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Daily fluctuation of colonic microbiome in response to nutrient
substrates in a pig model
Hongyu Wang 1,2, Rongying Xu 1,2, Qiuke Li 1,2, Yong Su 1,2✉ and Weiyun Zhu1,2

Studies on rodents indicate the daily oscillations of the gut microbiota have biological implications for host. However, the responses
of fluctuating gut microbes to the dynamic nutrient substrates are not fully clear. In the study, we found that the feed intake,
nutrient substrates, microbiota and metabolites in the colon underwent asynchronous oscillation within a day. Short-chain fatty
acids (SCFAs) including acetate, propionate, butyrate and valerate peaked during T24 ~ T27 (Timepoint 24, 12:00 pm, T27, 03:00 am)
whereas branched SCFAs isobutyrate and isovalerate peaked during T09 ~ T12. Further extended local similarity analysis (eLSA)
revealed that the fluctuation of feed intake dynamically correlated with the colonic carbon substrates which further influenced the
oscillation of sugar metabolites and acetate, propionate, butyrate and valerate with a certain time shift. The relative abundance of
primary degrader Ruminococcaceae taxa was highly related to the dynamics of the carbon substrates whereas the fluctuations of
secondary degraders Lactobacillaceae and Streptococcaceae taxa were highly correlated with the sugar metabolites. Meanwhile,
colonic nitrogen substrates were correlated with branched amino acids and the branched SCFAs. Furthermore, we validated the
evolution of gut microbes under different carbohydrate and protein combinations by using an in vitro fermentation experiment.
The study pictured the dynamics of the micro-ecological environment within a day which highlights the implications of the
temporal dimension in studies related to the gut microbiota. Feed intake, more precisely substrate intake, is highly correlated with
microbial evolution, which makes it possible to develop chronotherapies targeting the gut microbiota through nutrition
intervention.
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INTRODUCTION
The mammalian digestive tract harbors trillions of microorganisms
whose whole genome is ten times larger than its host1. Recently,
increasing evidence shows that the microbial consortia undergo
spatiotemporal evolution to adapt to the environmental variations
in the gut ecosystem2–6. Along the temporal dimension, the gut
microbiota undergoes seasonal and daily variations in composi-
tion and function6,7. It is worth noting that the oscillation of the
gut microbiota has great importance on the host metabolism,
normal physiological rhythm and gut homeostasis8,9. However,
most of these studies were conducted on rodents. As pigs have
significant differences in habits, eating patterns, body size,
behavior, life span and gut microbiota compared with rodents.
Besides, considering the comparability between pigs and humans
in terms of genetic information, anatomic characteristics, eating
habits and physiology, observations from the pigs could have a
great reference value for human research on gut microbiota10.
Intrinsic and extrinsic factors including host genotype, physiol-

ogy, species, age, gender, environmental factors, feeding pattern
and the nutrient composition of feed affect the gut microbiota
and its fluctuation11,12. Among these factors, feed, more precisely
the accessibility and composition of the nutrients, has a significant
impact on the composition and function dynamics of the gut
microbiota3,6,7,13,14. Under the ad libitum circumstances, the
circadian clock, which synchronizes the behaviors and physiology
including food taking and wake-sleep circle, is the most critical
factor influencing the gut microbial dynamics15. As a result of
rhythmic feed-taking behavior, the metabolites in the serum
undergo robustly oscillating and are relevant to the gut

microbiota fluctuation9,14,16–18. The direct effect of dietary
interventions functions probably through altering the substrates
and metabolome profile in the intestine19–21. However, so far, the
fluctuation of substrates and metabolites in the colon of growing
pigs is unclear. How nutrients shape the gut microbial community
and how they drive the metabolic pathways remains unknown.
Of note, light is the primary zeitgeber for the mammalian

circadian clock and clear time shifts exist between the zeitgeber
and certain physiological phenomena22,23. Likely, the effect of
nutrient substrate on intestinal microbes may take a specific time
to manifest24,25. Therefore, it is reasonable to consider the time
shift between the substrates and the microbes in their crosstalk. It
is of importance for a better understanding of the dynamic
microbe-metabolite interactions and providing references for
developing a chronotherapy targeting the gut microbiota.
However, the dynamics of gut microbes, metabolites profile, their
dynamic interactions, as well as the putative time delay remain
unclear. Therefore, the present study aimed to discover the
fluctuation of colonic substrates, metabolites and the gut
microbiota under the free access feeding mode in a pig model
and to explore the dynamic microbe-metabolite response to the
fluctuation of colonic substrates.

RESULTS
Fluctuation of feed intake and colonic substrates within 48 h
The feed intake of each sampling interval exhibited a rhythmic
fluctuation over a course of 48 h (PAdj= 3.59 × 10−15, Fig. 1a). The
feed intake reached a peak at T15 (Timepoint 15, 3:00 pm) and T42
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(Timepoint 42, 6:00 pm), whereas reached a trough at T27 and T51.
Likewise, the concentrations of colonic starch (PAdj= 1.31 × 10−4,
Fig. 1b) and cellulose (PAdj= 7.36 × 10−6, Fig. 1c) also underwent
robust fluctuation over time with a peak at T12 and T36 or T15 and
T39, whereas with a trough at T24 and T48 or T27 and T48. True
protein underwent antiphase oscillations with the feed intake with
a peak at T06 and T33 and a trough at T15 and T42 (PAdj= 0.023,
Fig. 1d). The level of NH3-N fluctuated over time with a peak at
T18 and T42, whereas with a trough at T06, T30 and T54
(PAdj= 2.57 × 10−32, Fig. 1e).

Daily fluctuation of microbial structure in the colon
A total of 3,136,676 sequences summed up to 1 303 584 823
bases were generated with an average sequence of 44,179 ± 1
299 (mean ± standard error) per sample and an average length
of 415 bp per sequence (Supplementary Table 2). A phyloge-
netic tree (Supplementary Fig. 1a) was constructed based on
high-quality ASV 16S rRNA gene representative sequences to
picture the key taxa in the bacterial community and to exhibit
the relative abundance of core ASVs associated with time. The
most prevalent phylum in the colon of growing pigs was
Firmicutes, followed by Bacteroidetes, Proteobacteria, Actino-
bacteria and Spirochaetae (Supplementary Fig. 1b). Lactobacil-
laceae, Ruminococcaceae, Lachnospiraceae and Prevotellaceae
represented the dominant families (Supplementary Fig. 1c). The
most dominant genera were Lactobacillus, Subdoligranulum,
Ruminococcaceae_UCG-005, Prevotella_9, Blautia, Alloprevotella,
Faecalibacterium and Roseburia (Supplementary Fig. 1d). The
rarefaction curve of each group tended to be flat over sampling
time (Supplementary Fig. 2a).
The total bacterial load in colonic digesta underwent

significant oscillation over a course of 48 h (PAdj= 2.24 × 10−5,
Fig. 2a) with a peak at the beginning of the light phase and a
trough at the beginning of the dark phase. Further, we
surprisingly found that all rhythmic genera (Fig. 2b) identified
using the relative abundance overlapped with those identified

using the absolute abundance. Therefore, the more accessible
and convenient relative abundance was mainly discussed in the
manuscript.
Non-parameter JTK circle analysis showed that Richness (PAdj=

0.046, Fig. 2d) and Shannon index (PAdj= 0.011, Fig. 2e) exhibited
a significant oscillation with a trough at T18. Consistently, less
amount of key microbial genera (mean relative abundance >1.0%)
were identified at T18 (Supplementary Fig. 2b). Principal
coordinates analysis (PCoA) analysis based on Bray-Curtis dissim-
ilarity differentiated samples from different time points overall
(R2= 0.20, P= 0.003, Fig. 2f). The result of multiple comparisons
indicated that the beta-diversity of T09 and T12 differed
significantly from those of T18, T27 and T30 (Supplementary
Table 3). Further correlation analysis (Fig. 2g) showed that the first
two principal coordinates based on Bray-Curtis distance of
samples from different time points were significantly correlated
to the colonic substrates starch (PCoA1: r=−0.32, P= 0.006),
cellulose (PCoA1: r=−0.36, P= 0.002; PCoA2: r= 0.25, P= 0.037)
and the NH3-N (PCoA1: r= 0.24, P= 0.045).
At the phylum level (Fig. 2h), phyla Firmicutes and Bacter-

oidetes underwent significant oscillation. The dominant families
Prevotellaceae, Streptococcaceae (Supplementary Fig. 2e) and
the dominant genera (Fig. 2i, Supplementary Fig. 2f) Prevo-
tella_1, Prevotella_2, Prevotella_9, Alloprevotella and Streptococ-
cus exhibited significant fluctuation. At the ASV level, 11.22% of
ASVs showed significant rhythmic fluctuations (Supplementary
Fig. 2c). Heatmap (Fig. 2c and Supplementary Fig. 2g) visualizing
the fluctuation of normalized relative abundance of each ASV
showed that the relative abundance of all rhythmic ASVs
belonging to Lactobacillus peaked around T24 during the dark
phase, whereas all rhythmic ASVs belonging to Bacteroidetes
peaked at T09 ~ T12 during the light phase. We further explored
the diurnal difference between the light and dark phases
according to the sampling time. At the ASV level, 45 ASVs with a
diurnal difference were identified (Supplementary Fig. 2d).
Further, the relative abundance of ASVs with diurnal differences
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Fig. 1 Fluctuation of feed intake and colonic substrates within 48 h. a ~ e Dynamic change of the feed intake during each sampling interval
(a) and the shifts in concentration of colonic substrate starch (b), cellulose (c), true protein (d) and NH3-N (e) at each sampling time point,
respectively. # denotes a significant fluctuation within 24 h with a PAdj < 0.05. The rhythmicity analysis was finished by non-parametric JTK
analysis, n= 8. All data were presented as mean ± s.d.
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belonging to Lactobacillus was lower in the light phase than that
in the dark phase. In contrast, the relative abundance of
differential ASVs belonging to Prevotella_2, Prevotella_7, Turici-
bacter, Terrisporobacter and Romboutsia was higher in the light
phase than that in the dark phase.

Daily oscillation of colonic metabolites
To clarify the interaction between the gut microbes and the
metabolites therein, we further pictured the metabolomic
dynamics in the colon of growing pigs. A total of 452 features
belonging to amino acids and their derivatives, organic acids,
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peptides, amines and steroids were identified (Supplementary Fig.
3a). Across the board, the PLS-DA model could distinguish the
metabolic profiles of different time points and the score plot
exhibited a clear rhythmic pattern (Fig. 3b). Among these
metabolites, a total of 294 cyclical features were identified
(Supplementary Table 4) which accounted for 65.04% of the total
metabolites (Fig. 3d). Of note, metabolites from different
substance classes exhibited a tremendous difference in the
proportion of metabolites with daily fluctuation varying from
0~100% (Supplementary Fig. 3c). All flavonoids, arachidonic acids,
cinnamic acids, quinolines, imidazoles and pyridines exhibited
significant oscillations. Whereas more than 70% of peptides,
sugars and their derivatives, nucleotides, fatty acids, choline, lipids
and vitamins showed rhythmic fluctuation. The relative abun-
dance of most rhythmic amino acids and their derivatives peaked
between T15 ~ T18 and T06 ~ T09 (Fig. 3a, Supplementary Fig. 4a).
Most peptides, nucleosides, nucleotides and sugars peaked at
T15 ~ T18, whereas most lipids reached a nadir during these
periods (Fig. 3a, Supplementary Fig. 4a). Accordingly, the
abundance of lipids was higher in the dark phase whereas that
of peptides and sugars was higher in the light phase (Supple-
mentary Fig. 3d).
Interestingly, 53.10% of all metabolites were closely related to

the feed intake, whereas the percentage of rhythmic and
nonrhythmic metabolites that correlated to the feed intake was
66.67% and 27.85%, respectively (Fig. 3e, Supplementary Fig. 3f).
Notably, we found that the carbon substrates in the colon digesta
were closely related to the feed intake (Fig. 3c, Supplementary Fig.
4b). The concentration of the carbon substrates further correlated
with the abundance of sugar metabolites with a time shift of 0~3
delay (Fig. 3c). Meanwhile, the amino acids were closely correlated
with nitrogen substrates and the feed intakes with a time shift of
0 ~ 3 delay (Supplementary Fig. 4b). Presumably, as a result of the
diurnal difference in feed intake, samples taken from the dark
phase (T21, T24, T27 and T30) trended to separate from those
from the light phase (Fig. 3b). Further, we found that 28.98% of all
metabolites exhibited significant diurnal differences (Supplemen-
tary Fig. 3e). It was worth noting that 88.55% of these metabolites
with diurnal differences underwent rhythmic fluctuation (Supple-
mentary Fig. 3f). In addition, these cyclical metabolites were
mainly enriched in pathways of amino acid metabolism, vitamin
B6 metabolism, linoleic acid metabolism and starch and sucrose
metabolism (Supplementary Fig. 3b).

Dynamic Microbe-metabolite Interaction in the Colon of
Growing Pigs
The edge that reflects the microbe-metabolite interaction showed
a significant fluctuation (PAdj= 0.047) with a peak at T24 during
the dark phase (Fig. 4a, Supplementary Fig. 5a). Phyla Firmicutes
and Bacteroidetes dominated in the microbe-metabolite interac-
tion networks. Further comparative results for different methods

to calculate the correlation between the microbes and metabolites
showed that the eLSA method that considered time shift
performed better than the Spearman and Pearson method by
the numbers of correlation pairwise with statistical significance
(Supplementary Fig. 5b). Over 64% of these pairwise with
significant correlations had a time shift (Fig. 4c). More specifically,
45.06% pairwise with a negative delay implied that the
metabolites influenced the corresponding microbes, whereas the
19.07% pairwise with a positive delay suggested that the microbes
may impact the related metabolites. Subnetwork constructed by
the eLSA method showed that sugar metabolites had close
interactions with microbial genera belonging to Firmicutes,
Bacteroidetes and Proteobacteria (Fig. 4d). Especially, Streptococ-
cus positively correlated to the sugar metabolites (Fig. 4b,
Supplementary Fig. 5c).

Dynamics of the microbial metabolic function
Microbial functions were analyzed based on metagenomic
sequencing for further revealing the dynamic microbial-
metabolite interaction. The PLS-DA model suggested that samples
from T15, T18 and T21 tended to cluster together, whereas
samples from T24, T27 and T30 generally regressed to those of
T06, T09 and T12 (Fig. 5a). About 47.82% of third-level KEGG
pathways underwent robust oscillation (Fig. 5f). Metabolism was
the most dominant first-level KEGG pathway which peaked at T21
(Fig. 5b, c). The corresponding second-level KEGG pathway had a
different cyclical percentage ranging from 27 ~ 100% (Fig. 5d).
These metabolism-related pathways exhibited two major rhythmic
patterns (peaked at T18 ~ T24 or T09 ~ T12) (Fig. 5e). Most of these
pathways peaked at T18 ~ T24, which is consistent with the
immediate microbial-metabolite interactions described above.
Significantly, the main second-level KEGG pathways related to
metabolism include carbohydrate metabolism (Fig. 5g), energy
metabolism (Fig. 5h), lipid metabolism (Fig. 5i) and nucleotide
metabolism (Fig. 5j) peaked at T21 in the dark phase. Moreover,
carbohydrate metabolism-related pathways, including glycolysis/
gluconeogenesis, starch and sucrose metabolism, pyruvate
metabolism, pentose phosphate pathway, inositol phosphate
metabolism and propanoate metabolism exhibited robust oscilla-
tion (Figs. 5k, 4l).

Dynamics of Carbon Flux Distribution and Microbial
Succession in the Process of Carbohydrate Metabolism
The concentrations of acetate (PAdj= 3.21 × 10−6, Fig. 6a),
propionate (PAdj= 2.56 × 10−9, Fig. 6b), butyrate (PAdj= 1.15 ×
10−14, Fig. 6d), valerate (PAdj= 6.24 × 10−8, Fig. 6e), isobutyrate
(PAdj= 5.67 × 10−5, Fig. 6f), isovalerate (PAdj= 3.41 × 10−3, Fig. 6g)
and total SCFAs (PAdj= 1.28 × 10−11, Fig. 6c) underwent
significantly fluctuation. Noteworthy, the concentrations of
acetate, propionate, butyrate and valerate mainly from carbohy-
drate metabolism peaked during T24 ~ T27, whereas isobutyrate

Fig. 2 Daily fluctuation of the gut microbiota in the growing pigs. a Dynamic change of the total bacterial load at each sampling time point
within 48 h. # denotes a significant fluctuation of 24 h with a PAdj < 0.05. The rhythmicity analysis was finished by non-parametric JTK analysis
with n= 8. All data were presented as mean ± s.d. b Venn diagram exhibiting the specific number of rhythmic genera identified in the relative
abundance and the absolute abundance, respectively. c Heatmap depicting the relative abundance of each ASV with rhythmicity. The relative
abundance of ASVs was normalized using Z-score methods. Row group annotation information from outside to inside represents its rhythmic
fluctuation, corresponding phylum and family, respectively. ASV: amplicon single variant. Dynamic change of alpha diversity induce Richness
(d) and Shannon (e) at different sampling time points. # denotes significant fluctuation with a PAdj < 0.05. The rhythmicity analysis was finished
by non-parametric JTK analysis with n= 8. All data were presented as mean ± s.d. f Principal coordinate analysis (PCoA) plot of the bacterial
community structure of samples from different time points based on the Bray-Curtis distance. The relative variable importance (R2) and
significance (P) were calculated by PERMANOVA (Adonis) analysis with n= 8. P < 0.05 represents a significant difference between different
sampling time points. g Correlations between colonic substrates and the Bray-Curtis distance of different sampling time points on PCoA1 and
PCoA2 based on the Spearman correlation analysis method. * denotes a significant correlation with a P < 0.05. Composition and fluctuation of
the key gut microbial taxa at the phylum (top 10, h) and genus (top20, i) level at different time points. # denotes significant rhythmic
fluctuation with a PAdj < 0.05.
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and isovalerate mainly from branched amino acids metabolism
peaked during T09 ~ T12 (Fig. 6h). eLSA revealed that acetate,
propionate, butyrate and the total SCFA were tightly relevant to
Lactobacillaceae ASVs and Ruminococcaceae ASVs and valerate
was tightly relevant to Prevotellaceae ASVs. In contrast, the
branched-chain SCFAs isobutyrate and isovalerate were tightly

relevant to Prevotellaceae ASVs and Lachnospiraceae ASVs (Fig.
6i). Further, we found that the SCFAs peaked 1 ~ 2 intervals later
than these carbohydrate metabolism-related pathways (Fig. 6l).
KEGG genes that encode the key enzymes involved in the
biosynthesis of acetate (pyruvate kinase: K00873; phosphofructo-
kinase: K21071 and K00850; hexokinase: K00844), propionate
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(phosphoenolpyruvate carboxykinase: K01596 and K01610; phos-
phoenolpyruvate carboxylase: K01595; malate dehydrogenase:
K00024) and butyrate (acetyl-CoA C-acetyltransferase: K00626)
were mainly contributed by species from Prevotellaceae, Lacto-
bacillaceae, Ruminococcaceae, Lachnospiraceae, Streptococca-
ceae, Veillonellaceae and Clostridiaceae (Fig. 6j). Interestingly,
most of these contributory taxa overlapped with the microbial
taxa correlated to the SCFAs (Fig. 6k). The oscillation of
Ruminococcaceae taxa including Faecalibacterium sp., Faecalibac-
terium prausnitzii and Ruminococcaceae bacterium was highly
correlated with the dynamics of the carbon substrates whereas
the fluctuation of Lactobacillaceae (Lactobacillus johnsonii and
Lactobacillus reuteri) and Streptococcaceae (Streptococcus alacto-
lyticus) were dynamically correlated with the sugar metabolites
with a time shift of 0~3 intervals (Supplementary Fig. 6b). Further
correlation indicated that the abundance of these KEGG genes

was highly correlated with the sugar metabolites (Supplementary
Fig. 6a).

Microbial Succession in Vitro Fermentation Experiment with
Different Substrate Combinations
In the in vitro fermentation experiment, the bacterial load peaked
after a certain time (HC,6 h; HN, 12 h) and reached a steady state
thereafter. The bacterial loads of the HN group were higher at 6
(P= 0.046), 12 (P= 0.015), 21 (P= 0.036) and 24 (P= 0.007) hours
(Supplementary Fig. 7a). Acetate, butyrate, valerate and total
SCFAs were higher before 12 h in the HN group whereas the
concentrates of propionate and total SCFAs were higher in HC
group thereafter (Supplementary Fig. 7b). The concentrates of
acetate, propionate, butyrate and valerate peaked during
18 ~ 21 h in the HC group whereas these of HN group remained
elevated at 24 h. The concentration of isobutyrate and isovalerate
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in the HN group were higher than those in HC group
(Supplementary Fig. 7b). As expected, the production rates of
isobutyrate (6~15 and 24 h) and isovalerate (3, 6, 12 and 15 h) in
HN group were higher than those of HC group (Fig. 7a).
Correspondingly, the relative abundance of Lactobacillaceae and

Streptococcaceae exhibited a rapid increase in the HN group (Fig.
7b, c). Whereas in the HC group, the primary degraders
Lachnospiraceae and Ruminococcaceae experienced swift growth,
followed by Succinivibrionaceae which peaked at 12 h (Supple-
mentary Fig. 7c). The secondary degrader belonging to
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Veillonaceae reached their peak at 18:00 (Supplementary Fig. 7c).
Further dynamic correlation analysis showed that primary
degraders mainly from Lachnospiraceae and Ruminococcaceae
peaked 0~2 shift ahead of that of the secondary degrader (Fig.
7d). However, acetate, propionate, butyrate and valerate peaked
synchronously with the secondary degraders (Supplementary Fig.
7d).

DISCUSSION
The present study aimed to reveal the daily fluctuation of colonic
microbe-metabolite interactions in response to the substrates in a
pig model. As summarized in Fig. 8, we found that the carbon
substrates, sugar metabolites, carbohydrate metabolism-related
pathways and the SCFAs production in the colonic digesta of
growing pigs underwent asynchronous oscillation within a day.
Colonic carbon substrates were dynamically correlated with the
course of carbohydrate metabolism and the microbial succession
therein. Interestingly, the fluctuation of these microbes had a close
correlation with the oscillations of these substrates (metabolites).
Generally, individuals of the rodents were sacrificed for

sampling at each time point in time-series studies7,9,15,26.
Compared with the studies conducted in rodents, the fistula pig
model accomplishes consecutive sampling from the same
individuals to avoid individual variations in large animals.
However, continuous sampling (especially during the night phase)
may result in a few tiny differences between the samples and the
real condition (such as the feed intake) and small variations in
indicators from two consecutive days (such as the total bacterial
load). Despite that, these problems are so far inevitable under the
present experimental condition.
In the present study, both the nutrients and the microbiota in

the colon underwent robust daily fluctuation. Most of the
nutrients were highly correlated with the fluctuating feed intakes,
thus forming the daily fluctuations in these metabolites. Which
could further reprogram the transcriptome in the liver of the
host9. Specific to microbes in mice, gut microbes belonging to
Firmicutes peaked during the activity phase when they were
eating and reached a trough during the rest phase. Whereas
microbes belonging to Bacteroidetes and Verrucomicrobia under-
went antiphase fluctuation27. Studies in humans showed that
Firmicutes peaked in the light phase (12:00 am), whereas
Bacteroidetes peaked in the dark phase (12:00 pm)28. In the
present study, we found that Firmicutes peaked at T18, which is
consistent with the peak time of feed intake. Together, these
findings suggest a significant correlation between feed intake and
the dynamic fluctuation of gut microbes. Genes that concerning
bacterial chemotaxis and flagellar assembly peaked at the end of
the rest phase in mice9. This may facilitate these microbes
permeating to the mucus layer to obtain mucus protein as
nutrients.

The daily fluctuation of feed intake under ad libitum feeding
condition is mainly controlled by the host core circadian clocks29.
As one of the most important ways of communicating with the
external environment and the body, feed intake could reset the
peripheral circadian clocks and determine the metabolite profile
in the intestine meanwhile30–32. Our results showed that the
fluctuations of colonic metabolites were tightly correlated with the
host feed intakes, suggesting the fluctuating intake of nutrients
may further induce the dynamic oscillations of these metabolites.
Especially, the fluctuation of the starch and cellulose, which are
solely derived from feed, were synchronized with feed intakes. In
contrast, the TP concentration was not related to the feed intake.
The possible explanation is that most of proteins from feed are
absorbed in the proximal small intestine and proteins in the colon
mainly derives from endogenous proteins including mucus
glycoproteins, sloughed epithelial cells and dead bacteria. A
previous study showed that the change in feeding pattern altered
the intake of key nutrients and further regulated the milk
synthesis rhythm33. These polysaccharide carbon substrates in
the colon degrade to monosaccharide which is further fermented
into SCFAs by the gut microorganisms34. Of note, obvious time
shifts existed among the carbon substrates, sugars metabolites,
carbohydrate metabolic pathways and SCFAs, which reflects the
time course of the carbohydrate metabolism. There was a time
delay of 0~3 intervals (0~9 h) between the carbon source
substrates and sugar metabolites, 0~3 intervals (0~9 h) between
the sugar metabolites and carbohydrate pathways (KEGG genes)
and 0~2 intervals (0~6 h) between the carbohydrate pathways
and SCFAs, respectively. Both in vitro and in vivo studies have
demonstrated the time shifts between the substrates, the
activities of corresponding metabolic enzymes and microbial
metabolites35,36. The activities of microbial carbohydrate-active
enzymes acetylxylan esterase and arabinofuranosidase, which
catalyze the hydrolysis of the polysaccharide, peaked 6 h later
after the addition of a specific carbohydrate35,37. Whereas the
concentration of SCFAs peaked 5 h later after feeding different
carbohydrate interventions in the goat’s rumen36.
It should be noted that the gut microbiota is the main

contributor to the carbohydrate metabolism in the colon. The
complex polysaccharide is hydrolyzed by microbial enzymes to
generate a series of different metabolites like monosaccharides as
mentioned above34. These metabolites could further cross-fed
other microbes to maintain the homeostasis of intestinal
microecology which is of great importance for the host
metabolism, health and immunity38,39. The microbes play different
roles (primary degrader or secondary degrader) in carbohydrate
metabolism according to their ecological functions. Interestingly,
cumulative evidence indicates that the microbial composition and
function fluctuate over a day7–9,12,27. Further, we found that the
succession of certain microbes in a day was driven by certain
substrates as a lot of bacteria have evolved preferences for special
substrates40,41. For example, Ruminococcaceae taxa

Fig. 5 Fluctuation of microbial metabolic functions within a day. a Partial least square discriminant analysis (PLS-DA) score plots of the
third-level KEGG pathways at different time points in a day. b The relative abundances of functional categories at first KEGG pathways. MET =
Metabolism, GIP = Genetic information processing, EIP = Environmental information processing; CP = cellular processes; OS = organismal
systems and HD = human diseases. TPM = Transcripts per million. c Dynamic changes in the relative abundance of metabolism at different
time points in a day. # denotes significant daily fluctuation with a PAdj < 0.05. The rhythmicity analysis was finished by non-parametric JTK
analysis with n= 5. TPM = Transcripts per million. d Bar chart exhibiting the percentage of the second-level KEGG pathways with rhythmicity
of each metabolism category. e Heatmap depicting the relative abundance of the third-level KEGG pathways with daily fluctuation. The
relative abundance was normalized using Z-score methods. Row group annotation information represents the second-level KEGG pathway
category. f Pie chart showing the percentage of cyclical KEGG pathways at the third level. Dynamic changes in the relative abundance of
carbohydrate metabolism (g), energy metabolism (h), lipid metabolism (i) and nucleotide metabolism (j) at the second KEGG pathways at
different time points in a day. # denotes significant rhythmicity with a PAdj < 0.05. The rhythmicity analysis was finished by non-parametric JTK
analysis with n= 5. All data were presented as mean ± s.d. TPM = Transcripts per million. Daily fluctuation of the microbial functions at the
second-level KEGG pathways (k) and third-level KEGG pathways (l). The Red dashed line represents a Y-intercept (PAdj) of 0.05. The rhythmicity
analysis was finished by non-parametric JTK analysis with n= 5. AMP represents the amplitude (transcripts per million).
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Faecalibacterium, as a primary degrader that plays a crucial role in
the hydrolysis of complex carbohydrates, synchronously reached a
peak with the colonic starch and cellulose42,43. Whereas the
increase of sugar metabolites promoted the proliferation of these
secondary degraders Streptococcus and Lactobacillus which are

further fermented to SCFAs44. Consistently, the concentrations of
SCFAs peaked later than these secondary degraders. Similar to the
results in vivo, our in vitro experiment validated that the primary
degraders peaked ahead of these secondary degraders with
0~2 shift. However, SCFAs peaked synchronously with the
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secondary degrader in vitro. The possible explanation was that
there may be fundamental differences in the uptake and
utilization of nutrient when comparing in vitro and in vivo
experiments. Nutrients were more accessible to the microbes in
the liquid fermentation cultures. The results of in vitro fermenta-
tion experiment also suggest that the microbial metabolic pattern
seems to be changing with the substrate. In the presence of ample
protein, gut microbes possess the capability to utilize the carbon
skeleton derived from protein for the synthesis of SCFAs. This
process involves the breakdown of proteins into amino acids via
the amino acid metabolic pathway, which are subsequently
employed by gut microbes for the synthesis of SCFAs. This might
explain the preceded presentation of Lactobacillaceae and
Streptococcaceae in the HN group. Also, we established extensive
associations between the nutrients and the specific microbes.
Therein, we preliminarily validated the response of the overall
microbial dynamics to the nutrients in vitro. Of note, followed-up
in vivo and in vitro trials to validate these relationships using
single-strain bacteria are urgently needed.
The fluctuations of substrates, microbes and microbial meta-

bolites within a day emphasize the necessity to consider the gut
micro-ecosystem from a temporal perspective. The dynamic
microbe-metabolite interaction network established in the present
study suggests that the time shifts between certain gut microbe
and metabolites should be taken into consideration when
developing a precision regimen targeting the gut microbiota. It
also implies that sampling time is a crucial consideration when
designing research concerning gut microbiota. Lactobacillus ASVs
were dominant in the dark phase in this study which implies that
the intervention time may affect the effects of specific probiotics.
On the other hand, microbial functions related to nutrient
metabolism were higher in the dark phase, whereas pathways
related to maintenance were higher in the light phase7. The
abundance of fatty acids and lipids peaked in the dark phase,
which was synchronized with their enriched metabolic pathways.
Interestingly, the fatty acids in the host serum also peak in the rest
phase45.

METHODS
Ethics & Inclusion statement
This project was approved by the Nanjing Agricultural University
Animal Care and Use Committee (SYXK2019-0066). All animal care
procedures in the experiment were operated according to the
Experimental Animal Care and Use Guidelines of China
(EACUGC2018-01).

Animals, experimental design and sampling
Eight healthy crossbred castrated male pigs (Duroc × Landrace ×
Large White; average bodyweight ± SE 57.03 ± 1.78 kg, 110 d)
were employed in the present study. Pigs were anaesthetized
using 3% phenobarbital sodium solution at a dose of 30 mg/kg

through the ear vein before the surgery. Each pig was equipped
with a T cannula (internal diameter 15 mm, length 82mm and
wings 10 mm) in the proximal colon and raised in an individual
pen46. All pigs were fed free access to commercial pellets
(Supplementary Table 1) for 15 d to adopt the feeding mode
under a 12:12 light/dark lightning pattern (light circle: 07:00 am to
07:00 pm). At 06:00 am of the 16th day, colonic digesta were
collected at a 3-h interval for consecutive 48 h marked as T06
(06:00 am), T09 (09:00 am), T12 (12:00 am), T15 (03:00 pm), T18
(06:00 pm), T21 (09:00 pm), T24 (12:00 pm), T27 (03:00 am), T30
(06:00 am), T33 (09:00 am), T36 (12:00 am), T39 (03:00 pm), T42
(06:00 pm), T45 (09:00 pm), T48 (12:00 pm), T51 (03:00 am) and T54
(06:00 am), respectively (Fig. 9a). The feed intake of each pig
during each sampling interval was also recorded. Unconsumed
feed was weighed each sampling timepoint at T03, T06, T09, T12,
T15, T18, T21, T24, T30, T33, T36, T39, T42, T45, T48, T51, and T54.
Feed intake during each interval was calculated as the difference
with previous time point. Digesta samples were snap-frozen in
liquid nitrogen for further analysis. Colonic substrates and the
total bacterial load were measured for 48 h. As the fluctuation
patterns of colonic substrates and the total microbial load within 2
consecutive days were almost consistent. Thus, further 16 S rRNA
gene sequencing, metabolic and metagenomic analyses were
performed on the samples from the first 24 h.

In vitro fermentation experiment
To validate the correlation of dynamic fluctuation of microbes
with nutrient substrates, a further in vitro fermentation experi-
ment was designed using substrates with different carbon/
nitrogen ratio according to the nutritional consumption of the
colonic digesta. The high carbon group (HC) consisted of starch
(Millipore Sigma), cellulose (Millipore Sigma) and casein (Millipore
Sigma) with the mass ratio of 2:2:1 (C/N= 4:1), whereas that of the
high nitrogen group (HN) contained the three substrates with the
ration of 1:1:2 (C/N= 1:1). Fermentation experiment was carried
out using an in vitro batch culture method following Williams,
et al.47. Colonic microbial inoculum was prepared by diluting the
colonic digesta from growing pigs 1:10 with PBS buffer. The
inoculum was then filtered by three layers of gauze. One gram of
substrate combinations and 10mL inoculum was added in 90mL
medium. All procedures during the preparation of microbial
inoculum and the medium were flushed with CO2 to maintain
anaerobic conditions. All cultures were incubated at 37 °C in a
shaker (100 rpm) for 24 h (Fig. 9b) in anaerobic conditions.
Samples were collected every 3 h (0 h, 3 h, 6 h, 9 h, 12 h, 15 h,
18 h, 21 h and 24 h) for the further determination of SCFAs, total
bacteria load and 16 S rRNA gene sequencing.

Measurement of colonic substrates and Short Chain Fatty
Acids (SCFAs)
The concentrations of carbon (starch and cellulose) and nitrogen
(protein and NH3-N) substrates in the colonic digesta were

Fig. 6 Fluctuations of substances, microbes and pathways in carbohydrate metabolism. Dynamic changes of acetate (a), propionate (b),
total SCFAs (c), butyrate (d), valerate (e), isobutyrate (f) and isovalerate (g) at different time points. # denotes significant fluctuation with a
PAdj < 0.05. The rhythmicity analysis was finished by non-parametric JTK analysis with n= 8. All data were presented as mean ± s.d. h Heatmap
depicting the concentration of SCFAs, the abundance of the third-level KEGG pathways, KEGG genes, primary microbial species that
contribute to these genes and the sugar metabolites. The abundance was normalized using Z-score methods. i Correlation network between
the SCFAs and gut microbes at the ASVs level. Each node exhibits an ASV whereas each ellipse represents one of the SCFAs. Each edge
represents a correlation with a r > 0.5 and a P < 0.05 constructed by eLSA method. All ASVs were colored according to their family. Edges in red
color represent positive correlations whereas a blue edge represents a negative correlation. The width of the edge represents the values of the
local similarity coefficients. ASV = amplicon single variant. SCFAs = short chain fatty acids. j Chord diagram illustrating the main microbial
species that contribute to KEGG genes encoding key enzymes involved in carbohydrate metabolism. k Venn diagram exhibiting the primary
families that tightly correlated to the SCFAs. l Correlation between the SCFAs and the carbohydrate metabolism-related pathways. Networks
were constructed by eLSA method. Edges in red color represent positive correlations whereas a blue edge represents a negative correlation.
The width of the edge represents the values of the local similarity coefficients. The label of the edge represents time shift.

H. Wang et al.

10

npj Biofilms and Microbiomes (2023)    85 Published in partnership with Nanyang Technological University



measured. Starch and cellulose were determined using Solarbio
Detection Kit BC0700 (Solaibao, Beijing, China) and Solarbio
Detection Kit BC4280 (Solaibao, Beijing, China) respectively
referencing the manufacturer’s instructions48. The concentration
of total protein was determined using Solarbio Detection Kit
PC0010 (Solaibao, Beijing, China) through the coomassie brilliant

blue G-250 method49. The level of NH3-N was measured using the
colorimetric method according to our previous method19.
SCFAs including acetate, propionate, isobutyrate, butyrate,

isovalerate and valerate in the colonic digesta and the fermenta-
tion liquids were measured with a gas chromatography method50.
Agilent 7890A gas chromatograph (Agilent Technologies,
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Wilmington, DE) equipped with a flame ionization detector was
used in the measurement. The production rate of SCFAs in the
fermentation liquids were roughly calculated by subtracting the
concentrate of the previous timepoint and then divided by
sampling interval.

DNA extraction and the measurement of total bacterial load
Total DNA was extracted from all digesta and the fermentation
liquid samples using the cetrimonium bromide method51. The
total bacterial load (16 S rRNA gene copy) in the colonic digesta
was measured using a real-time PCR method52. Amplification
primer sequences were bacF (5’-CCATTGTAGCACGTGTGTAGCC-3’)
and bacR (5’-CGGCAACGAGCGCAACCC-3’). Real-time PCR reac-
tions were performed using a standard SYBR Green PCR kit TSE202
(Tsingke, Beijing, China). Amplification reactions were performed
on QuantStudio™ 5 Real-Time PCR Instruments (Applied Biosys-
tems, Foster City, CA) with the standard SYBR cycling amplification
conditions. A standard curve method was used to calculate the
total bacterial load in the colonic digesta samples. Further, the
absolute abundance of each bacterial taxa was obtained by
multiplying relative abundance by the total bacterial load.

16S rRNA Gene Sequencing and Microbiota Analysis
A universal primer with the unique barcode (forward primer) (5’-
CCTAYGGGRBGCASCAG-3’) and reverse primer (5’- GGAC-
TACNNGGGTATCTAAT-3’) was designed to amplify the V3-V4
regions in 16S rRNA gene of the gut microbiota in colonic digesta
and the fermentation liquids. Sequencing libraries were estimated
using NEB Next®Ultra™DNA Library Prep Kit for Illumina (NEB, USA)
following the manufacturer’s instruction and the index codes were
then added. Library quality was evaluated on the Agilent
Bioanalyzer 2100 system and Qubit@2.0 Fluorometer (Thermo
Scientific). Finally, the library was constructed on an Illumina
MiSeq platform and 250 bp/300 bp paired-end reads were
generated.
Using VSEARCH (v2.20.1)53 paired-end reads of each sample

were merged based on the overlaps, primers and barcodes were
further trimmed. Reads with an error threshold over 0.01 were
then eliminated. Clean reads were further denoised using the
UNOISE3 in USEARCH (v10.0.240) after discarding low-abundance
noise with a miniquesize of 8 to obtain subsequent amplicon
sequence variants (ASVs)54. Chimeras were removed by aligned
against the Ribosomal Database Project (RDP) (v1.8). Feature ASVs
were generated using USEARCH and then were annotated by
aligning the taxonomy information against the RDP database
using VSEARCH with a confidence of 0.97. Further, non-bacteria
and plastids were then removed. Reads count was normalized
using the vegan package. Alpha diversity indexes and rarefaction
of each group were calculated using USEARCH. A phylogenetic
tree based on high-quality sequences was constructed using
MUSCLE and iqtree55,56 and further visualized using the iTOL
online website (https://itol.embl.de/)57.

Microbial functions analysis
A total of 0.5 μg microbial DNA was used for metagenomic
shotgun sequencing. Low-quality reads and adaptor contaminants
in raw sequence reads were quality trimmed using Trimmo-
matic58. After quality control, reads were then mapped against the
human genome (version: hg19) by BWA mem algorithm (para-
meters: -M -k 32 -t 16, http://bio-bwa.sourceforge.net/bwa.shtml)
to remove the host-genome contaminations and low-quality data.
For each sample, a set of contigs were generated based on these
clean reads using MegaHit (v1.1.3) with parameters of “--min-
contig-len 500”59. Open reading frames (ORFs) were predicted
based on the assembled contigs using Prodigal (v2.6.3)60 and all
ORFs were generated to a set of unique genes after clustering
using CD-HIT (v4.6) with parameters of “-n 9 -c 0.95 -G 0 -M 0 -d 0
-aS 0.9 -r 1”61. The longest sequence in each cluster was
recognized as the representative sequence in each unique-gene
set in each gene. To calculate the abundance of genes within total
samples, salmon software (version 0.12.0) was used to obtain the
reads number for each gene62. This non-redundant gene set was
then searched against the Kyoto encyclopedia of genes and
genomes (KEGG) databases using BLASTX to identify proteins and
annotate their functions. Based on the KO results, the specific
function and pathways were obtained using the pathways
mapped by the annotated genes based on the KEGG Pathway
Database. The gene abundance was calculated finally using the
following equations:

Ab Sð Þ ¼ Ab Uð Þ þ Ab Mð Þ (1)

Ab Uð Þ ¼
XM

i¼1

1=l (2)

Ab Mð Þ ¼
XM

i¼1

Co � 1ð Þ=l (3)

Co ¼ Ab Uð Þ
PN

i¼1 Ab Uið Þ (4)

Ab(S), gene abundance; Ab(U), single-mapping reads abundance;
Ab(M), multi-mapping reads abundance; l, length of gene
sequence63. The abundance values in metagenomes were
normalized by transcripts per kilobase per million mapped
reads (TPM).

Metabolome analysis
Metabolome analysis was finished based on the liquid
chromatography-mass spectrometry method. The liquid
chromatography-mass spectrometry platform was based on
Ultimate 3000LC (Thermo, Q Exactive) equipped with a Hypersil
GOLD™ C18 Column (100mm × 2.1 mm, 1.9 µm). The detailed
parameters were described elsewhere19. Spectrum information
was parsed using Compound Discoverer software 3.0 (Thermo
Scientific). Downstream data were analyzed using MetaboAnalyst
5.0 (https://www.metaboanalyst.ca/)64. Auto-scaling normalization

Fig. 7 Microbial succession and dynamic fluctuation in short chain fatty acids during in vitro fermentation under different substrate
combinations. a Production rate of SCFAs acetate, propionate, butyrate, isobutyrate, valerate, isovalerate and total SCFAs. The difference
between different groups at each sampling timepoint was identified by a two-tailed t-test (n= 4). * denotes a significant difference with a p-
value lower than 0.05. HC = high carbohydrate group; HN = high nitrogen group. All data were presented as mean ± s.d. b Dynamic changes
in relative abundance of Lachnospiraceae, Lactobacillaceae and Streptococcaceae. The difference between different groups at each sampling
timepoint was identified by a two-tailed t-test (n= 4). * denotes a significant difference with a p-value lower than 0.05. HC = high
carbohydrate group; HN = high nitrogen group. c The microbial composition at each sampling timepoint during in vitro fermentation. HC =
high carbohydrate group; HN = high nitrogen group. d Correlations among the microbes belonging to different class. Networks were
constructed by eLSA method. Each cell represents a pairwise correlation with a local similarity (LS) > 0.5 and a P < 0.05. The label on the cell
represents time delay of a pairwise. Cells filled in red color represent positive correlations whereas a blue cell represents a negative
correlation. The depth of the color represents the size of LS.
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and logarithmic transformation were executed after QC adjust-
ment. The partial least squares-based discriminant analysis (PLS-
DA) method was used to picture the overall variations among
different time points. KEGG pathway enrichment analysis was
processed to discover the enriched pathways of features with
daily fluctuation.

Data Analysis and Statistics
An R package JTK_circle analysis was used to detect the daily
fluctuation with a period of 24 h and an interval of 3 h7,65. Using
this algorithm, permutation-based P (PAdj) and amplitude (AMP)
were given. Features with PAdj < 0.05 were considered to have
daily fluctuation (95% CI). Only microbial taxa with a relative
abundance over 0.01% and presented in more than 20% of
samples were retained for further analysis. The microbial-
metabolite network for each sampling time point was con-
structed using Spearman’s correlation method. Correlations with
a correlation coefficient (R) higher than 0.5 and a p-value lower

than 0.05 were retained. Extended local similarity analysis (eLSA)
was used to calculate the correlations among feed intake,
cyclical microbial taxa, cyclical metabolites, SCFAs, KEGG genes
along with their contributory taxa and KEGG pathways (95%
CI)66. The local similarity coefficient (LS) was used to measure
the correlation level pairwise. A delay value (D) was calculated to
represent the time shift between a pairwise. Correlations with a
LS higher than 0.5 and a p-value lower than 0.05 will be retained
for further analysis. Cytoscape (v3.7.2) and gephi (v0.9.4) were
used to visualize the microbe-metabolite interaction networks.
STAMP (v 2.1.330) was used to explore the diurnal differences in
the composition and function of the gut microbiota and the
metabolites between the light phase (T09, T12, T15 and T18) and
the dark phase (T06, T21, T24, T27 and T30)67. The difference
between different groups at each sampling timepoint was
identified by a two-tailed t-test using SPSS (IBM SPSS 21.0, SPSS
Inc.). P values less than 0.05 (P < 0.05) indicated significant
differences (95% CI).
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The datasets generated and/or analyzed during the current study are available in the
NCBI Sequence Read Archive database repository, https://dataview.ncbi.nlm.nih.gov/
object/PRJNA824879 and https://dataview.ncbi.nlm.nih.gov/object/PRJNA843783.

CODE AVAILABILITY
Codes utilized for the analysis and visualization of the study data were included in
the supplementary information of this manuscript.

Received: 12 March 2023; Accepted: 31 October 2023;

REFERENCES
1. Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis

with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).
2. Regan, M. D. et al. Nitrogen recycling via gut symbionts increases in ground

squirrels over the hibernation season. Science 375, 460–463 (2022).
3. Feng, Q. et al. Time series analysis of microbiome and metabolome at multiple

body sites in steady long-term isolation confinement. Gut 70, 1409–1412 (2021).
4. Kim, H. J., Moon, C. M., Kang, J. L. & Park, E. M. Aging effects on the diurnal

patterns of gut microbial composition in male and female mice. Korean J. Physiol.
Pharmacol. 25, 575–583 (2021).

5. Li, N. et al. Spatial heterogeneity of bacterial colonization across different gut
segments following inter-species microbiota transplantation. Microbiome 8, 161
(2020).

6. Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-
gatherers of Tanzania. Science 357, 802–806 (2017).

7. Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations pro-
motes metabolic homeostasis. Cell 159, 514–529 (2014).

8. Gong, S. et al. Gut microbiota mediates diurnal variation of acetaminophen
induced acute liver injury in mice. J. Hepatol. 69, 51–59 (2018).

9. Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome
oscillations. Cell 167, 1495–1510.e1412 (2016).

10. Xiao, L. et al. A reference gene catalogue of the pig gut microbiome. Nat.
Microbiol. 1, 16161 (2016).

11. Wang, H., Xu, R., Zhang, H., Su, Y. & Zhu, W. Swine gut microbiota and its inter-
action with host nutrient metabolism. Anim. Nutr. 6, 410–420 (2020).

12. Wang, H., Zhang, H. & Su, Y. New insights into the diurnal rhythmicity of gut
microbiota and its crosstalk with host Circadian Rhythm. Animals 12, 1677 (2022).

13. Guo, T. et al. Oolong Tea Polyphenols Ameliorate Circadian Rhythm of intestinal
microbiome and liver clock genes in mouse model. J. Agric. Food Chem. 67,
11969–11976 (2019).

14. Beli, E., Prabakaran, S., Krishnan, P., Evans-Molina, C. & Grant, M. B. Loss of diurnal
oscillatory rhythms in gut microbiota correlates with changes in circulating
metabolites in Type 2 Diabetic db/db Mice. Nutrients 11, 10 (2019).

15. Liang, X., Bushman, F. D. & FitzGerald, G. A. Rhythmicity of the intestinal micro-
biota is regulated by gender and the host circadian clock. Proc. Natl Acad. Sci. USA
112, 10479–10484 (2015).

16. Ang, J. E. et al. Identification of human plasma metabolites exhibiting time-of-day
variation using an untargeted liquid chromatography-mass spectrometry meta-
bolomic approach. Chronobiol. Int. 29, 868–881 (2012).

17. Dallmann, R., Viola, A. U., Tarokh, L., Cajochen, C. & Brown, S. A. The human
circadian metabolome. Proc. Natl Acad. Sci. USA 109, 2625–2629 (2012).

18. Wang, H., Ren, E., Xiang, X., Su, Y. & Zhu, W. Dynamic changes in serum meta-
bolomic profiles of growing pigs induced by intravenous infusion of sodium
butyrate. Metabolites 10, 20 (2020).

19. Wang, H., Xia, P., Lu, Z., Su, Y. & Zhu, W. Metabolome-microbiome responses of
growing pigs induced by time-restricted feeding. Front. Vet. Sci. 8, 681202 (2021).

20. Antunes, K. H. et al. Microbiota-derived acetate protects against respiratory
syncytial virus infection through a GPR43-type 1 interferon response. Nat. Com-
mun. 10, 1–17 (2019).

21. Zhou, L., Fang, L., Sun, Y., Su, Y. & Zhu, W. Effects of the dietary protein level on
the microbial composition and metabolomic profile in the hindgut of the pig.
Anaerobe 38, 61–69 (2016).

22. Damulewicz, M., Loboda, A., Jozkowicz, A., Dulak, J. & Pyza, E. Interactions
between the circadian clock and heme oxygenase in the retina of Drosophila
melanogaster. Mol. Neurobiol. 54, 4953–4962 (2017).

23. Pittendrigh, C. S. & Daan, S. A functional analysis of circadian pacemakers in
nocturnal rodents. J. Compar. Physiol. 106, 223–252 (1976).

24. Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton,
archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).

25. Ruan, Q. et al. Local similarity analysis reveals unique associations among marine
bacterioplankton species and environmental factors. Bioinformatics 22,
2532–2538 (2006).

26. Leone, V. et al. Effects of diurnal variation of gut microbes and high-fat feeding
on host circadian clock function and metabolism. Cell Host Microbe 17, 681–689
(2015).

27. Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the
diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).

28. Reitmeier, S. et al. Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2
Diabetes. Cell Host Microbe 28, 258–272.e256 (2020).

29. Challet, E. The circadian regulation of food intake. Nat. Rev. Endocrinol. 15,
393–405 (2019).

30. Oosterman, J. E., Kalsbeek, A., la Fleur, S. E. & Belsham, D. D. Impact of nutrients
on circadian rhythmicity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308,
R337–R350 (2015).

31. Frazier, K. & Chang, E. B. Intersection of the gut microbiome and circadian
rhythms in metabolism. Trends Endocrinol. Metab. 31, 25–36 (2020).

32. Zeb, F. et al. Effect of time-restricted feeding on metabolic risk and circadian
rhythm associated with gut microbiome in healthy males. Br. J. Nutr. 123,
1216–1226 (2020).

33. Rottman, L. W., Ying, Y., Zhou, K., Bartell, P. A. & Harvatine, K. J. The daily rhythm
of milk synthesis is dependent on the timing of feed intake in dairy cows. Physiol.
Rep. 2, e12049 (2014).

34. Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide
utilization by gut bacteria: potential for new insights from genomic analysis. Nat.
Rev. Microbiol. 6, 121–131 (2008).

35. Huang, J. et al. In vitro fermentation of O‑acetyl‑arabinoxylan from bamboo
shavings by human colonic microbiota. Int. J. Biol. Macromol. 125, 27–34 (2019).

36. Shen, H., Lu, Z., Xu, Z., Chen, Z. & Shen, Z. Associations among dietary non-fiber
carbohydrate, ruminal microbiota and epithelium G-protein-coupled receptor,
and histone deacetylase regulations in goats. Microbiome 5, 123 (2017).

37. Razeq, F. M. et al. A novel acetyl xylan esterase enabling complete deacetylation
of substituted xylans. Biotechnol. Biofuels 11, 74 (2018).

38. Payling, L. et al. The effects of carbohydrate structure on the composition and
functionality of the human gut microbiota. Trends Food Sci. Technol. 97, 233–248
(2020).

39. Belenguer, A. et al. Two routes of metabolic cross-feeding between Bifido-
bacterium adolescentis and butyrate-producing anaerobes from the human gut.
Appl. Environ. Microbiol. 72, 3593–3599 (2006).

40. Li, J. et al. Carbohydrate staple food modulates gut microbiota of Mongolians in
China. Front. Microbiol. 8, 484 (2017).

41. da Veiga Moreira, I. M., Miguel, M. G. D. C. P., Duarte, W. F., Dias, D. R. & Schwan, R.
F. Microbial succession and the dynamics of metabolites and sugars during the
fermentation of three different cocoa (Theobroma cacao L.) hybrids. Food Res. Int.
54, 9–17 (2013).

42. Ze, X. et al. Unique organization of extracellular amylases into amylosomes in the
resistant starch-utilizing human colonic Firmicutes bacterium Ruminococcus
bromii. MBio 6, e01058–01015 (2015).

43. Rossi, M. et al. Fermentation of fructooligosaccharides and inulin by bifido-
bacteria: a comparative study of pure and fecal cultures. Appl. Environ. Microbiol.
71, 6150–6158 (2005).

44. Layden, B. T., Angueira, A. R., Brodsky, M., Durai, V. & Lowe, W. L. Jr Short chain
fatty acids and their receptors: new metabolic targets. Transl. Res. 161, 131–140
(2013).

45. Rivera-Zavala, J. B., Báez-Ruiz, A. & Díaz-Muñoz, M. Changes in the 24 h rhyth-
micity of liver PPARs and peroxisomal markers when feeding is restricted to two
daytime hours. PPAR Res. 2011, 261584 (2011).

46. Theodorou, V., Fioramonti, J., Hachet, T. & Bueno, L. Absorptive and motor
components of the antidiarrhoeal action of loperamide: an in vivo study in pigs.
Gut 32, 1355–1359 (1991).

47. Williams, B. A., Bosch, M. W., Boer, H., Verstegen, M. W. A. & Tamminga, S. An
in vitro batch culture method to assess potential fermentability of feed
ingredients for monogastric diets. Anim. Feed Sci. Technol. 123–124, 445–462
(2005).

48. Zhuang, K. et al. Whirly1 enhances tolerance to chilling stress in tomato via
protection of photosystem II and regulation of starch degradation. New Phytol.
221, 1998–2012 (2019).

H. Wang et al.

14

npj Biofilms and Microbiomes (2023)    85 Published in partnership with Nanyang Technological University

https://dataview.ncbi.nlm.nih.gov/object/PRJNA824879
https://dataview.ncbi.nlm.nih.gov/object/PRJNA824879
https://dataview.ncbi.nlm.nih.gov/object/PRJNA843783


49. Li, Z. et al. The critical roles of exposed surface residues for the thermostability
and halotolerance of a novel GH11 xylanase from the metagenomic library of a
saline-alkaline soil. Int. J. Biol. Macromol. 133, 316–323 (2019).

50. Wang, X. et al. Effect of the gynosaponin on methane production and microbe
numbers in a fungus-methanogen co-culture. J. Anim. Feed Sci. 20, 272–284
(2011).

51. Dai, Z. L., Zhang, J., Wu, G. & Zhu, W. Y. Utilization of amino acids by bacteria from
the pig small intestine. Amino Acids 39, 1201–1215 (2010).

52. Mao, S., Zhang, M., Liu, J. & Zhu, W. Characterising the bacterial microbiota across
the gastrointestinal tracts of dairy cattle: membership and potential function. Sci.
Rep. 5, 16116 (2015).

53. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open
source tool for metagenomics. PeerJ 4, e2584 (2016).

54. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26, 2460–2461 (2010).

55. Edgar, R. C. MUSCLE v5 enables improved estimates of phylogenetic tree con-
fidence by ensemble bootstrapping. bioRxiv (2021).

56. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic
inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

57. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for
phylogenetic tree display and annotation. Nucl. Acids Res. 49, W293–W296
(2021).

58. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics 30, 2114–2120 (2014).

59. Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-
node solution for large and complex metagenomics assembly via succinct de
Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

60. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation
site identification. BMC Bioinformatics 11, 119 (2010).

61. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-
generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

62. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast
and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419
(2017).

63. Li, J. et al. An integrated catalog of reference genes in the human gut micro-
biome. Nat. Biotechnol. 32, 834–841 (2014).

64. Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and
functional insights. Nucleic Acids Res. 49, W388–W396 (2021).

65. Hughes, M. E., Hogenesch, J. B. & Kornacker, K. JTK_CYCLE: an efficient non-
parametric algorithm for detecting rhythmic components in genome-scale data
sets. J. Biol. Rhythms 25, 372–380 (2010).

66. Xia, L. C., Ai, D., Cram, J., Fuhrman, J. A. & Sun, F. Efficient statistical significance
approximation for local similarity analysis of high-throughput time series data.
Bioinformatics 29, 230–237 (2013).

67. Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical
analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124
(2014).

ACKNOWLEDGEMENTS
This work was supported by the National Natural Science Foundation of China under
Grant 32072688 and the National Key R&D Program of China under Grant
2022YFD1300402.

AUTHOR CONTRIBUTIONS
Y.S.: conceptualisation, funding acquisition, supervision, writing—original draft, and
writing—review and editing. W.Z.: conceptualisation, supervision, writing—review
and editing. HW: conceptualisation, investigation, methodology, project administra-
tion, visualisation, writing—original draft, and writing—review and editing. R.X.:
investigation, methodology, and writing—original draft. Q.L.: investigation, metho-
dology, project administration, and writing—original draft.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41522-023-00453-w.

Correspondence and requests for materials should be addressed to Yong Su.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

H. Wang et al.

15

Published in partnership with Nanyang Technological University npj Biofilms and Microbiomes (2023)    85 

https://doi.org/10.1038/s41522-023-00453-w
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Daily fluctuation of colonic microbiome in response to nutrient substrates in a pig�model
	Introduction
	Results
	Fluctuation of feed intake and colonic substrates within 48&#x02009;h
	Daily fluctuation of microbial structure in the�colon
	Daily oscillation of colonic metabolites
	Dynamic Microbe-metabolite Interaction in the Colon of Growing�Pigs
	Dynamics of the microbial metabolic function
	Dynamics of Carbon Flux Distribution and Microbial Succession in the Process of Carbohydrate Metabolism
	Microbial Succession in Vitro Fermentation Experiment with Different Substrate Combinations

	Discussion
	Methods
	Ethics &#x00026; Inclusion statement
	Animals, experimental design and sampling
	In vitro fermentation experiment
	Measurement of colonic substrates and Short Chain Fatty Acids (SCFAs)
	DNA extraction and the measurement of total bacterial�load
	16S rRNA Gene Sequencing and Microbiota Analysis
	Microbial functions analysis
	Metabolome analysis
	Data Analysis and Statistics
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




