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Native microbiome dominates over host factors in shaping the
probiotic genetic evolution in the gut
Shuaiming Jiang1,5, Chengcheng Zhang2,5, Zhe Han1, Wenyao Ma1, Shunhe Wang2, Dongxue Huo1, Weipeng Cui1, Qixiao Zhai2✉,
Shi Huang3✉ and Jiachao Zhang 1,4✉

Probiotics often acquire potentially adaptive mutations in vivo, gaining new functional traits through gut selection. While both the
host and microbiome can contribute to probiotics’ genetic evolution, separating the microbiome and the host’s contribution to
such selective pressures remains challenging. Here, we introduced germ-free (GF) and specific pathogen-free (SPF) mouse models
to track how probiotic strains, i.e., Lactiplantibacillus plantarum HNU082 (Lp082) and Bifidobacterium animalis subsp. lactis V9 (BV9),
genetically evolved under selection pressures derived from host factors alone and both host and microbial ecological factors.
Notably, compared to the genome of a probiotic strain before consumption, the host only elicited <15 probiotic mutations in
probiotic genomes that emerged in the luminal environment of GF mice, while a total of 840 mutations in Lp082 mutants and
21,579 mutations in BV9 were found in SPF mice, <0.25% of those derived from both factors that were never captured by other
experimental evolution studies, indicating that keen microbial competitions exhibited the predominant evolutionary force in
shaping probiotic genetic composition (>99.75%). For a given probiotic, functional genes occurring in potentially adaptive
mutations induced by hosts (GF mice) were all shared with those found in mutants of SPF mice. Collectively, the native microbiome
consistently drove a more rapid and divergent genetic evolution of probiotic strains in seven days of colonization than host factors
did. Our study further laid a theoretical foundation for genetically engineering probiotics for better gut adaptation through in vitro
artificial gut ecosystems without the selection pressures derived from host factors.
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INTRODUCTION
Probiotics face tremendous challenges in colonizing and adapting
to the luminal environment of the host gut. The main barriers
include (i) specific characteristics of a probiotic itself (e.g., acid
tolerance, the frequency and dosage of intake, live or dead,
and specialized adaptability); (ii) host-related factors (such as
stomach acidity, bile acids, defensins, immune response, etc.)1,
(iii) microbiome-related factors (such as microbial resource
competition and interactions)2,3. All these constraints together
constitute intestinal selection pressures on exogenous microbes in
vivo4. Such selection pressures persistently drive probiotics to
mutate themselves and compete with other residents for limited
ecological niches to better survive in the host gut during
colonization, leading to many unseen new phenotypes and
raising the chance of becoming specialists in the new
environment.
Consequently, probiotic adaptive evolution is of great interest

in downstream applications, as it often leads to enhanced varied
therapeutic efficacy and produces well-gut-adapted strains with
superior probiotic characteristics in feces5. More importantly, it
also implies the possibilities of genetically engineering probiotics
with an ecological approach. Firstly, under in vitro conditions,
most probiotics are genetically stable. For example, in our past
study, the candidate probiotic Lactiplantibacillus plantarum
HNU082 (Lp082) did not accumulate any mutations throughout
the continuous in vitro incubation over 28 days. In another study,
along the 2000-generation in vitro cultivation for ten months
under antibiotic exposure, only less than 20 mutations were

observed6. In contrast, microbial adaption to the gut requires
ingested probiotics to acquire new phenotypes via a high number
of adaptive genetic mutations. Our previous study found that
probiotic Lactiplantibacillus plantarum HNU082 (Lp082) acquired
the potentially adaptive mutations conservatively in the host gut
of mice and humans, enhancing its acid tolerance and rhamnose
utilization within a short colonization duration7. Both host-derived
factors and resident gut microbiota can impose selection pressure
on probiotics and lead to these potentially adaptive mutations.
Yet, tracing which factor (i.e., host-derived factors VS. resident gut
microbiota) contributed more to probiotic genetic evolution
remains challenging.
On the other hand, our previous studies on in vivo adaptive

evolution also motivated us to genetically engineer probiotics
using ecological forces in gut ecosystems. The direct gut passage
of probiotics using animals (e.g., mice) was effective, yet not
optimal for the large-scale and efficient production of probiotic
mutants. Alternatively, an artificial gut ecosystem teeming with
designed competitors of target probiotic strains seems ideal, in
which no host-factor-related selection pressure will appear.
However, it remains elusive how large the relative host contribu-
tion to the probiotic mutations would be, which would be critical
to selecting the artificial gut ecosystem for such a purpose.
Since Lactiplantibacillus and Bifidobacterium were two major

groups of administrated probiotics8, here, we employed Lp082
and Bifidobacterium animalis subsp. lactis V9 (BV9) as the model
probiotic strains to quantitively measure the contribution of the
host and microbial factors to the in vivo genetic evolution of
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probiotics7,9. Lp082, a representative strain of Lactiplantibacillus
plantarum derived from fermentation foods, can acquire poten-
tially adaptive genetic mutations during a short-term gut passage
in zebrafish, mice, and humans7. Notably, these potentially

adaptive mutations or involved functional genes were highly
consistent across individuals of a host species and even across
host species. On the other hand, BV9, which originated from the
feces of a healthy Mongolian child in China, is a representative
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Bifidobacteria strain that has been commercialized in the Chinese
market10 with promising probiotic functions11. Although the
experimental evolution study is still lacking for this strain, it is
widely accepted that Bifidobacteria often harbors a high strain-
level diversity in the human gut and a large genomic flexibility for
adaption to ecological challenges. This suggests that BV9 may
have a similarly high potential for adaptive evolution in the gut
environment. The probiotic strains (108 cfu/day) were admini-
strated to germ-free (GF) and specific pathogen-free (SPF) mice
over seven days and isolated and cultivated from the feces every
two days for genomic analysis (Fig. 1a). The identity of both strains
was verified with strain-specific antibiotics and DNA primers7.
Next, the whole-genome sequence of isolates was obtained and
mapped against that of the original strains to gain potentially
adaptive SNVs (Single nucleotide variants). The SNVs detected in
GF and SPF mice were then analyzed and compared, providing
quantitative insights into the host and microbiome contribution to
adaptive genetic changes of probiotics in the host gut. This study
also laid the theoretical foundation for developing a directed
evolution strategy of probiotics using in vitro artificial gut
ecosystems.

RESULTS
Native microbiota was a major force driving the potentially
adaptive mutations
To gain insights into the selective forces for ingested probiotic
strains in the host gut, we first pinpoint the model probiotic
strains to perform the experimental evolutionary study.
We first profiled the composition of fecal microbial communities

of SPF mice using MetaPhlAn3 and confirmed that Bifidobacterium
animalis and Lactiplantibacillus plantarum were not present in the
gut of healthy SPF mice before probiotics gavage. It is also
noteworthy that both probiotic species were able to be annotated
in the gut microbiome of mice after gavage, reaching a mean-
ingful abundance level (Fig. 1b), suggesting that the probiotics
were able to successfully survive and potentially exert their
beneficial effects on the host. To be noted, we demonstrated that
the genetic mutations of probiotics were only attributed to the
probiotic strains we introduced rather than any pre-existing
probiotic strains in the gut of mice.
While only ten mutations occurred in Lp082 passing the GI tract

of GF mice, it acquired one order of magnitude more potentially
adaptive mutations (N= 840) in SPF mice. The host contribution
to potentially adaptive mutations in Lp082 was only 0.24%,
whereas the microbiome contribution reached 99.76% (Fig. 1c).
Likewise, for BV9, only 13 mutations were identified from GF mice,
which were supposed to arise purely from host factors. A total of
21,579 mutations were found in isolates from SPF mice; thus, the
host contribution was only 0.05% (Fig. 1d). These suggested that:
(i) the core selection pressure for ingested probiotics primarily
came from resource competitions between microbes rather than
host factors; (ii) Bifidobacterium more actively mutated than lactic
acid-producing bacteria by two orders of magnitude12. For SPF

mice, Lp082 had a total of 359 mutations involving amino acid
substitutions (Fig. 1e), defined as nonsynonymous mutations, and
for BV9, there were 4428 nonsynonymous mutation sites (Fig. 1f).
In GF mice, Lp082 had 9 SNVs involving amino acid substitutions,
and BV9 had 2 nonsynonymous mutation sites (Fig. 1g, h).

Divergent evolution of probiotics during colonization in the
gut of SPF mice
During this longitudinal study, both strains mutated slightly and
maintained a low yet stable level over time in GF mice. However,
in SPF mice, the number of potentially adaptive mutations
gradually increased during colonization, with a large variation
observed across isolates (Fig. 2a, d). Based on the large variation of
SNVs, we found that both the isolates of Lp082 and BV9
experienced divergent selection and rapidly evolved into two
divergent lineages in the gut of SPF mice (Fig. 2b, e). Intriguingly,
strains from one lineage carried fewer mutations and maintained a
conservative evolutionary trend, while the other lineage carried
enormous mutations (Fig. 2c, f). Here we first demonstrated and
compared in vivo divergent evolutionary patterns of representa-
tive probiotic strains.

Conserved functional genes in potentially adaptive mutations
of probiotics residing in both GF and SPF mice
We next functionally annotated genes involved in these mutations
(Fig. 3). The potentially adaptive mutations of Lp082 involved
seven genes in GF mice and 341 genes in SPF mice (Fig. 3a, b),
while the potentially adaptive mutations of BV9 involved five
genes in GF mice and 1322 genes in SPF mice (Fig. 3c, d).
Although unique SNVs were detected in GF mice, the involved
functions all overlapped with those in SPF mice (Supplementary
Tables). BV9’s mutations in SPF mice were mainly located on
genes responsible for carbohydrate metabolism, e.g., genes
encoding beta-galactosidase (Gene_456), bifunctional beta-D-
glucosidase/beta-D-fucosidase (Gene_142) and the gene encod-
ing aldehyde-alcohol dehydrogenase (Gene_359). In contrast, the
high-frequency mutation sites of Lp082 were mainly related to
transposase and inactivated derivatives.

Intestinal selective pressure introduced by complex species’
interaction drives more genome mutations
We next wonder if any native microbiota is associated with the
probiotic’s evolution in SPF mice and the impact of the probiotic
intervention on the local microbiota. There was no significant
difference in the evenness and richness of species composition
before and after probiotic administration, as observed through
Simpson and Shannon indices (Fig. 4). However, PCoA analysis
revealed that the gavage of BV9 had a more prominent impact on
the structure of the resident gut microbiota than Lp082 (Fig. 4e, f).
Furthermore, the microbial co-occurrence network based on
taxonomic abundance profiles at the species level was estab-
lished, and the correlation between a resident and probiotic strain
might suggest their ecological relationships in the gut ecosystem

Fig. 1 The potentially adaptive mutations of two probiotic strains in GF and SPF mice, respectively. a Experimental design. GF and SPF
mice were recruited to administer probiotics (108 cfu/day) for seven days, and the fecal isolates were obtained on the following 1, 3, 5, and
7 days. Feces were collected before and after gavage for metagenomic sequencing. b The relative abundance of probiotics before and after
gavage in SPF mice was compared and was represented by a bar chart with error bars (Standard Deviation, SD). Before gavage, there were no
probiotics and similar species in the resident microbiota. c, d The mutation sites that occur in all isolates were shown. The circle map shows
the genome-wide distribution of point mutation in the ingested probiotic strains in SPF and GF mice, respectively. A blue stripe indicates the
probiotic’s SNVs position in SPF mice, while a red stripe represents that accordingly in GF mice. e, f For Lp082, a total of 702 mutations were
located in gene-coding regions, with 138 mutations occurring in non-coding regions in SPF mice. In GF mice, a total of 9 mutations were
located in gene-coding regions, with 1 mutation occurring in a non-coding region. g, h For BV9, a total of 19,396 mutations were located in
gene-coding regions, with 2183 mutations occurring in non-coding regions in SPF mice. In GF mice, a total of 5 mutations were located in
gene-coding regions, with 8 mutations occurring in non-coding regions.
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(Fig. 5a, b). As a result, five species (Bacteroides thetaiotaomicron,
Alistipes indistinctus, etc.) interacted with Lp082, and 33 species
(Bacteroides massiliensis, Bacteroides caecimuris, Bacteroides uni-
formis, etc.) interacted with BV9 with an absolute correlation
strength >0.4. To further investigate the effects of the introduced
probiotics on the gut microbiota, we computed the abundance
ratio of bacterial species positively correlated with the probiotics
divided by those negatively correlated with the probiotics at each
time point. Interestingly, this ratio increased after introducing the
probiotics, indicating that these species positively correlated with
the probiotics being substantially enriched. Conversely, those
negatively correlated species were depleted during the interaction
with the probiotics (Fig. 5c, d).
Accordingly, by comparing the abundance of interacting species

before and after probiotic administration, we found that species
that had a positive correlation with probiotics showed an increase
in abundance after ingestion, while species that had a negative
correlation showed a decrease in abundance (Fig. 5e, f).
Mucispirillum schaedleri showed a positive correlation with Lp082
and a negative correlation with BV9, while Asaccharobacter celatus
and Bacteroides faecichinchillae showed an increase in abundance
with both probiotics.

DISCUSSION
To date, experimental evolution studies on human-associated
microbes have mainly been limited to bacterial pathogens due to
their profound implications for human health. It was documented
that human-associated pathogens evolved various complex
virulence factors with limited genetic mutations accumulated to
facilitate their immune escape in the host process13–16. Probiotics
represent another group of human-associated microbes. Due to
the gut environment’s ecological nature, probiotics’ genetic
changes will undoubtedly occur. However, it is unclear whether
the similar evolutionary patterns of pathogens well documented
can be found in probiotics and whether host factors such as
immunity still primarily shape the evolution of ingested probiotics.
Therefore, we carried out experiments to study the adaptive
evolution of common probiotics in the gut and try to identify the
main driving forces of these genetic mutations.
In contrast, the mutation frequency in probiotics, either

Lactobacillus or Bifidobacterium, far exceeds that of pathogenic
bacteria reported to date, which might be due to the distinct
ecological properties of probiotics and pathogens. Overall, rapid
microbial adaptation within hosts depends on multiple factors,
such as the occurrence rate of potentially beneficial mutations,
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adequate population size, and the fitness advantage of mutants17.
It is evident that both the mutation rate and effective population
size of M. tuberculosis in the host were quite small18–20, likely due
to the remarkably slow growth rate of M. tuberculosis within the
host. This suggested that M. tuberculosis is unlikely to evolve
drastically during a single infection within the host. In this study,
the strain-level diversity of both probiotic strains increased far
more rapidly and drastically within a short timeframe than many
other host-associated pathogens, such as Clostridium difficile21,22

and Staphylococcus aureus23, which exhibit <10 mutations per
genome per year. Thus, we have evidence to believe probiotics
might have distinct ecological properties from pathogens in the
gut, boosting their potentially adaptive mutations. Firstly, the
probiotic population could acquire many beneficial mutations in
the genome, as their gut adaptation directly affected the strain’s
survival, which was a matter of life and death24. In addition, other
than host factors, probiotics should resist substantial ecological
selection pressures from other residents in the colonization or
survival. The well-accepted fact is that strong selection pressure
exists between competing species or strains, leading to a negative
correlation within co-occurrence networks observed in the
metagenomic results25–27. Thus, it is possible that the greater
number of species with a “direct” negative correlation interacting
with BV9 in the gut microbiota may lead to BV9 undergoing a

higher number of potentially adaptive mutations than Lp082. The
adaptive potential for adaptive mutations of these mutants will be
tested in the upcoming research process, which will offer insights
into how these genetic changes may contribute to a probiotic’s
ability to colonize in the gut environment.
The potential adaptability disparity between lineage-2 and

lineage-1 isolates may need to be discussed, and the probiotic
bacteria of lineage 2 may evolve well by acquiring more SNVs than
lineage 1. Firstly, after the introduction of probiotic bacteria via
gavage in SPF mice, the proportion of lineage 2 gradually
increased during the isolation process among the mutant strains
obtained. This trend demonstrated that lineage 2 displayed a
higher degree of suitability within the gut environment compared
to lineage 1. Secondly, researches indicated that lineages carrying
a higher number of mutations exhibit enhanced adaptability to
the host. Neisseria gonorrhoeae acquired more genetic factors that
enabled it to establish colonization on the oral mucosal surface28.
Similarly, only the lineage of Helicobacter pylori carried cag+,
vacA+, and babA+ mutant genes sustained colonization cap-
ability in the human stomach, and the inactivation of any of these
functions decreases bacterial fitness29.
It is clear that the native microbiome, rather than the host, was

primarily responsible for probiotic mutations. We elaborated on
reasons that can explain this observation. (i) Probiotics may have
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far fewer interactions with host immunity than pathogens widely
documented for surviving in the gut luminal environment27.
Notably, our evidence in this study showed that probiotics can
have a large population size in germ-free mice, yet only <15
genetic mutations occurred, suggesting that a minimal selection
pressure derived from hosts. (ii) Probiotics have intrinsic ecological
links with native gut microbiota. They are often derived from
microbial species (e.g., BV9 in this study) that are naturally
adapted to the gut environment or may have evolved mechan-
isms to rapidly adapt to gut microbiota changes. This could
include high mutation rates, as well as other mechanisms such as
gene transfer, recombination, and regulation of gene expres-
sion30,31. (iii) It is generally accepted that the nutrients available in
the gut can be limited and may not be sufficient to support the
growth and metabolism of both endogenous gut microbes and
exogenous probiotics. Thus, the limited access to resources often

greatly intensified the microbial competition and evolution/
mutation rate of both exogenous probiotics and native micro-
biota. Resource competition is often implicated as the mechanism
driving diversification in this system. Collectively, we disentangled
the host and microbiome contribution to in vivo probiotic genetic
changes and laid the theoretical foundation for genetically
engineering probiotics through in vitro artificial gut ecosystems
for their better engraftment and performance in humans.

METHODS
The study subjects and experimental design
Two model probiotic strains Lactiplantibacillus plantarum HNU082
and Bifidobacterium animalis subsp. lactis V9 (BV9) were used in
this animal experiment. The 12 male SPF mice (C57BL/6, 10 weeks

T0 T1
0.65

0.70

0.75

0.80

0.85

0.90

0.95

T0 T1
1.6

1.8

2.0

2.2

2.4

2.6

2.8
Lp082

T0 T1
0.0

0.5

1.0

1.5

2.0

2.5

T0 T1
0.0

0.2

0.4

0.6

0.8

1.0

−0.2

−0.1

0.0

0.1

0.2

−0.4 −0.2 0.0 0.2
PC1(38.03%)

PC
2(

24
.6

1%
)

−0.25

0.00

0.25

0.50

−0.2 0.0 0.2 0.4
PC1(45.22%)

PC
2(

25
.6

9%
)

Sh
an

no
n 

in
de

x

Si
m

ps
on

 in
de

x

Sh
an

no
n 

in
de

x

Si
m

ps
on

 in
de

x

Lp082 BV9 BV9

SPF_T0
SPF_T1

Lp082 BV9

a b c d

e f

SPF_T0
SPF_T1

Anosim, P= 0.709

Anosim, P= 0.007

Fig. 4 The diversity and structural characteristics of the bacterial microbiota before and after gavage. a, b The microbial alpha diversity of
microbiota before and after Lp082 administration was compared, including the Shannon and Simpson index. c, d The microbial alpha diversity of
microbiota before and after Lp082 administration was compared, including the Shannon and Simpson index. e, f The PCoA analysis based on the
Bray-Curtis distance was employed to compare the structure before and after probiotics administration. The Anosim (Analysis of similarities) was
employed to assess significance, indicating non-significant differences in microbial community structure before and after Lp082 ingestion
(Anosim, P= 0.709). However, following the BV9 intervention, the microbial community exhibited a significant response (Anosim, P= 0.007).

S. Jiang et al.

6

npj Biofilms and Microbiomes (2023)    80 Published in partnership with Nanyang Technological University



age, Shanghai Slack Experimental Animal Co., Ltd., China) and 6
male GF mice (C3H, 10 weeks age, Germ-free C3H mice Laboratory
Animal Center, Jiangnan University) were used as the experi-
mental models. All mice were kept on a 12-h light/12-h dark cycle
with single cage feeding. The feeding temperature was 25 ± 2 °C,
and the humidity was 55% ± 5%. For SPF mice, autoclaved water
and irradiated breeding feed were free to access; for GF mice,
water and rodent feed were all needed to autoclave. Besides,
mattresses, sheds, nests, water, and feed for GF mice were
replaced every two days. After being adapted for seven days, the
mice were employed to conduct the experiments. The Ethics
Committee of Hainan University, China, approved the experi-
mental animal protocols (No. HNUAUCC-2021-00041).

We administered the Lp082 (108 cfu/day) respectively to 3 GF
mice and 6 SPF mice for seven days, and BV9 (108 cfu/day) was
also respectively administered to 3 GF mice and 6 SPF mice for
seven days. Then the isolates were obtained from feces on the
following 1, 3, 5, and 7 days (Fig. 1a). Obtaining single bacterial
isolates isolated from feces was considered the endpoint of this
research. Then, the mice were subjected to intraperitoneal
injection of 1% pentobarbital sodium and subsequently humanely
euthanized through cervical dislocation following the ARRIVE
reporting guidelines32. The isolation and taxonomic identification
of Lp082 from mice feces were conducted according to our
previous studies7. BV9 was isolated from the culture medium by
mixing the diluted stool samples of mice and 50mg/L mupirocin,
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and single colonies were identified by PCR using strain-specific
DNA primers (forward: 5’-CGCATATCGCCAACCAAG-3’; reverse: 5’-
ACTGCCGAGCGTAAAGCC-3’). In the SPF mice experiment, a total
of 51 isolates of Lp082 were subjected to sequencing analysis,
while 10 isolates of BV9 were sequencing. In the GF mice
experiment, 12 fecal samples from Lp082 and 12 fecal samples
from BV9 were sequenced for reference genome mutation
annotation.

The SNV calling of gut-adapted probiotic mutants
After these probiotic isolates were whole-genome re-sequenced,
sequencing reads were mapped against the reference genome of
the original strains to obtain SNVs using inStrain v1.0.0 (https://
github.com/MrOlm/inStrain). The concrete parameters include
inStrain profile *.sorted.bam *.fa -c 100 -f 0.49 -o *.profile -p -g
ref_genes.fna33. In particular, inStrain calculates the ANI between
all read pairs and the genomes they map to. Any sequencing
reads in a sample with the read-pair ANI to the reference genome
<95% were, by default, abandoned. A sample (i.e., isolate genomic
sequence) with a mean read ANI <0.95 were discarded. Mean-
while, the genomic functions of each strain were annotated by
Prodigal34.

Fecal shotgun metagenomic sequencing and microbial species
profiling
To ensure and confirm that the original probiotic strains were not
present in the mice’s resident gut tract before their entry and to
track the microbial population dynamics of gut microbiota after
probiotic consumption, we collected the feces before and after
administering the probiotics and conducted shotgun metage-
nomic sequencing to identify and estimate the abundance of gut
inhabitants including ingested probiotics. The QIAamp® DNA Stool
Mini Kit (Qiagen, Hilden, Germany) was used for metagenomic
DNA extraction. The purity and integrity of DNA were evaluated by
0.8% agarose gel electrophoresis. Specifically, the purity of DNA
was detected based on the ratio of OD 260/280 by Nanodrop35,
and the concentration of DNA was accurately quantified by Qubit®
DNA Assay Kit in Qubit® 3.0 Fluorometer (Invitrogen, USA)36. All
DNA samples were sequenced by Illumina HiSeq 2500 instrument
in the Novogene Company (Beijing, China). With fecal shotgun
metagenomics sequencing, we further predicted the relative
abundance of gut resident species and probiotic strains using
MetaPhlAn337.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The datasets generated during the current study are available in the NCBI repository,
with the accession number: PRJNA933377.
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