
ARTICLE OPEN

Environmental determinants and demographic influences on
global urban microbiomes, antimicrobial resistance and
pathogenicity
Yang Chen1,3, Xi Fu2,3✉, Zheyuan Ou1, Jiang Li1, Simiao Lin1, Yaoxuan Wu1, Xuwei Wang1, Yiqun Deng 1✉ and Yu Sun 1✉

Urban microbiome plays crucial roles in human health and are related to various diseases. The MetaSUB Consortium has conducted
the most comprehensive global survey of urban microbiomes to date, profiling microbial taxa/functional genes across 60 cities
worldwide. However, the influence of environmental/demographic factors on urban microbiome remains to be elucidated. We
collected 35 environmental and demographic characteristics to examine their effects on global urban microbiome diversity/
composition by PERMANOVA and regression models. PM10 concentration was the primary determinant factor positively associated
with microbial α-diversity (observed species: p= 0.004, β= 1.66, R2= 0.46; Fisher’s alpha: p= 0.005, β= 0.68, R2= 0.43), whereas
GDP per capita was negatively associated (observed species: p= 0.046, β=−0.70, R2= 0.10; Fisher’s alpha: p= 0.004, β=−0.34,
R2= 0.22). The β-diversity of urban microbiome was shaped by seven environmental characteristics, including Köppen climate type,
vegetation type, greenness fraction, soil type, PM2.5 concentration, annual average precipitation and temperature (PERMANOVA,
p < 0.001, R2= 0.01–0.06), cumulatively accounted for 20.3% of the microbial community variance. Canonical correspondence
analysis (CCA) identified microbial species most strongly associated with environmental characteristic variation. Cities in East Asia
with higher precipitation showed an increased abundance of Corynebacterium metruchotii, and cities in America with a higher
greenness fraction exhibited a higher abundance of Corynebacterium casei. The prevalence of antimicrobial resistance (AMR) genes
were negatively associated with GDP per capita and positively associated with solar radiation (p < 0.005). Total pathogens
prevalence was positively associated with urban population and negatively associated with average temperature in June (p < 0.05).
Our study presents the first comprehensive analysis of the influence of environmental/demographic characteristics on global urban
microbiome. Our findings indicate that managing air quality and urban greenness is essential for regulating urban microbial
diversity and composition. Meanwhile, socio-economic considerations, particularly reducing antibiotic usage in regions with lower
GDP, are paramount in curbing the spread of antimicrobial resistance in urban environments.
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INTRODUCTION
Urban microbiome research refers to the study of microorganisms
(bacteria, viruses, fungi, and other microbes) in urban environ-
ments. The goal of this research area is to understand the complex
relationships between the urban environment, human health, and
biodiversity, and to catalog potential pathogens and protective
microorganisms that exist in urban environments. The importance
of studying the urban microbiome for human health cannot be
understated. Firstly, the examination of the microbiome composi-
tion and diversity in domestic, healthcare, and public transporta-
tion environments has uncovered the prevalence, transmission
mechanisms, and pathogenic microorganisms present in these
settings1–5. Secondly, the urban microbiome studies also shed
light on the potential risk and protective microorganisms
associated with chronic and allergic diseases, such as asthma,
rhinitis, allergies, and sick-building syndrom6–8. Third, urban
microbiome research has critical implications for the growing
issue of antimicrobial resistance (AMR). It is particularly important
given the escalating global consumption of antimicrobial drugs,
which increased by 65% from 2000 to 20159. This surge in
consumption has contributed to the rise of drug-resistant
pathogens. If this trend continues, it could lead to 10 million

deaths annually by 205010. As such, in-depth exploration and
understanding of the urban microbiome become crucial for
devising strategies to curb the rise of AMR and protect human
health.
The largest urban microbiome research to date is the MetaSUB

consortium, an international collaboration of scientists and
researchers from diverse backgrounds and disciplines focused
on sampling urban public facilities. Between 2015 and 2017, the
consortium collected 4,782 metagenomic samples from 60 cities
worldwide and produced the first comprehensive catalog of
global urban microbial ecosystems11. This project has significant
implications for public health, as it provides officials with tools to
assess risk microbial agents, given that urban microbiomes are
closely related to many diseases. However, despite the exhaustive
survey of urban microbiomes and microbial functional genes
conducted by the MetaSUB project, it made limited efforts in
terms of revealing the effect of environmental characteristics on
urban microbiomes. The study considered only a few factors,
including population, elevation, proximity to the coast, population
density, and region, which cannot systematically and comprehen-
sively reveal the influence of environmental/demographic char-
acteristics on the diversity and composition of urban microbiomes.
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There are numerous environmental and demographic factors
that may impact the diversity, composition, antimicrobial resis-
tance, and presence of pathogenic microorganisms in the urban
microbiome. For instance, air pollutants, including particulate
matter (PM), CO, SO2, NO2 and O3, have been shown to affect the
composition of air-borne microorganisms12,13. The particulate
matter can adsorb microorganisms, and microorganisms can
interact with PM in the ambient air12–14. Meanwhile, the
concentrations of SO2, NO2, and O3 can interfere with the growth
and spread of bacteria13. Furthermore, meteorological conditions,
such as temperature, annual precipitation, and relative humidity,
also impact the composition, structure, and richness of the
microbiome15–20. Additionally, vegetation and soil properties have
been found to affect the variation of microbiome communities in
urban environments21. However, a significant limitation of these
studies is that they have largely been conducted in a limited
number of urban regions or cities. As such, their findings often
lack the broad applicability necessary to encapsulate the global
patterns of how specific environmental and demographic factors
influence urban microbiomes. A global-scale dataset offers a
unique opportunity to address this limitation, enabling us to
understand the overarching environmental and demographic
factors affecting urban microbiomes across diverse geographic
and cultural contexts.
This research aims to investigate the impact of various

environmental and demographic factors on the diversity and
structure of the urban microbiome at a global level using data
from the MetaSUB project. The study analyzed 35 different
environmental and demographic characteristics from public
databases, including air pollutants, soil characteristics, precipita-
tion, radiation, humidity, annual average temperature, vegetation,
population density, and Gross Domestic Product (GDP). To assess
the effects of these environmental factors on microbial diversity,
composition, antimicrobial resistance, and pathogens, permuta-
tion and regression models were utilized. Studying the impact of
environmental characteristics on the urban microbiome is
important for improving our understanding of the complex
relationships between urban environments, human health, and
biodiversity, and for designing more sustainable and resilient
cities.

RESULTS
Global urban microbiome composition and diversity
The MetaSUB project reported the global urban microbiome
across 60 cities in 33 countries. Predominantly, samples were
obtained from high-contact surfaces in metro and transit stations,
including ticket kiosks, turnstiles, railings, and seats or benches.
Other locations included residences, seashores, schools, hospitals,
and parks. To maintain sample source consistency, only samples
from transportation systems were retained for further analysis.
Following this refinement, it became evident that certain cities
contributed a few samples, thus making them unsuitable for in-
depth analysis. Accordingly, we excluded cities contributing fewer
than 14 samples from transportation systems, leading to a refined
set of 32 cities for further exploration. Our re-analysis of the global
urban microbiome data from MetaSUB encompassed a compara-
tive study of microbial alpha diversity, and the evaluation of the
prevalence and abundance of antibiotic-resistance genes and
potential pathogens.
The relative abundance of the top 10 species (Fig. 1) and genera

(Supplementary Fig. 1) was calculated across all samples (Fig. 1,
Supplementary Fig. 1). Propionibacterium acnes was ubiquitous
across all surveyed cities, present in global urban regions with an
average abundance of 27.7%. However, other species demon-
strated stronger geographic patterns. For instance, Pseudomonas
stutzeri was more commonly found in Ilorin, Doha and Offa

(average relative abundance of 18.2%, 13.6% and 10.5%).
Bradyrhizobium sp BTAi1 was most prominent in Brisbane
(29.0%), while Acinetobacter junii largely dominated Barcelona
(38.7%) (Fig. 1). Similarly, distinct geographic patterns were also
observed at the genus level. For instance, the Pseudomonas genus
had high abundance in Ilorin (24.8%), Doha (21.3%), and Offa
(17.0%), while the Micrococcus genus was more abundant in Oslo
(25.2%).
The disparity in the number of samples per city could affect the

estimation of alpha and beta diversity. To mitigate this, we
standardized the sample size to 55 for each city, a figure chosen as
it was the median sample number in the study. We achieved this
standardization by employing a drawing without replacement
statistical technique until the alpha diversity distribution of the
subsample from each city was not significantly different from the
total sample (Two Sample Kolmogorov–Smirnov test, average
p-value: 0.89, Supplementary Table 5). This approach allowed for a
balanced comparative analysis across cities. Using this standar-
dized sample set, we found the Shannon index, number of
observed species, and Fisher’s alpha diversity were highest in
Bogota and Santiago in South America compared to other cities
(Fig. 2). Alpha diversities were significantly higher in South
American samples compared to other continents (p < 0.001,
Mann–Whitney test; Supplementary Table 6), demonstrating
significant continental differences in microbial diversities.
In this study, we focused our analysis on the top six classes of

antimicrobial resistance (AMR) genes (those with a prevalence >
20%). These included AMR genes related to resistance against MLS
(Macrolide/Lincosamide/Streptogramin), Beta-lactams, Multi-drug,
Aminoglycosides, Elfamycins, and Aminocoumarins (Figs. 3a, 4b).
AMR genes responsible for resistance to MLS were observed in
almost all cities, with the highest detection rates in Berlin (90.48%)
and Bogota (100%). However, despite the high prevalence, the
average abundance of MLS resistance genes in Berlin and Bogota
was low (Average RPKM= 0.12 and 0.15), whereas it was highest
in Minneapolis (RPKM= 2.99). Multi-drug resistance genes were
commonly detected in Bogota (93.75%), but their average
abundance (RPKM= 0.029) was much lower compared to Offa
(RPKM= 0.68) and Rio de Janeiro (RPKM= 0.59). AMR genes
conferring resistance to Beta-lactams were widespread in cities
such as Bogota (100%), Fukuoka (100%), and Rio de Janeiro
(100%), but their relative abundance (RPKM= 0.015, 0.005, 0.06,
respectively) was generally low on a global scale. Overall, the
abundance and prevalence of major AMR genes varied among
cities. While Bogota exhibited the highest prevalence (>90%) of
detected AMR genes, the average abundance of these genes was
lower in Bogota compared to other cities like Barcelona and Kuala
Lumpur.
Only three pathogens that were detected in more than 3% of

samples were kept for further analysis, including Salmonella
enterica, Brucella, and Human Herpesvirus (Figs. 3c, 4d). While
Salmonella enterica was most prevalent in Bogota (88.2%) and
Santiago (36%), its relative abundance was highest in Minneapolis
(0.25%), Vienna (0.25%), and London (0.19%). Similarly, Brucella was
prevalent in London (18.6%), Bogota (11.7%), and Sendai (10.3%),
and its relative abundance was highest in London (0.76%). Finally,
Human Herpesvirus showed high prevalence (6.9%) and abun-
dance (0.54%) in Sendai, which may pose a potential threat to the
city. The average abundance of these pathogens combined was
highest in London (1.7%), followed by Minneapolis (0.7%) and
Sendai (0.5%). The abundance and prevalence of all pathogens
defined based on NIAID can be found in Supplementary Tables 7, 8.

Variation of environmental and demographic characteristics
The demographic and environmental characteristics of the
sampled cities are presented in Table 1, Supplementary Table 1,
Supplementary Tables 3, 4. The highest GDP per capita was

Y. Chen et al.

2

npj Biofilms and Microbiomes (2023)    94 Published in partnership with Nanyang Technological University

1
2
3
4
5
6
7
8
9
0
()
:,;



recorded in Switzerland at 83,073 USD, while the lowest was in
Nigeria at 2176 USD. The median GDP per capita was 41,048 USD,
with a range of 20,619-55,628 USD (Q1-Q3). The median and
Q1–Q3 of the total population and population density of the cities
were 1.62 million (0.61 million, 7.23 million) and 4310 people/km2

(2236 people/km2, 7282 people/km2), respectively. Shanghai had

the highest population (24.2 million) and Paris had the highest
population density (21,000 people/km2) among the sampled
cities.
The annual average concentration data for 5 air pollutants

(PM2.5, PM10, O3, NO2, and CO) are presented in Table 1. Twelve
cities had an annual average PM2.5 concentration exceeding
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Fig. 1 Top ten species in the global urban microbiome by continent. This figure illustrates the distribution of the top ten species across all
samples in the global urban microbiome, with each panel representing a different continent.

Y. Chen et al.

3

Published in partnership with Nanyang Technological University npj Biofilms and Microbiomes (2023)    94 



20 µg/m3, with the highest concentration recorded in Doha at
88.77 µg/m3. Seoul had high annual average concentrations of
PM10, O3, NO, and CO at 48 µg/m3, 47.98 ppbv, 58.28 µg/m3, and
143.86 ppbv, respectively. The concentration of O3 was relatively
high in Japan (median: 41.58; Q1-Q3: 34.79, 45.6), particularly in
Tokyo (48.52 ppbv), Sendai (48.22 ppbv), Yamaguchi (47.56 ppbv),
and Fukuoka (47.16 ppbv).
The annual average precipitation in Asia was found to be higher

than in other regions (p < 0.05). The cities of Hong Kong, Fukuoka,
Singapore, and Taipei experienced annual precipitation levels
exceeding 2000mm, compared to the global average of
945.44 mm. The Precipitation Concentration Index (PCI) is a metric
for assessing the variation in temporal precipitation distribution. A
higher PCI value indicates a greater variation in seasonal
precipitation. Doha had the highest PCI value in this study
(PCI= 54.35), followed by Santiago, San Francisco, and Sacra-
mento with PCI values of 26.56, 19.36, and 18.87, respectively. The
median annual average temperature among the cities was 14.5 °C.
Doha had the highest annual average temperature at 29.13 °C,
while Fairbanks had the lowest at 0.24 °C. Doha had the lowest
greenness fraction (21.1%) among all cities, while Hamilton had

the highest (97.5%). The highest daytime temperature difference
between the urban area and buffer area was recorded in Mexico
City (7.9 °C), while the lowest was in Fairbanks (0.13 °C) and Doha
(−0.31 °C).
Since the MetaSUB samples were collected in June, we also

collected environmental factors in June specifically. The number
of rainy days was the lowest in Doha (0 days) and the highest in
Zurich (27 days), while the highest temperature in June was in
Doha (37.5 °C) and the lowest was in Santiago (8.3 °C). The soil
physical and chemical properties were also collected, including
soil type (10 soil types), total soil phosphorus (median: 5.3%, Q1,
Q3: 3.4%, 6.1%), soil pH (median: 6.3; Q1, Q3: 5.6, 7.0), etc.
Birmingham had the most acidic soil (pH=4.8), while Taipei had
the highest soil pH (8.0).
Diffuse Horizontal Irradiance (DHI) is the radiation scattered from

the atmosphere to the surface of the earth. UV index is the
strength of sunburn-producing ultraviolet (UV) radiation. GHI and
UV index are important factors for assessing the potential of solar
energy. Among the cities evaluated, Ilorin and Offa had the highest
DHI values of 2.94W/m2 and 2.93 W/m2, respectively. These cities
also had the highest GHI values, with Ilorin at 4.99W/m2 and Offa
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at 4.76W/m2. Fairbanks had the highest UV index at 12.63,
followed by Ilorin at 10.63 and Offa at 10.31.
In 2016, France (29.2 DDD/1000/day) had the highest antibiotic

consumption among 25 countries (Supplementary Tables 3, 4),
followed by Spain (28.1 DDD/1000/day), Vietnam (27.1 DDD/1000/
day), and Australia (25.7 DDD/1000/day). Nigeria had the lowest
antibiotic consumption (7.5 DDD/1000/day), followed by Colombia
(8.8 DDD/1000/day), Hong Kong (8.8 DDD/1000/day), Malaysia (9.9
DDD/1000/day), Sweden (11.6 DDD/1,000/day), and Singapore
(12.8 DDD/1000/day).

Environmental and demographic characteristics associated
with urban microbiome diversity
The association between environmental and demographic char-
acteristics and urban microbiome alpha diversity was evaluated
using bivariate regression analysis (Table 2, Supplementary Tables
9, 10, 11). The most significant factor in determining microbial
number of observed species and Fisher’s alpha was PM10

concentration (p= 0.004, β= 1.66, R2= 0.46; p= 0.005, β= 0.68,
R2= 0.43), followed by GDP per capita (p= 0.046, β=−0.7,
R2= 0.10; p= 0.004, β=−0.34, R2= 0.22). High PM10 concentra-
tion correlated with increased urban microbiome diversity. For
example, Santiago, which had the highest PM10 concentration
(66.83 μg/m3), ranked second in terms of number of observed
species (151.78) and Fisher’s alpha (67.63) among all the cities.
There was an inverse relationship between the number of
observed species and Fisher’s alpha in global urban microbiomes

and GDP per capita (Table 2), suggesting that microbial richness
was lower in wealthier cities. To summarize, both environmental
and demographic characteristics influenced the number of
observed species and Fisher’s alpha in the urban microbiome,
with PM10 concentration exerting the most significant effect.
However, our research did not indicate a significant impact of
environmental factors on the Shannon index.
The association of environmental and demographic character-

istics with urban microbiome beta diversity was examined using
multivariate PERMANOVA analysis based on the Bray–Curtis
distance matrix. The global urban microbial community composi-
tion was influenced by Köppen climate type (p < 0.001,
R2= 0.053), vegetation type (p < 0.001, R2= 0.037), soil type
(p < 0.001, R2= 0.029), PM2.5 concentration (p < 0.001,
R2= 0.028), precipitation (p < 0.001, R2= 0.021), greenness frac-
tion (p < 0.001, R2= 0.012), annual average temperature (p < 0.001,
R2= 0.011) (Table 3). In total, 20.3% of the variation in urban
microbial communities was explained by these environmental
characteristics. Environmental characteristics but no demographic
characteristics were associated with urban microbiome beta
diversity. Also, unlike a single dominant factor in microbial alpha
diversity (PM10), urban microbiome beta diversity was shaped by a
combination of ten environmental characteristics.
The relationship between environmental factors and urban

microbiome beta diversity was further verified using canonical
correspondence analysis (CCA) ordination analysis (Fig. 4). The
results showed that a similar set of environmental factors,
including DHI, annual average temperature, PM2.5 concentration,

0

2

4

Ho
ng

_K
on

g
Si

ng
ap

or
e

Ta
ipe

i
Se

ou
l

Se
nd

ai

Ku
ala

_L
um

pu
r

Ha
no

i
To

ky
o

Ya
m

ag
uc

hi
Fu

ku
ok

a
Lo

nd
on

M
ar

se
ille

Os
lo

Ky
iv

Ba
rc

elo
na

St
oc

kh
olm

Be
rli

n
Na

ple
s

Vi
en

na
So

fia
Pa

ris
Do

ha
Ne

w_
Yo

rk
_C

ity
De

nv
er

Ba
ltim

or
e

M
inn

ea
po

lis
Sa

cr
am

en
to

Sa
n_

Fr
an

cis
co

Sy
dn

ey
Br

isb
an

e
Au

ck
lan

d
Ho

no
lul

u
Ha

m
ilto

n
Ri

o_
De

_J
an

eir
o

Ri
be

ira
o_

Pr
et

o
Sa

nt
iag

o
Bo

go
ta

Ilo
rin

Of
fa

AMR genes by drug class

a

0.0

0.5

1.0

1.5

Ho
ng

_K
on

g
Si

ng
ap

or
e

Ta
ipe

i
Se

ou
l

Se
nd

ai
Ku

ala
_L

um
pu

r
Ha

no
i

Lo
nd

on
M

ar
se

ille
Os

lo
Ky

iv
Ba

rc
elo

na
St

oc
kh

olm
Be

rli
n

Na
ple

s
Vi

en
na

So
fia

Pa
ris

Do
ha

Ne
w_

Yo
rk

_C
ity

De
nv

er
Ba

ltim
or

e
M

inn
ea

po
lis

Sa
cr

am
en

to
Sy

dn
ey

Br
isb

an
e

Ri
o_

De
_J

an
eir

o
Ri

be
ira

o_
Pr

et
o

Sa
nt

iag
o

Bo
go

ta

Ilo
rin Of
fa

0

5

10

15

0

25

50

75

0

5

10

15
0

50

100

150

c d

R
PK

M Beta-lactams
Multi-drug_resistance
MLS
Elfamycins
Aminoglycosides
Aminocoumarins

P
re

va
le

nc
e(

%
)

East Asia Europe Middle East NA SAOceania
Sub Saharan
Africa

R
el

at
iv

e 
Ab

un
da

nc
ce

(%
)

others
Human_herpesvirus
Salmonella_enterica
Brucella

P
re

va
le

nc
e(

%
) Pathogens

East Asia Europe Middle East NA SAOceania
Sub Saharan
Africa

0
10
20
30
40
50

b

50

50

25

0

75

100

25

0

75

100
0

50

75

100

25

0

50

75

25

50

25

0

75

100

Ho
ng

_K
on

g
Si

ng
ap

or
e

Ta
ip

ei
Se

ou
l

Se
nd

ai

Ku
al

a_
Lu

m
pu

r
Ha

no
i

To
ky

o
Ya

m
ag

uc
hi

Fu
ku

ok
a

Lo
nd

on
M

ar
se

ille
O

slo Ky
iv

Ba
rc

el
on

a
St

oc
kh

ol
m

Be
rli

n
Na

pl
es

Vi
en

na
So

fia
Pa

ris
Do

ha
Ne

w_
Yo

rk
_C

ity
De

nv
er

Ba
ltim

or
e

M
in

ne
ap

ol
is

Sa
cr

am
en

to

Sa
n_

Fr
an

cis
co

Sy
dn

ey
Br

isb
an

e
Au

ck
la

nd
Ho

no
lu

lu
Ha

m
ilto

n
Ri

o_
De

_J
an

ei
ro

Ri
be

ira
o_

Pr
et

o
Sa

nt
ia

go
Bo

go
ta

Ilo
rin

O
ffa

Ho
ng

_K
on

g
Si

ng
ap

or
e

Ta
ip

ei
Se

ou
l

Se
nd

ai
Ku

al
a_

Lu
m

pu
r

Ha
no

i
Lo

nd
on

M
ar

se
ille

O
slo

Ky
iv

Ba
rc

el
on

a
St

oc
kh

ol
m

Be
rli

n
Na

pl
es

Vi
en

na
So

fia
Pa

ris
Do

ha
Ne

w_
Yo

rk
_C

ity
De

nv
er

Ba
ltim

or
e

M
in

ne
ap

ol
is

Sa
cr

am
en

to
Sy

dn
ey

Br
isb

an
e

Ri
o_

De
_J

an
ei

ro
Ri

be
ira

o_
Pr

et
o

Sa
nt

ia
go

Bo
go

ta

Ilo
rin O
ffa

Fig. 3 The distribution of abundance and prevalence of AMR genes by drug class, and abundance of pathogens. a The relative abundance
using RPKM for 6 major classes of antibiotic resistance (AMR) genes. b The prevalence for 6 classes of AMR genes. c The relative abundance of
the three most prevalent pathogens across the samples. d The prevalence of these three major pathogens in the samples.
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greenness fraction, precipitation, were associated with the urban
microbiome’s beta diversity. CCA analysis also identified the
microbial species most strongly associated with these environ-
mental characteristics. For instance, cities in East Asia with higher
precipitation showed an increased abundance of Corynebacterium
metruchotii (Fig. 4). Meanwhile, cities in North and South America
with a higher greenness fraction exhibited a higher abundance of
Corynebacterium casei. Furthermore, an increase in PM2.5 concen-
tration, temperature, and DHI was respectively linked to a higher
abundance of Escherichia fergusonii, Lactobacillus amylovorus, and
Weissella cibaria.

Demographic and environmental characteristics affect AMR
genes and pathogens
The abundance and prevalence of global urban microbial AMR
genes were found to be affected by demographic characteristics.
GDP per capita was significantly negatively correlated with the
prevalence of resistance genes for Aminoglycosides (β=−0.0069,
p= 0.0002), Elfamycins (β=−0.0054, p= 0.0024), total AMR
(β=−0.064, p= 0.0015), and the abundance of resistance genes
for Aminocoumarins (β=−0.0018, p= 0.0045; Table 4; Supple-
mentary Fig. 2; Supplementary Table 12).
Two radiation-related environmental characteristics were also

associated with microbial AMR genes. The UV index was
significantly positively associated with the prevalence of resis-
tance genes for Aminoglycosides (β= 0.0472, p= 0.0006), Beta-
lactams (β= 0.0388, p= 0.0021), total AMR (β= 0.4376,
p= 0.0038), while DHI was significantly positively associated with

the prevalence of Aminoglycosides resistance genes (β= 0.2986,
p= 0.0006), and the abundance of resistance genes for Amino-
coumarins (β= 0.0853, p= 0.0035) and Multi-drug resistance
(β= 0.2206, p= 0.0026; Table 4; Supplementary Figs. 3, 4;
Supplementary Table 12). In addition, the O3 concentration was
negatively associated related to the abundance of Multi-drug
resistance genes (β=−0.0124, p= 0.0047; Table 4; Supplemen-
tary Fig. 5; Supplementary Table 10). The vapor pressure
(Supplementary Fig. 6) were significantly positively associated
with the abundance of resistance genes for Aminocoumarins
(β= 0.0057, p= 0.0045) and Multi-drug resistance (β= 0.0162,
p= 0.0012). Interestingly, antibiotic consumption was not asso-
ciated with any of the AMR genes.
Associations between environmental and demographic char-

acteristics and the abundance of human pathogens were also
analyzed (Table 5 and Supplementary Table 13). Human patho-
gens were defined by NIAID, which classifies over 70 emerging
diseases and pathogens that significantly threaten public health.
In the MetaSUB shotgun dataset, most of these pathogens were
absent or in very low abundance. Analysis was conducted only on
Brucella species (B. ovis and B. pinnipedialis), Salmonella enterica,
Human Herpesvirus, and a combination of these three pathogens.
The prevalence of combined three major pathogens was
positively associated with urban population (β= 0.0071,
p= 0.0309) and negatively associated with temperature in June
(β=−0.0365, p= 0.0273). Additionally, compared with non-
coastal cities, coastal cities have a significantly higher abundance
of Salmonella enterica (β=−0.0006, p= 0.0238).
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Fig. 4 Canonical correspondence analysis (CCA) of global urban microbiome and environmental characteristics. This figure presents CCA
plots illustrating the influence of significant environmental characteristics (depicted as blue arrows) on the composition of the global urban
microbiome. Samples are categorized and color-coded according to continent. The microbial species most strongly correlated with these
environmental characteristics are highlighted. The final multivariate model is statistically significant (p < 0.001, permutation test), and only
those environmental characteristics that are significant in the final model are shown. The lengths of the lines representing environmental
characteristics indicate the strength and direction of the relationship between these characteristics and the microbiome data.
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DISCUSSION
The strengths of this study include being the first to report on the
comprehensive associations between environmental and demo-
graphic characteristics and urban microbiome data at a global
scale. Thirty-four environmental and demographic characteristics
were obtained from public databases, providing insight into the
impact of these factors on urban microorganisms and antimicro-
bial resistance. In addition, the urban microbiome data was
analyzed from multiple perspectives, including alpha diversity
(Shannon index and observed species), beta diversity (PERMA-
NOVA and CCA). Features of global urban microbiome data were
better understood by examining the different levels of diversity.
However, there are also some limitations to consider. Firstly, the

use of relative abundances in metagenomics studies can be a
limitation. While relative abundance provides important insights
into the distribution and prevalence of microbial species, it does

not convey quantitative information regarding the absolute load
of these entities. This is especially crucial when investigating
pathogens and AMR genes22,23. Secondly, the accurate character-
ization of pathogens is challenging by the metagenomics data.
The pathogens are characterized at the species level in this study.
However, it is generally accepted that pathogens can be more
accurately characterized at the strain level rather than just at the
species level. Different strains of a species can have different
genetic makeup, which can result in varying virulence or
pathogenicity. For example, strains of a species may contain
specific pathogenicity islands, which can contribute to the
pathogenicity of the strain. However, the short-read shotgun
metagenomics data were assembled in fragmented scaffolds,
making it difficult to determine whether a particular species
contains specific pathogenicity islands or not. In addition, it’s
crucial to understand that the detection of DNA sequences of a
pathogen doesn’t necessarily imply that the pathogen is live or

Table 1. The unit, median, Q1, and Q3 of environmental and demographic characteristics in this study.

Environment factor Unit Median (Q1, Q3)/category

Air pollutants PM2.5 concentration μg/m3 11.71 (7.67,16.42)

PM10 concentration μg/m3 19.14 (16.15,28.11)

O3 concentration ppbv 41.58 (34.79,45.6)

NO2 concentration μg/m3 29.24 (19.2,39.62)

CO concentration ppbv 136.91 (132.56,138.74)

Soil characteristics Soil pH *10−1 63 (56,69.5)

Soil organic carbon density t ha−1 12 (7,16)

Soil organic carbon % of weight, 0.01 185.64 (131.32,346.47)

Total carbon % of weight, 0.01 247.41 (175.29,306.84)

Soil type 10 categories

Total phosphorus % of weight, 0.0001 531.57 (339.81,607.94)

Soil moisture kg/m2 31.4 (29.15,34.47)

Soil temperature K 288.13 (283.15,293.68)

Precipitation Precipitation mm 945.44 (694.93,1279.49)

Precipitation concentration index 10.96 (9.81,12.65)

Standard deviation of monthly precipitation 39.06 (27.88,75.45)

Irradiation UV index 1(0 ~ 15) 4.73 (2.62,7.26)

Diffuse Horizontal Irradiance W/m2 3.87 (2.97,4.7)

Humidity Average rainy day per month days 12.98 (10.42,15.46)

Vapor pressure Hecta-Pascals (x10) 12.38 (10.19,17.59)

Rainy days in June days 14.55 (11.88,17.27)

RH night % 78.8 (76.19,82.6)

RH day % 62.39 (54.69,68.09)

RH % 70.96 (65.95,74.97)

Temperature Annual average temperature °C 14.52 (10.22,18.75)

Average temperature in June °C 21.70 (17.85,25.45)

Urban-rural temperature difference during day time °C 2.44 (1.89,4.22)

Urban-rural temperature difference during night time °C 0.93 (0.46,1.37)

Demographic data City population hundred thousand 16.25 (6.05,72.62)

Total antibiotic consumption DDD/1,000/day 18.49 (12.075,25)

GDP per capita housand US dollar 41.05 (20.62,55.63)

Population density /km2 4310 (2236,7282)

Other characteristics Adjacent to coast Yes/no

Elevation meters 96 (11.75,414.75)

Climate type equatorial,arid,warm,temperate,snow

Vegetation type 14 categories

Greenness fraction % 0.92 (0.89,0.94)

Fire carbon emissions g C m−2 month−1 0 (0,2.77)
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capable of causing infection. The presence of DNA could result
from dead or non-viable organisms, or free DNA persisting in the
environment. Therefore, while metagenomic sequencing is a
powerful tool for pathogen identification, additional laboratory
tests are necessary to confirm the viability and potential
infectiousness of detected pathogens. Third, our study imple-
mented an associative analysis between environmental character-
istics and the urban microbiome. It is crucial to note that
association does not imply causation. Although we found a
correlation between certain characteristics and microbial diversity,
this does not definitively conclude that these characteristics
directly influence microbial diversity. It’s conceivable that both
may be influenced by an unobserved variable.
In this study, the concentration of PM10 has a significant positive

impact on the alpha diversity of the urban microbiome, which
accounts for 46% of the variation in alpha diversity. The size of non-
biological particles in the air has been shown to affect the diversity
and abundance of airborne microorganisms. A study in atmospheric
aerosols has shown that bacterial diversity and relative abundance
of coarse particles (diameter 2.5μm to 10μm) are 80% higher
compared to fine particles (<2.5μm)24. Several other studies have
also concluded that coarse particles play a more significant role in
determining fungal and bacterial alpha diversity compared to fine
particles, with the alpha diversity of fungi and bacteria increasing as
the size of particulate matter increases from PM2.5 to PM10

25–27.

Moreover, it has been observed that the abundance of potential
bacterial and fungal pathogens increases in correlation with PM
diameter and pollution levels25,28, which may cause various
diseases, such as cardiovascular and respiratory diseases29.
It’s important to note that the MetaSUB samples predominantly

originate from indoor locations within transportation systems,
whereas many of the examined environmental factors, including
PM10, are outdoor variables. The influence of outdoor environ-
mental characteristics on indoor microbiomes has been exten-
sively documented in the literature6,30,31. These outdoor
environmental features, such as particulate matter and pollutants,
can impact the indoor microbiome through airflows and surface
contacts. Moreover, a substantial portion of indoor microorgan-
isms are derived from the outdoor environment (over 70%)32,
further amplifying the significant influence outdoor environmental
characteristics can have on the indoor microbiome.
Our findings revealed a negative correlation between GDP per

capita and the number of observed species in the urban
microbiome. This relationship can be interpreted in several ways.
Firstly, cities with higher GDP per capita typically exhibit higher
levels of urban development and human activity, which could lead
to a reduction in the overall microbial diversity due to the
decreased availability of natural habitats and niche diversification
for microbes33. Also, wealthier cities often implement more

Table 4. Bivariate associations between environmental characteristics and the relative abundance and prevalence of AMR genes.

AMR genes characteristics Environmental characteristics Coefficient 95%CI P>|t| AdjR-squared

Aminocoumarins abundance DHI 0.0853 0.0304 0.1402 0.0035 0.2262

GDP per Capita −0.0018 −0.0030 −0.0006 0.0045 0.2208

Vapor pressure 0.0057 0.0019 0.0095 0.0045 0.2144

Aminoglycosides prevalence GDP per Capita −0.0069 −0.0102 −0.0036 0.0002 0.3723

DHI 0.2986 0.1407 0.4565 0.0006 0.3098

UV index 0.0472 0.0219 0.0725 0.0006 0.3037

Beta-lactams prevalence UV index 0.0388 0.0153 0.0622 0.0021 0.2508

Elfamycins prevalence GDP per Capita −0.0054 −0.0088 −0.0021 0.0024 0.2508

Multi-drug resistance abundance O3 concentration −0.0124 −0.0205 −0.0042 0.0047 0.2788

Vapor pressure 0.0162 0.0070 0.0254 0.0012 0.2776

DHI 0.2206 0.0837 0.3575 0.0026 0.2406

Total AMR Prevalence GDP per Capita −0.0638 −0.1011 −0.0265 0.0015 0.2730

UV index 0.4376 0.1525 0.7227 0.0038 0.2216

The associations were calculated by linear regression model, and only associations with p-value < 0.005 were presented in this table.

Table 2. Bivariate associations between environmental characteristics
and the number of observed species and Fisher’s alpha of urban
microbiome (alpha diversity).

Coef. P>|t| 95%CI Adj.R-
squared

Number of observed
species

PM10 1.665 0.004 0.629 2.700 0.464

GDP per capita −0.702 0.046 −1.390 −0.014 0.1011

Fisher’s alpha

PM10 0.683 0.005 0.249 1.118 0.430

GDP per capita −0.338 0.004 −0.559 −0.117 0.221

The associations were calculated by linear regression. The associations with
p-value < 0.05 were presented in this table.

Table 3. Multivariate associations between environmental
characteristics and community variation of urban microbiome (beta
diversity).

F Pr(>F) R2

Köppen climate type 16.885 <0.001 0.053

Vegetation type 13.267 <0.001 0.037

Soil type 13.094 <0.001 0.029

PM2.5 88.845 <0.001 0.028

Precipitation 65.764 <0.001 0.021

Greenness fraction 38.555 <0.001 0.012

Annual average temperature 33.838 <0.001 0.011

The associations were conducted by permutational multivariate analysis of
variance (PERMANOVA) based on the Bray–Curtis distances. The statistical
significance and F-statistics were calculated, using 999 permutations.
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stringent sanitation and public health measures, which could
reduce the prevalence and diversity of certain microbial species.
In this study, we found that vegetation type, greenness fraction,

PM2.5, and soil type are important environmental characteristics
influencing the structure of the urban microbiome. These
characteristics affect both the air and soil microbiome, which
constitute essential parts of the urban microbiome8. Vegetation
serves as a key source of airborne microbial particles that
contribute to microbial communities in built environments close
to green areas34. Also, higher greenness fractions typically mean
more vegetation and, therefore, increased sources for airborne
microbes35. PM2.5, particulate matter smaller than 2.5 micrometers,
can serve as a vehicle for transporting and spreading air microbes
within and between urban environments36,37. The type and
abundance of microbes associated with these particles can vary
depending on the source and composition of the PM2.5,
ultimately influencing the diversity of urban and indoor micro-
biomes. Soil types, distinguished by variations in composition, pH,
organic content, moisture, and nutrient availability, can harbor
unique microbial communities38. These communities can differ in
their ability to survive and adapt to urban, built, or indoor
environments, leading to distinct beta-diversities.
Moreover, it is not surprising that general climatic factors, such

as annual average temperature, precipitation, and climate type,
also affect the urban microbiome composition. Long-term
experimental studies have demonstrated that temperature plays
a vital role in modifying the community structure of soil
microbiome. Temperature changes affect the growth rate and
yield of specific microorganisms, and the effects are more
pronounced in fungi as compared to bacteria39–41. Precipitation
can also significantly influence the structure of urban micro-
biomes42. Rainfall and other forms of precipitation can facilitate
the spread and redistribution of microbes, while also influencing
environmental conditions, such as humidity, that can affect
microbial survival and growth. Since temperature, humidity, and
precipitation are fundamental aspects of climate, different climate
types consequently become critical drivers of microbial diversity
and community structure.
An intriguing pattern observed in this study pertains to the high

detection rates but low relative abundances of some AMR genes
in specific cities, such as gene resistence to MLS in Berlin and
Bogota, gene resistence to Beta-lactams in Bogota, Fukuok, and
Rio deJaneiro. The high detection rate of AMR genes, despite their
low relative abundance, signifies the ubiquity of these resistance
elements in urban environments. From a public health perspec-
tive, this observation is highly significant. Even with low relative
abundance, these AMR genes can be readily transferred among
microbial communities through horizontal gene transfer mechan-
isms, especially under the selective pressure imposed by antibiotic
usage, contributing to the rapid spread and diversification of
antimicrobial resistance43,44. Moreover, even if these AMR genes
are present at low levels, bacteria carrying these genes can rapidly
multiply and increase their abundance when they enter a host or
find a conducive environment, exacerbating the challenge of
managing infectious diseases. Hence, ongoing surveillance and

mitigating measures are imperative to curtail the spread of these
resistance genes in urban environments.
In our study, antibiotic consumption was not found to be

directly associated with the abundance or prevalence of AMR
genes. This divergence suggests the potential influence of other
factors in shaping the distribution and prevalence of AMR genes in
the global urban microbiome, which warrants further investiga-
tion. We discovered a notable correlation between GDP per capita
and the prevalence of antibiotic-resistance genes in the global
urban microbiome, where lower GDP per capita is associated with
higher prevalence. The high prevalence of antimicrobial resistance
in low- and middle-income countries can be attributed to several
reasons, such as the easy availability of over-the-counter
antibiotics, poor medical facilities, and water sanitation, the
widespread use of antibiotics in animal husbandry, and a lack of
related education45.
Besides GDP per capita, solar radiation (DHI and UV index) had a

positive correlation with the prevalence and abundance of
aminocoumarins, aminoglycoside, beta-lactams, multi-drug resis-
tance, and total AMR genes. Solar radiation, including ultraviolet
light, can cause DNA damage in microorganisms, leading to an
increased rate of mutation and inactivation of bacteria and
viruses46,47. However, no previous studies directly investigate their
impact on AMR genes in an urban context.
We also found that the total pathogen prevalence, including

Brucella and Salmonella, and Human herpesvirus, increased with
city population, which reflects a potential public health threat to
high-population cities. Brucella and Salmonella are food borne
pathogens48,49. Higher population can result in increased demand
for food, leading to increased production and transportation and
storage of food, which in turn can increase the risk of
contamination and spread. Likewise, Human herpesviruses, which
are typically transmitted through close personal contact50. In
densely populated cities, the increased rate of close personal
interactions and communal living spaces may facilitate the
transmission of these viruses. As such, urban centers with high
population densities may serve as hotspots for the transmission of
these human herpesviruses. Thus, our findings suggest a possible
link between population and the prevalence of potential food-
borne and contact-based pathogens, reflecting potential health
risks in high-population urban areas.
Besides the city population, we found a negative association

between the combined pathogen prevalence and the average
temperature in June, suggesting that higher temperature in
summer reduce the abundance of these pathogens. Microorgan-
isms, including pathogens, can be sensitive to temperature. If the
temperature range in June is outside the optimal growth range of
a particular microorganism, it could affect the abundance of the
organism. However, the temperature ranges for Brucella and
Salmonella, and Human herpesvirus have not been reported by
previous studies.
Our study presents the first comprehensive analysis of the

influence of environmental and demographic characteristics on
global urban microbiome diversity and composition. We also
discovered relationships between certain characteristics and the

Table 5. Bivariate associations between environmental characteristics and the abundance of pathogens.

y x Coef. P>|t| 95%CI 95%CI Adj R-squared

Salmonella enterica abundance adjacent to coast −0.0006 0.0238 −0.0011 −0.0001 0.131

Combined pathogen prevenlence average temperature in June −0.0365 0.0273 −0.0686 −0.0044 0.1369

city population 0.0071 0.0309 0.0007 0.0135 0.1255

This study analyzed only three pathogens that were detected in more than 3% of all samples, including Brucella species (B. ovis and B. pinnipedialis), Salmonella
enterica, and Human Herpesvirus. Alongside individual regression analysis for each pathogen, we also conducted a combined analysis for all these three
pathogens. This table only presents associations with a p-value less than 0.05.
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prevalence of antimicrobial resistance genes and specific patho-
gens, such as Salmonella enterica. These findings have significant
implications for urban planning and public health strategies.
Recognizing the environmental and demographic factors that
shape urban microbiomes may help inform the design of urban
environments to optimize microbial community structures for
improved health outcomes. It may also guide interventions in
existing urban areas to mitigate disease risks and influence the
spread of antimicrobial resistance. This work therefore establishes
a foundation for continued exploration and understanding of the
interplay between urban environments and their resident micro-
biomes, which is critical in our rapidly urbanizing world.

METHODS
Global urban microbiome, AMR and pathogen data collection
The sequencing data and metadata files for the global urban
microbial metagenomics were obtained from the MetaSUB
consortium, short for Metagenomics and Metadesign of Subways
and Urban Biomes (https://pngb.io/metasub-2021)11. In the
MetaSUB project, a majority of samples were collected from the
transportation systems (number of samples 2,674), with a smaller
proportion derived from residence (381), seaside (178), school
(142), hospital45 and park51. For transportation systems, samples
were predominantly gathered from frequently touched surfaces in
metro and transit stations across the globe, including elements
like ticket kiosks, turnstiles, railings, and seating areas. In this
study, to maintain consistency in sample sources, we retained only
the samples from the transportation system for further analysis.
Samples were subjected to shotgun metagenomic sequencing

using Illumina Next-Generation Sequencing (NGS) platforms. Each
sample yielded between 5 to 7 million 125 bp paired-end reads.
Detailed technical processing information about metagenomics
assembly can be found in a previous publication11. To summarize,
the MetaSUB project employed an assembly-based approach for
microbiome data assembly and analysis. Specifically, the
sequences were analyzed and assembled with metaSPAdes
(v3.10.1) utilizing Bridges and Bridges-252. The remaining contigs
were mapped back to the reads using Bowtie2 to generate
coverage metrics for each contig51. Contigs with coverage
information were binned with MetaBAT2. The antimicrobial
resistance genes (AMR) were profiled using MEGARes antibiotic
resistance database53, which were calculated as reads per kilobase
per million mapped reads (RPKM). Sample information and
microbiome abundance tables were downloaded from the
website as a part of the metadata file.
The prevalence of potentially pathogenic microbial taxa was

calculated from the abundance table. Pathogenic taxa were
defined based on the NIAID (National Institute of Allergy and
Infectious Diseases) category A, B, and C priority pathogens
(https://www.niaid.nih.gov/research/emerging-infectious-diseases
-pathogens). Pathogenic taxa were defined at both the species
level (Salmonella enterica) and genus or above levels (Brucella and
Human Herpesvirus). The abundance of pathogenic Brucella was
calculated as the total abundance of two Brucella pathogens,
Brucella ovis and Brucella pinnipedialis. Similarly, Human Herpes-
virus included Human Herpesvirus 1, Human Herpesvirus 4, and
Human Herpesvirus 5. Only pathogens that were detected in more
than 3% of all samples in MetaSUB database were kept for further
analysis. The total abundance of pathogens was calculated from
these pathogenic species.

Environmental and demographic data collection
Over 70 environmental and demographic variables were collected
from public databases for this study (Supplementary Table 1).
These variables included air pollutants, soil data, climatic
information, irradiation characteristics and demographic

information. The environmental and demographic data were
available in three formats: tabular, Esri grid (TIF/TIFF, NetCDF), and
shapefile. The Esri grid data was extracted using ArcMap (version
10.8), a tool from the ArcGIS geospatial processing program.
Variables in each city were extracted based on the latitude and
longitude of the city, and a grid feature layer was created using
the NetCDF data before sampling. The shapefile format data was
converted to Esri grid format before extraction using the same
process as described above. To eliminate highly correlated
environmental and demographic characteristics, a spearman
correlation analysis was performed using the psych package
(version 2.2.5) in R (version 4.2.1).
We processed and standardized the environmental and

demographic data to mitigate the impact of temporal fluctuations.
The microbial samples analyzed in this study were collected in
2016 as part of the MetaSUB project, and the corresponding
environmental and demographic data for the same year were also
collated to ensure consistency. For many environmental char-
acteristics, data were collected on a monthly and daily basis, and
therefore, the annual averages for 2016 were calculated from
these monthly and daily data. For instance, air pollutants such as
PM2.5, PM10, O3, NO2, and CO were measured throughout the
entire year and represented as yearly averages for 2016. Similarly,
variables such as soil moisture, soil temperature, precipitation, and
related parameters were also averaged on a monthly basis for the
same year. For irradiation characteristics like Diffuse Horizontal
Irradiance (DHI), the data represent daily averages calculated
throughout the year 2016 (Supplementary Table 1).
We excluded characteristics showing a high degree of correla-

tion, defined by a Spearman’s rank correlation coefficient
exceeding 0.85, to prevent multicollinearity in subsequent
regression analyses (refer to Supplementary Table 2). Conse-
quently, we retained 35 environmental and demographic
characteristics for regression and PERMANOVA analysis, detailed
in Table 1 and Supplementary Tables 1, 3. To assess the quality of
the collected demographic and environmental characteristics, we
calculated the proportion of missing values for all collected
attributes (Supplementary Table 1). Out of the 35 environmental
and demographic characteristics, 24 had complete data for all 32
cities. Air pollution data had a high proportion of missing values,
with PM10 (53.13% missing), NO2 (46.88%), CO (34.38%), and O3

(25.00%) leading the list. GDP per capita (3.13%), oil moisture
(9.38%), soil temperature (9.38%), population density (9.38%),
urban-rural temperature difference during daytime (21.88%),
urban-rural temperature difference during nighttime (21.88%),
and relative humidity (21.88%) had a lower proportion of missing
values.

Random sampling methodology and diversity estimation
Upon this screening, we observed extensive variation in sampling
intensity among cities in the MetaSUB project, ranging from 1 to
548 samples. Consequently, cities with fewer than 14 samples from
transportation systems were removed, resulting in a total of 32
cities included for subsequent analysis (Supplementary Table 5).
Given the disparities in the number of samples collected per city,
we standardized the sample size to 55 for each city to ensure a
balanced comparative analysis. This was achieved using a drawing
without replacement statistical technique. The number 55 was
chosen because half of the cities had collected 55 or more samples
from transportation systems. This selection process was iterated
until the alpha diversity distribution of each city’s subsample was
not significantly different from alpha diversity distribution of the
total sample distribution, as determined by a Two Sample
Kolmogorov–Smirnov test (Supplementary Table 5). This strategy
allowed us to control for sampling bias and to ensure the
robustness of our conclusions to differences in sample size
across cities.
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The alpha and beta diversities of the global urban microbiome
data were calculated using the vegan package in R (version 2.6.2).
Alpha diversity, the intra-sample diversity, was estimated based on
three indices: the number of observed species, the Shannon
entropy, and Fisher’s alpha diversity. The Shannon entropy reflects
the diversity of the microbial community in the sample, taking
into account both the richness and evenness of species
distribution. The observed species index represents the richness
of the sample community, regardless of the relative abundance of
each species. Fisher’s alpha diversity, on the other hand, is a
measure that combines both species richness and evenness.
Beta diversity, the inter-sample diversity, was measured using

the Bray–Curtis distance metrix. A PERMANOVA analysis was
conducted to examine the relationship between environmental/
demographic characteristics and beta diversity using the Adonis
function in the vegan package (version 2.6.2) in R (version 4.2.1).
The analysis was performed with 999 permutations and was
constrained by the “margin” option. A bivariate analysis was first
conducted for each environmental/demographic characteristic,
and characteristics with a p-value less than 0.05 were further
included in the multivariate analysis. The multivariate analysis was
conducted using a forward stepwise approach, adding the
characteristic with the lowest p-value first and then adding the
characteristic with the second lowest p-value. If the newly added
characteristic did not reach the p-value cutoff of less than 0.05, it
was removed from the model.
We performed a Detrended Correspondence Analysis (DCA) to

evaluate the microbial distribution. The DCA output provides an
“axis length,” which in our case was 5.8419 for DCA1. This value is
a measure of species turnover across the environmental gradient
represented in the dataset. Lower values (<3) indicate that species
turnover is relatively low, suggesting linear relationships and
rendering linear methods such as Redundancy Analysis (RDA)
suitable. However, higher values (>4) suggest substantial species
turnover and indicate that unimodal methods, such as Canonical
Correlation Analysis (CCA), are more appropriate. Given the axis
length of DCA1 (5.8419), indicating higher species turnover, we
deemed a CCA more suitable than an RDA for assessing the
correlation between microbial composition and environmental
characteristics. Consequently, we conducted a CCA to visualize the
impact of environmental characteristics on the urban microbiome
composition.
Finally, regression analysis was conducted in Stata (version

15.1) to examine the relationship between global urban environ-
mental and demographic characteristics and alpha diversity,
pathogens, and AMR genes. Both bivariate and multivariate
analyses were performed, with the multivariate analysis following
the same forward stepwise approach as the PERMANOVA
analysis.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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