bacterial vaginosis: findings from the
HIV epidemiology research study. Obstet. Gynecol. 98, 656–663 (2001).

10. Mark, S. & Phillip, E. C. Human papillomavirus and cervical cancer. Rev. Quant.
Financ. Account. 8, 191–209 (1997).

11. Auriemma, R. S. et al. The vaginal microbiome: a long urogenital colonization
throughout woman life. Front. Cell. Infect. Microbiol. 11, 1–11 (2021).

12. Mirmonsef, P. et al. Free glycogen in vaginal fluids is associated with Lactobacillus
colonization and low vaginal pH. PLoS ONE 9, 26–29 (2014).

13. Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl.
Med. 4, 132ra52 (2012).

14. Muzny, C. A. et al. An updated conceptual model on the pathogenesis of bacterial
vaginosis. J. Infect. Dis. 220, 1399–1405 (2019).

15. Song, S. D., Acharya, K. D. & Chia, N. Daily vaginal microbiota fluctuations asso-
ciated with natural hormonal cycle, contraceptives, diet, and exercise. MSphere 5,
10–1128 (2020).

16. Rosen, E. M. et al. Is prenatal diet associated with the composition of the vaginal
microbiome? Paediatr. Perinat. Epidemiol. 36, 243–253 (2022).

17. Lugo-martinez, J., Ruiz-perez, D., Narasimhan, G. & Bar-joseph, Z. Dynamic
interaction network inference from longitudinal microbiome data. Microbiome 7,
1–14 (2019).

18. Baksi, K. D., Kuntal, B. K. & Mande, S. S. ‘TIME’: a web application for obtaining
insights into microbial ecology using longitudinal microbiome data. Front.
Microbiol. 9, 1–13 (2018).

19. Muzny, C. A. et al. Identification of key bacteria Involved in the induction of
incident bacterial vaginosis: a prospective study. J. Infect. Dis. 218, 966–978
(2018).

20. Li, L. et al. Computational approach to modeling microbiome landscapes associated
with chronic human disease progression. PLoS Comput. Biol. 18, 1–24 (2022).

21. Tap, J. et al. Global branches and local states of the human gut microbiome de fi

ne associations with environmental and intrinsic factors. Nat. Commun. 14, 1–11
(2023).

22. Moon, K. R. et al. Manifold learning-based methods for analyzing single-cell RNA-
sequencing data. Curr. Opin. Syst. Biol. 7, 36–46 (2018).

23. Cannoodt, R., Saelens, W. & Saeys, Y. Computational methods for trajectory
inference from single-cell transcriptomics. Eur. J. Immunol. 46, 2496–2506 (2016).

24. Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory
inference through a topology preserving map of single cells. Genome. biol. 20,
1–9 (2019).

25. O’Hanlon, D. E., Gajer, P., Brotman, R. M. & Ravel, J. Asymptomatic bacterial
vaginosis is associated with depletion of mature superficial cells shed from the
vaginal epithelium. Front. Cell. Infect. Microbiol. 10, 1–10 (2020).

26. Bommana, S. et al. Metagenomic shotgun sequencing of endocervical, vaginal,
and rectal samples among Fijian women with and without chlamydia tracho-
matis reveals disparate microbial populations and function across anatomic sites:
a pilot study. Microbiol. spectr. 10, 00105–22 (2022).

27. Ravel, J. et al. Daily temporal dynamics of vaginal microbiota before, during and
after episodes of bacterial vaginosis. Microbiome 1, 1–6 (2013).

28. Carter, K. A. et al. Associations between vaginal bacteria and bacterial vaginosis
signs and symptoms: a comparative study of Kenyan and American women.
Front. Cell. Infect. Microbiol. 12, 801770 (2022).

29. Srinivasan, S. et al. Temporal variability of human vaginal bacteria and relation-
ship with bacterial vaginosis. PLoS ONE 5, e10197 (2010).

30. Srinivasan, S. et al. Metabolic signatures of bacterial vaginosis. MBio 6, 1–16
(2015).

31. Borgogna, J. L. C. et al. Biogenic amines increase the odds of bacterial vaginosis
and affect the growth of and lactic acid production by vaginal Lactobacillus spp.
Appl. Environ. Microbiol. 87, 1–16 (2021).

32. Yeoman, C. J. et al. A multi-omic systems-based approach reveals metabolic
markers of bacterial vaginosis and insight into the disease. PLoS ONE 8, e56111
(2013).

33. Ceccarani, C. et al. Diversity of vaginal microbiome and metabolome during
genital infections. Sci. Rep. 9, 1–12 (2019).

34. Muzny, C. A. & Kardas, P. A narrative review of current challenges in the diagnosis
and management of bacterial vaginosis. Sex. Transm. Dis. 47, 441–446 (2020).

35. Lev-Sagie, A. et al. Vaginal microbiome transplantation in women with intractable
bacterial vaginosis. Nat. Med. 25, 1500–1504 (2019).

36. Muzny, C. A., Lensing, S. Y., Aaron, K. J. & Schwebke, J. R. Incubation period and
risk factors support sexual transmission of bacterial vaginosis in women who
have sex with women. Sex. Transm. Infect. 95, 511–515 (2019).

37. Machado, A. & Cerca, N. Influence of biofilm formation by gardnerella vaginalis
and other anaerobes on bacterial vaginosis. J. Infect. Dis. 212, 1856–1861 (2015).

38. Petrova, M. I., Reid, G., Vaneechoutte, M. & Lebeer, S. Lactobacillus iners: friend or
foe? Trends Microbiol. 25, 182–191 (2017).

39. Shipitsyna, E., Krysanova, A., Khayrullina, G., Shalepo, K. & Savicheva, A. Quanti-
tation of all four gardnerella vaginalis clades detects abnormal vaginal microbiota
characteristic of bacterial vaginosis more accurately than putative G. vaginalis
sialidase A gene count. Mol. Diagn. Ther. 23, 139–147 (2019).

40. France, M., Alizadeh, M., Brown, S., Ma, B. & Ravel, J. Towards a deeper under-
standing of the vaginal microbiota. Nat. Microbiol. 7, 367–378 (2022).

41. Randis, T. M. & Ratner, A. J. Gardnerella and prevotella: co-conspirators in the
pathogenesis of bacterial vaginosis. J. Infect. Dis. 220, 1085–1088 (2019).

42. Verstraelen, H. & Swidsinski, A. The biofilm in bacterial vaginosis: implications for
epidemiology, diagnosis and treatment. Curr. Opin. Infect. Dis. 26, 86–89 (2013).

M. Tsamir-Rimon and E. Borenstein

10

npj Biofilms and Microbiomes (2023)   102 Published in partnership with Nanyang Technological University

https://doi.org/10.1038/s41591-019-0465-8
https://doi.org/10.1038/s41591-019-0465-8
https://doi.org/10.1073/pnas.1002611107
https://doi.org/10.1371/journal.pone.0037818
https://doi.org/10.1186/2049-2618-1-29
https://doi.org/10.3389/fcimb.2022.801770
https://github.com/borenstein-lab/vaginal_microbiome_manifold
https://github.com/borenstein-lab/vaginal_microbiome_manifold


43. Hardy, L. et al. A fruitful alliance: the synergy between Atopobium vaginae and
Gardnerella vaginalis in bacterial vaginosis-associated biofilm. Sex. Transm. Infect.
92, 487–491 (2016).

44. Serrano, M. G. et al. Racioethnic diversity in the dynamics of the vaginal micro-
biome during pregnancy. Nat. Med. 25, 1001–1011 (2019).

45. Srinivasan, S. et al. Bacterial communities in women with bacterial vaginosis: high
resolution phylogenetic analyses reveal relationships of microbiota to clinical
criteria. PLoS ONE 7, e37818 (2012).

46. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina
amplicon data. Nat. Methods 13, 581–583 (2016).

47. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid
assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ.
Microbiol. 73, 5261–5267 (2007).

48. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data
processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).

49. Ding, T. & Schloss, P. D. Dynamics and associations of microbial community types
across the human body. Nature 509, 357–360 (2014).

50. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell
trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

51. McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and
projection for dimension reduction. (2018).

52. Moon, K. R. et al. Visualizing structure and transitions in high-dimensional bio-
logical data. Nat. Biotechnol. 37, 1482–1492 (2019).

53. Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudo-
time robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).

54. Beals, E. W. Bray-curtis ordination: an effective strategy for analysis of multivariate
ecological data. Adv. Ecol. Res. 14, 1–55 (1984).

ACKNOWLEDGEMENTS
The authors would like to thank Sujata Srinivasan for providing the sequencing files of
the PHS dataset, and to the authors of the studies included in this resource, for making
their data publicly available and for responding to inquires we had during the
processing of the data. We also thank former and current Borenstein lab members, and
specifically Efrat Muller, Yadid Algavi, and Omri Peleg, for their helpful inputs and
suggestions. This work was supported in part by National Institutes of Health (grant
R01AI132441), Israel Science Foundation (Grant 2435/19 to E.B.) and the Edmond J. Safra
Center for Bioinformatics at Tel Aviv University. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

AUTHOR CONTRIBUTIONS
M.T.R. and E.B. conceived the study and wrote the manuscript. M.T.R. obtained and
processed the data and performed the analysis. All authors read and approved the
final manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41522-023-00471-8.

Correspondence and requests for materials should be addressed to Elhanan
Borenstein.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

M. Tsamir-Rimon and E. Borenstein

11

Published in partnership with Nanyang Technological University npj Biofilms and Microbiomes (2023)   102 

https://doi.org/10.1038/s41522-023-00471-8
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A manifold-based framework for studying the dynamics of the vaginal microbiome
	Introduction
	Results
	A manifold detection approach for characterizing the dynamics of the vaginal microbiome
	Analysis of vaginal community dynamics in a large-scale dataset collection via manifold detection framework
	Pseudo-time labels&#x02019; association with BV-related clinical indicators
	Pseudo-time labels&#x02019; association with menstrual cycle and BV-related metabolites
	Individual trajectories of women from the longitudinal dataset�along the manifold
	Shifts in taxa abundances during BV development

	Discussion
	Methods
	Datasets and data processing
	A framework for vaginal microbiome manifold detection and pseudo-time labeling
	Evaluation of the association between pseudo-time labels and BV indicators
	Assessing the interaction between pseudo-time labels and menstrual cycle and biogenic�amines
	Bacterial taxa abundance changes along the manifold�arms
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




