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Neighborhood socioeconomic status is associated with low
diversity gut microbiomes and multi-drug resistant
microorganism colonization
Ibrahim Zuniga-Chaves 1,2, Shoshannah Eggers3,4, Ashley E. Kates 5, Nasia Safdar5, Garret Suen 1✉ and Kristen M. C. Malecki6,7✉

Social disparities continue to limit universal access to health care, directly impacting both lifespan and quality of life. Concomitantly,
the gut microbiome has been associated with downstream health outcomes including the global rise in antibiotic resistance.
However, limited evidence exists examining socioeconomic status (SES) associations with gut microbiome composition. To address
this, we collected information on the community-level SES, gut microbiota, and other individual cofactors including colonization by
multidrug-resistant organisms (MDROs) in an adult cohort from Wisconsin, USA. We found an association between SES and
microbial composition that is mediated by food insecurity. Additionally, we observed a higher prevalence of MDROs isolated from
individuals with low diversity microbiomes and low neighborhood SES. Our integrated population-based study considers how the
interplay of several social and economic factors combine to influence gut microbial composition while providing a framework for
developing future interventions to help mitigate the SES health gap.
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INTRODUCTION
Social inequality continues to grow in the USA as the income gap
between the richest and the poorest Americans expands. In
addition to political, economic, and social concerns related to
rising economic inequality, there is also growing evidence linking
income inequality to health disparities1. Widespread and notable
disparities in health outcomes exist, in part, due to differences in
socioeconomic status (SES)2. SES is shaped by both neighborhood
context and individual level factors. Numerous individual-level
factors link SES to adverse health outcomes including access to
health care and personal behaviors3–5. However, neighborhood
and health research has found that neighborhood-level SES can
also predict health, even after accounting for these individual-level
factors6. We know that individual SES is highly correlated with
adverse environmental conditions, quality of housing, and lower
social environment7. It is also now known that the accumulation of
these factors, which results in low SES, also contributes to
biological changes that are embedded across the life course,
including altered composition and function of the human gut
microbiome (HGM)8,9.
The HGM is the collection of all the microorganisms that

regularly inhabits the human gastrointestinal tract. This community
provides vital functions related to human health and disease10.
Individuals have unique microbiomes, and their composition is
determined by host genetics, diet, geographic location, environ-
mental exposures, antibiotic usage, medical history, and overall
activity11–13. Large changes to the “normal” microbiome can lead
to a state of dysbiosis, commonly defined as an imbalance in the
beneficial and non-beneficial organisms within the gut and is often
associated with unfavorable conditions of health14. The develop-
ment of current sequencing technologies has allowed researchers

to discover and describe how changes in the HGM are associated
with many health conditions including obesity, diabetes, inflam-
matory bowel disease, cancer, heart conditions, and neurological
disorders15–17. Importantly, these chronic diseases have also been
linked to SES, and although SES does not directly impact health
status, it is a useful indicator of exposures18–20 that may lead to
more severe deleterious health outcomes21.
SES in this context can shape individual-level access to resources

including consistent access to nutrient-rich food. Food insecurity in
the United States is a persistent and ongoing health crisis that is
often exacerbated by changing and unstable economic conditions.
In Wisconsin, food insecurity is prevalent across both urban and
rural communities22. Food insecurity has also been linked with
numerous adverse outcomes including cardiovascular disease and
more recently, changes in gut microbial composition23.
Among the most acute changes that can occur as a result of

altered gut microbial composition is antibiotic resistance.
Recently, the WHO identified antibiotic resistance as a global
health crisis. Antibiotic-resistant organisms make recovery from
acute infections problematic and are most common among
individuals who regularly seek health care, are older, or have a
high prevalence of chronic health conditions such as obesity and
diabetes24. The presence of antibiotic resistance, in turn, makes
individuals more vulnerable to uncontrolled infection and
mortality. More recently, the human gut microbiome and
environmental determinants have also been shown to play an
important role in driving antibiotic resistance25.
Previous work examining neighborhood-level socioeconomic

conditions and the HGM26–28 revealed that numerous associations
exist, but they did not identify how the interconnections of these
factors might be influencing the observed associations.

1Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA. 2Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
3Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA. 4Department of Epidemiology, University of Iowa
College of Public Health, Iowa City, IA, USA. 5Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-
Madison, Madison, WI, USA. 6Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
7Environmental and Occupational Health Sciences, School of Public Health, University of Chicago Illinois, IL, Chicago, USA. ✉email: gsuen@wisc.edu; kmalecki@uic.edu

www.nature.com/npjbiofilms

Published in partnership with Nanyang Technological University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-023-00430-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-023-00430-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-023-00430-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-023-00430-3&domain=pdf
http://orcid.org/0000-0002-0701-3205
http://orcid.org/0000-0002-0701-3205
http://orcid.org/0000-0002-0701-3205
http://orcid.org/0000-0002-0701-3205
http://orcid.org/0000-0002-0701-3205
http://orcid.org/0000-0003-3843-0615
http://orcid.org/0000-0003-3843-0615
http://orcid.org/0000-0003-3843-0615
http://orcid.org/0000-0003-3843-0615
http://orcid.org/0000-0003-3843-0615
http://orcid.org/0000-0002-6170-711X
http://orcid.org/0000-0002-6170-711X
http://orcid.org/0000-0002-6170-711X
http://orcid.org/0000-0002-6170-711X
http://orcid.org/0000-0002-6170-711X
https://doi.org/10.1038/s41522-023-00430-3
mailto:gsuen@wisc.edu
mailto:kmalecki@uic.edu
www.nature.com/npjbiofilms


Furthermore, there is also a need to better understand the health
implications of gut dysbiosis, with a primary concern being the
prevalence of antibiotic-resistant bacteria29,30. Here, we address
these knowledge gaps by leveraging the Survey of the Health of
Wisconsin31 and its ancillary Wisconsin Microbiome Study32, which
collects epidemiologic data and biological samples throughout
urban and rural locations across the state of Wisconsin, USA with
the goal of evaluating the overall health of the population. We
hypothesize that individuals residing in lower-resourced commu-
nities will have different HGM compositions and that these
associations are driven by both community and individual-level
differences in SES, HGM composition and MDRO prevalence. We
test this by developing analyses that examine: (1) the association
between neighborhood-level SES and individual HGM composi-
tion; (2) the possible mediators of that association; and (3) the
potential relationship between neighborhood-level economic
hardship, HGM composition, and antibiotic-resistant bacteria
colonization as a downstream health outcome.

RESULTS
Study population and microbiome analysis
Descriptive analytics for the main variables are shown in Table 1
and a list of all variables included in our analysis is presented in

Supplementary Table 1. A total of 721 individuals had complete
information for both EHI and the microbiome and were included
in the study. The average age for all groups was similar, ranging in
the 50s, with females recruited more than males (Table 1). For the
50th percentile EHI groups, the annual income average was
$57,000 for the high EHI and $78,000 for the low EHI groups. For
the 85th percentile groups, the average was $42,000 for the high
EHI and $72,000 for the low EHI groups.
For our microbiome analysis, sequencing yielded a total of

26,811,444 reads, with an average of 36,508 ± 1094 reads per
sample that clustered into 6606 different amplicon sequence
variants (ASVs) classified to 395 genera, 134 families, and 19 phyla.
The distribution of the taxonomy at the phylum level was similar
across all samples and was dominated by Firmicutes, Bacteroidota,
Actinobacteriota, Verrucomicrobia, and Proteobacteria.
A total of 204 individuals had at least one isolated MDRO. Positive

cultures for Methicillin-resistant S. aureus were found in 21 individuals,
129 were positive for fluoroquinolone-resistant Gram-negative bacilli,
36 for vancomycin-resistant Enterococci and 43 for C. difficile.

Neighborhood EHI is associated with changes in the gut
microbiome composition
As the first step in our analysis, we modeled alpha diversity
against neighborhood SES score and EHI. Within the study sample,

Table 1. Distribution of demographics and potential covariates by EHI grouping from the microbiome study sample of the Survey of the Health of
Wisconsin, 2016–2017.

50th percentile EHI 85th percentile EHI

High EHI (N= 364) Low EHI (N= 358) High EHI (N= 106) Low EHI (N= 616)

EHI score

mean (sd) 3276.59 ± 653.31 1204.44 ± 665.68 4116.96 ± 195.82 1927.71 ± 1028.56

Age

mean (sd) 53.95 ± 16.08 55.67 ± 16.23 50.05 ± 15.00 55.62 ± 16.23

Gender

F 213 (59) 203 (57) 67 (63) 349 (57)

M 151 (41) 155 (43) 39 (37) 267 (43)

BMI

mean (sd) 31.90 ± 8.05 29.58 ± 7.07 31.58 ± 8.37 30.61 ± 7.53

Food insecurity

Yes 115 (32) 52 (15) 54 (51) 113 (18)

No 245 (67) 300 (84) 51 (48) 494 (80)

Missing 4 (1) 6 (2) 1 (1) 9 (1)

Antibiotic usage

Yes 116 (32) 120 (34) 38 (36) 198 (32)

No 224 (62) 208 (58) 63 (59) 369 (60)

Missing 24 (7) 30 (8) 5 (5) 49 (8)

HH median income

mean (sd) 56,990.08 ± 45,073.20 77,934.47 ± 52,615.93 42,139.42 ± 37,112.76 71,816.67 ± 50,726.69

College completed

College complete 92 (25) 171 (48) 23 (22) 240 (39)

College incomplete 271 (75) 187 (52) 83 (78) 375 (61)

Added sugar intake (cups eq)

mean (sd) 21.30 ± 33.19 12.75 ± 12.30 33.15 ± 50.26 14.12 ± 15.92

Medicaid insurance

Yes 55 (15) 27 (8) 24 (23) 58 (9)

No 181 (50) 210 (59) 48 (45) 343 (56)

Missing 128 (35) 121 (34) 34 (32) 215 (35)

aNumbers inside brackets correspond to percentages unless stated otherwise.
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the mean, median and range in EHI scores were 2248, 2311 and 26
to 4434 respectively. The observed richness, Shannon’s, and
Inverse Simpson’s diversity metrics were all inversely proportional
to the overall continuous EHI score (Supplementary Fig. 1). We
decided to focus on Inverse Simpson to model our data as it is a
robust measure of diversity that considers both bacterial richness
and evenness. Fig. 1a shows the association of diversity to EHI
dichotomized at the 50th and 85th percentiles. In both
comparisons, corroborating our findings in the continuous EHI
score model, individuals in the higher score category had
significantly less diverse gut microbiomes (50th and 85th
percentile EHI, P < 0.001).
We then evaluated changes in the taxonomic abundance

between groups using ANCOM-BC to model the abundance of
each genus identified in the samples. Fig. 1b displays taxa that
were considered differentially abundant (adjusted p < 0.1 cor-
rected with FDR) in both EHI groupings. When considering the
50th percentile EHI group, none of the genera showed a
difference between groups. In contrast, the 85th percentile EHI
comparison revealed 22 genera that were differentially abundant
among the two groups, suggesting that differences at the
taxonomy level are observed only in the most vulnerable sub-
population. This finding was confirmed using the Bray-Curtis
metric via PCoA plots (Supplementary Fig. 2). To corroborate the
results identified by ANCOM-BC, the abundances of the 22 taxa
were modeled with zero-inflated Poisson distribution (Supple-
mentary Table 2) testing for both abundance (as counts) and
presence/absence (zero inflation model). From both analyses, 6
genera were significantly more abundant in the 85th percentile
EHI: 2 in the Actinobacteria and 4 in the Firmicutes. In contrast, 16

genera were more abundant in the Low EHI group: 3 in the
Actinobacteria, 12 from the Firmicutes, and 1 from the Verruco-
microbia. Out of the differentially abundant taxa, only two genera
had a relative abundance >3%: Bifidobacterium (3.4% below 85th
percentile/ 5.9% 85th percentile EHI) and Akkermansia (3.7%
below 85th percentile / 1.9% 85th percentile EHI).

Food insecurity mediates a decrease in alpha diversity in high-
EHI individuals
Having established an association between high EHI and low
diversity, we evaluated the association with other variables that
may be intermediate. A total of 64 variables were tested, divided
into 9 broad categories (Fig. 2). Of these, food insecurity was the
one most associated with changes in diversity, with more than half
being significantly associated with both lower diversity and higher
EHI (Fig. 3). Moreover, a high household income, living in a rural
community, and older age are associated with higher diversity and
were the only variables in the demographic category that were
significant. The use of antibiotics significantly decrease diversity,
as expected, but was not associated with EHI. BMI and body
adiposity index were the only health metrics associated with a
decrease in diversity and higher EHI. Finally, none of the self-
reported diseases were significantly associated with changes in
diversity.
We then decided to build an adjusted model with all the variables

that were associated with both EHI and diversity plus antibiotic
usage. The final adjusted model, including EHI block, antibiotic
usage, food insecurity, and BMI is shown in Table 2 for both
grouping categories. Furthermore, mediation analysis was

Fig. 1 Neighborhood socioeconomic status is associated with changes in gut microbiome composition. a Box plots showing the
comparison of the alpha diversity scores among gut microbiotas grouped by EHI scores (50th percentile EHI compares the top 50% (High EHI)
against the bottom 50% of the population (Low EHI); 85th percentile EHI compares the top 15% (High EHI) against the bottom 85% of the
population (Low EHI)). The notch shows the median of each group and significant p values for the simple linear models of EHI with the Inverse
Simpson’s index are shown for each group. b ANCOM-BC log-linear model to determine genera that are differentially abundant according to
EHI grouping. The y axis shows the negative logarithm of the adjusted p value while the x axis shows the correlation coefficient with the low
EHI group as reference. Every point corresponds to a different genus and those above the red line had a p value adjusted for multiple
comparisons (<0.1). Blue dots represent genera that are more abundant in the high EHI group and yellow points are more abundant in the low
EHI group.
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performed for both groupings of EHI to evaluate the variables
identified as potential mediators in the adjusted model (Supple-
mentary Table 3). For models evaluating EHI dichotomized at the
50th percentile, both food insecurity and BMI were significant
mediators when only antibiotic usage was included as a covariate

(P < 0.05, and significant bootstrap values). However, when other
variables (BMI or food insecurity) were included, the indirect effect
explained by the mediator decreased (BMI: p= 0.10, food insecurity:
p= 0.058). For the 85th percentile EHI groups, food insecurity had a
larger indirect effect (50th= 0.32 vs 85th= 0.56; P > 0.05), but BMI

Fig. 2 Estimated changes in alpha diversity by potential intermediate variables. The x-axis shows the 95% confidence intervals of each
regression coefficient calculated with inverse Simpson as the dependent variable . The y-axis shows all possible intermediate variables
grouped by categories. Blue lines indicate that the p value for the regression was <0.05 while red lines indicate a p value > 0.05. Lines with a
triangle indicate variables with a statistically significant p regression with EHI as the dependent variable, whereas circles indicate not
significant regressions.

Fig. 3 Association of MDRO prevalence with both EHI and alpha diversity. Violin plots showing the inverse Simpson’s diversity index and
EHI scores based on the detection of MDRO isolates (yes vs no). Beta coefficients and p values of the linear regression are shown for each plot.
The linear regressions were adjusted for antibiotic intake in each case.
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was not a significant mediator, as the indirect effect shrank to zero
when both antibiotics and food insecurity were included as
covariates. These results suggest that mediation by BMI does not
apply to the most vulnerable population, and food insecurity
explains most of the mediation captured by the model.

The prevalence of MDROs is linked to both low alpha diversity
and high EHI
We used the prevalence of MDRO isolates as an empirical indicator
of participant health, rather than using other health outcomes that
relied on self-reported data. We plotted the total number of MDRO
isolates for all body sites with the HGM alpha diversity and the EHI
score. Moreover, we modeled this association and adjusted it for
antibiotic usage. As shown in Fig. 3, the prevalence of MDROs was
negatively associated with HGM alpha diversity, indicating that
participants were more likely to be colonized by MDROs if they
had a less diverse gut microbiome. The same pattern was
observed when considering the number of MDRO isolates per
person, as shown in Supplementary Fig. 2A. Moreover, higher EHI
was also associated with MDRO colonization (Fig. 3) and with a
greater number of MDROs (Supplementary Fig. 2a). Finally, when
we analyzed the number of MDRO isolates by EHI group,
individuals in the 85th percentile were found to have a
significantly higher number of isolates (Supplementary Fig. 2b).
Hence, our MDRO data suggests that the more economic hardship
experienced in a person’s neighborhood, the higher the
probability of hosting one or more of these pathogens.

DISCUSSION
In this study, we provide evidence that individuals in low SES
neighborhoods have lower gut microbiome diversity, which may
play a role in shaping numerous chronic conditions and have an
important relationship with antibiotic resistance. While SES, food
insecurity, BMI and MDROs have been associated with changes in
the gut microbiome in previous studies2,33,34, to our knowledge,
this is the first report that provides evidence of how the
interactions of numerous social and economic factors combine
to influence gut microbial composition and diversity.
Neighborhood contextual socio-economic status is associated

with higher levels of individual hardship and we sought to
understand how these various determinants of SES shape gut
health and downstream impacts. This idea has gained traction, as
recent reviews suggest that social status, as part of the exposome,
can lead to differential composition of the gut microbiome30.

Among the numerous individual level metrics examined, including
income, education, self-reported diseases, insurance information
and diet, the most significant changes in gut microbial composi-
tion on an individual level were associated with food insecurity.
Additionally, the results of our work using a neighborhood score
were supported by other individual variables, indicating that other
members of the community outside our cohort might be at risk. In
a recent review, Robinson and colleagues considered the human
microbiome in the context of social inequity35 and identified 20
important factors they believe contribute to social inequality,
including the effect of food insecurity, on the prevalence of
infectious disease. Our findings provide the first empirical
evidence to support this assertion, highlighting the importance
of food insecurity on human health at a community level.
In general, most microbiome-related diseases are characterized

by a decrease in the overall number and distribution of microbes
in the gut36, while a reduction in diversity may be indicative of
increased disease risk37,38. Thus, our finding of a negative
association between SES and diversity, reinforced by our MDRO
data, supports the hypothesis that economic hardship could have
a deleterious effect on the health of the microbiome, and may
result in increased disease risk. Similarly, experimental evidence
demonstrating that certain groups of gut bacteria can be
beneficial to the host has been reported. For example, members
of the genus Akkermansia, which we found to be abundant in the
high SES group, promote mucus production, decrease inflamma-
tion and are associated with a reduced risk of obesity, Type 2
diabetes, IBD, and different types of cancer in mice39,40. Our
finding that members of the families Lachnospiraceae (Eubacter-
ium and Frisingicoccus) and Ruminococcaceae decreased in the
high EHI groups may also be beneficial as these bacteria
are known fiber degraders important in the modulation of the
immune system and enhance function of enterocytes and the gut
barrier36, which could be explained by the high added-sugar, low
fiber diets that low SES (high EHI) families are subjected to in the
USA. Finally, the genus Bifidobacterium was found to be more
abundant in high EHI populations, despite being considered a
beneficial microbe and a known probiotic41. Members of the
Bifidobacterium are one of the first colonizers in the gut at birth42

and we hypothesize that our observation is a consequence of
Bifidobacterium colonizing a less diverse gut microbiome, similar
to what is encountered at birth, as described in other studies43.
Further research is needed to elucidate the mechanism of
association between these microbes, SES, and their impact on
downstream health.
One of the main challenges in understanding the relationship

between SES and the HGM is in identifying specific exposure
mechanisms that underpin these associations. Access to adequate
amounts of food is a persistent problem in the USA, where 11% of
households are food insecure34. Food insecurity, food deprivation,
and malnutrition are deleterious to both the human gut and the
HGM44 by disrupting adequate gut barrier function, which can
lead to dysbiosis of the HGM and a higher prevalence of disease
and pathogen colonization. Beyond food deprivation, food
insecurity also limits access to nutrient-rich food. High-fat and
low-fiber diets are common among individuals with low SES in
high-income countries where they are encouraged to purchase
and consume foods that have the highest calories per dollar19.
Even in food-insecure populations, nutrient-rich diets seem to
influence the gut microbiome, indicating that both food
availability and quality are potential modifiers of the intestinal
microbial community23. Excessive amounts of refined sugars and
fat found in these calorie-dense foods can lead to additional
dysfunction in gut enterocytes and increase the risk for
cardiovascular disease45. This type of diet can also lead to fat
accumulation and obesity, suggesting a possible explanation for
BMI as a mediator, although we note that BMI was not a significant
mediator in our cohort. In high-income countries, obesity is

Table 2. Adjusted model for EHI association with alpha diversity.

50th Percentile EHI 85th Percentile EHI

Estimate P value Estimate P value

EHI score

High EHI Reference

Low EHI 1.29 0.044 2.28 0.013

BMI

Continous −0.084 0.043 −0.095 0.023

Food insecurity

Yes Reference

No 1.60 0.037 1.34 0.086

Antibiotic usage

Yes −1.80 0.0081 −1.74 0.010

No Reference

Missing −2.76 0.034 −2.78 0.032
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associated with low SES, but the opposite is true for low-income
countries where obesity is associated with high SES46. A study of
SES and the HGM in a Chinese cohort found associations between
high SES, increased BMI and a higher prevalence of metabolic
syndrome28. Thus, the mediation observed with BMI is likely
dependent on geographic location, diet, and cultural differences,
rather than food insecurity, which is widely associated with
low SES.
We were also able to leverage MDRO prevalence to identify an

association between SES and altered microbiome composition.
MDROs are usually found in hospital settings where there is
constant use of antibiotics. However, they are now appearing in
rural and urban settings outside of healthcare facilities47,48.
Colonization by MDROs does not equate to disease, but it does
increase risk of infection49 and dissemination in high EHI
communities due to low SES and crowded housing50. Also, they
have the potential to provoke an active infection in the event that
an individual’s immune system is depressed by a secondary
disease or malnutrition, which is likely more prevalent in high EHI
neighborhoods51. Hosting a diverse microbiome is known to
provide protection against foreign and potentially pathogenic
microbes, including MDROs. The higher prevalence of MDROs in
individuals with low SES may be due to a lack of competitive
inhibition by a diverse microbiome52. Additionally, chronic stress,
inflammation, and poor nutrition, which are common in indivi-
duals with low SES, may provide additional pathways for MDRO
colonization in EHI communities.
Although our results provide new insights into the HGM and

MDRO colonization in association with both community and
individual level SES, we acknowledge that our study has
limitations. For example, our study recorded the use of antibiotics
as a binary outcome, and we recognize that the dose, frequency,
and type of antibiotic treatment could influence our results as
these factors are known to have a direct impact on the gut
microbiome. However, given the goals of this study, we decided to
consider broad and widespread effects within this population. We
further note that considering only those individuals who provided
specific antibiotic usage data would have greatly reduced our
sample size. Moreover, although cross-sectional studies allow only
for the identification of associations, our study incorporates a
wealth of epidemiological data, which is difficult to collect in
a time series, given the challenges in gathering a large cohort for a
SES-controlled experiment. Finally, we note that the associations
observed in our study are based on 16S rRNA amplicon
sequencing, which only allowed us to evaluate bacterial commu-
nity composition. The use of this technique does not allow for
strain-level information of the microbes in the gut or their
function. Alternative methods such as shotgun metagenomics
could be used in the future to gain insights into the functional
potential of the microbiome when exposed to different levels
of EHI.
In this study, we provide evidence for the association of

community-SES and changes in the HGM. We found that residing
in low SES neighborhoods appears to negatively impact the
diversity and composition of an individual’s gut microbiome,
which could lead to lower competition, decreases in the
abundance of commensals, and increase the risk for pathogen
invasion. Individual factors including food insecurity and BMI, both
support and provide possible explanations for this association.
With the goal of achieving a universal healthy microbiome, we
expect this work to not only provide a framework for future
interventions but underscore the importance of further population
studies with different cultural and geographic contexts to support
our findings.

METHODS
Study design and population
This study utilized extant data from the Survey of the Health of
Wisconsin (SHOW)31 and its ancillary study, the Wisconsin
Microbiome Study (WMS)32. SHOW is a statewide study that
began in 2008 by enrolling participants across Wisconsin using
census blocks. The main goal of the SHOW is to collect health
exposure and outcome data addressing all major determinants of
health, including healthcare access, social determinants, lifestyle,
and behavioral factors. In 2016, the SHOW survey included
standard data collection coupled with swabs of the skin, nose, and
mouth and samples of stool and saliva as part of the WMS. A full
description of the SHOW inclusion/exclusion criteria, collected
data, as well as other ancillary projects such as the WMS, can be
obtained at: https://show.wisc.edu. For this project, we included
every individual age 18 or older that had completed the SHOW
data collection and had stool samples available from the 2016 and
2017 collection periods.

Inclusion and ethics statement
The studies involving human participants were reviewed and
approved by the University of Wisconsin-Madison Institutional
Review Board. The patients/participants provided their written
informed consent to participate in this study.

Biospecimen availability
All biospecimens associated with this study are available through
the State Health of Wisconsin (SHOW) statewide-representative
cohort at: https://show.wisc.edu/services/biospecimen/.

Main exposure and covariates
To evaluate SES, we used the Economic Hardship Index (EHI) as a
proxy for neighborhood SES. The EHI was developed by the
Rockefeller Institute of Government and is derived from data from
the 2000 United States census53,54. It is a block group level score
that includes six indicators representing a neighborhood’s social
and economic features. High EHI scores represent more hardship
or burden in a neighborhood and correspond to lower SES.
Indicators include: crowded housing (percentage of occupied
housing with more than one person per room), poverty status
(percentage of persons living below 100% federal poverty level),
unemployment (percentage of persons over the age of 16 who are
unemployed), education (percentage of persons over the age of
25 without a high school education), dependency (percentage of
the population under 18 or over 64 years of age), and individual
annual income (tertiles of < $20,000; $20,000–44900; and >
$45000)55. To create the EHI composite scores, each indicator was
characterized and summed. Census block groups within entire
state of Wisconsin were ranked according to the counts in each
category and assigned an overall score. Each SHOW participant
household was geocoded to a street address and linked to their
census block group level EHI score as a continuous metric.
To evaluate possible individual SES factors that may serve as

confounders or meditating variables, we included additional
information obtained from SHOW questionnaires and personal
interview56. In summary, we included relevant demographic
information regarding gender and age at the time of consent
and the level of education and household income. Other health
information, such as the use of any antibiotic treatments in the last
year, self-reported diseases, insurance, and measures of body
mass index were also included. Finally, we included diet-related
data such as consumption of different food groups based on the
food patters equivalents database57 and information on food
security. Table 1 provides a detailed description of all variables
included in this study.
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Microbiota analysis
A detailed description of sample collection, DNA extraction,
and amplification has already been described elsewhere32.
Briefly, DNA was extracted using phenol-chloroform and the V4
region of the 16S rRNA gene was amplified via polymerase
chain reaction using V4-specific bacterial primer (515F:
GTGCCAGCMGCCGCGGTAA and 806R: GGACTACHVGGGTWTC-
TAAT) followed by sequencing on an Illumina MiSeq at the
University of Wisconsin Biotechnology Center. Negative con-
trols were included during extraction and amplification and
were sequenced.
The resulting raw sequences from the sequencer were

processed using the software package QIIME 2 v2021.458.
Demultiplexed raw sequences were imported using the Casava
1.8 format and denoised using DADA2 v1.18.059 (via qiime-dada2
plugin) to generate a feature table containing amplicon sequence
variants (ASV). ASVs were aligned with MAFFT v7.475 and used to
construct a phylogenetic tree using FastTree v2.1.160. Taxonomy
was assigned using the classify‐sklearn naive Bayes taxonomy
classifier v0.24.161 (via qiime-feature classifier plugin) and the
Silva_138 database for 16S rRNA genes62. Both feature and
taxonomy tables, together with the phylogenetic tree, were
imported into R as a phyloseq object63 for further analysis.
Contaminants were eliminated based on the prevalence of ASVs in
the negative controls using the package Decontam64 and by
removing all ASVs classified as belonging to Eukaryotic, chlor-
oplast, mitochondrial or unassigned taxa. Samples with less than
5000 reads were removed and samples were subsampled to an
even depth of 8396. Alpha diversity metrics, including Shannon’s
diversity65, inverse Simpson’s66, and total observed ASVs were
calculated using phyloseq.

Multidrug-resistant organism (MDRO) prevalence
Detailed methods for the isolation of (MDROs) have been
published elsewhere32. Briefly, swabs, saliva, and stool samples
were screened for the presence of 4 multidrug-resistant
pathogens: methicillin-resistant Staphylococcus aureus,
vancomycin-resistant enterococci, Clostridioides difficile and
fluoroquinolone-resistant gram-negative bacilli. Subsamples
from each sample were inoculated on selective media with
antibiotics and checked for growth. Matching colonies were
subsampled onto blood agar plates for confirmatory identifica-
tion using biochemistry assays and further verified by sequen-
cing the 16S rRNA gene. Further confirmation for antibiotic-
resistant phenotypes was performed using Kirby- Bauer disc
diffusion and E test strips.

Statistical analysis
To facilitate the visualization and analysis of the data, individuals
were clustered into blocks based on their EHI scores using two
methods: (1) dichotomized at the median EHI, and (2) dichot-
omized at the 85th percentile EHI. The first method was used to
evaluate the effect of residing in neighborhoods within the top
half of the economic hardship index and the second was used to
investigate a subset of the population residing in neighborhoods
with exceptionally low SES. Simple linear regressions were
calculated for every variable, included against the inverse
Simpson’s index to evaluate associations with alpha diversity.
Variables that showed a significant association with changes in
alpha diversity were also modeled with EHI scores. Variables that
showed associations with both SES and EHI were included to build
an adjusted model together with antibiotic usage. To obtain the
most parsimonious model, a reverse selection was used to remove
covariates with p value > 0.1. To evaluate mediation, the simple
mediation extension in the R package MeMoBootR67 was used.
Both Sobel and permutation tests were performed to evaluate the

significance of the results obtained in every mediation. Mediation
analyses were adjusted for the same variables as the final linear
regression models. Differential taxonomic abundance was
obtained using the ANCOM-BC package in R, using default
parameters for cross-sectional data68. Identified taxa were
confirmed with Zero-Inflated Poisson modeling adjusted for
antibiotic use69.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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