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Investigating the oral microbiome in retrospective and
prospective cases of prostate, colon, and breast cancer
Jacob T. Nearing 1✉, Vanessa DeClercq 2 and Morgan G. I. Langille1,2

The human microbiome has been proposed as a potentially useful biomarker for several cancers. To examine this, we made use of
salivary samples from the Atlantic Partnership for Tomorrow’s Health (PATH) project and Alberta’s Tomorrow Project (ATP). Sample
selection was divided into both a retrospective and prospective case control design examining prostate, breast, and colon cancer.
In total 89 retrospective and 260 prospective cancer cases were matched to non-cancer controls and saliva samples were
sequenced using 16S rRNA gene sequencing. We found no significant differences in alpha diversity. All beta diversity measures
were insignificant except for unweighted UniFrac profiles in retrospective breast cancer cases and weighted UniFrac, Bray-Curtis
and Robust Atchinson’s distances in colon cancer after testing with age and sex adjusted MiRKAT models. Differential abundance
(DA) analysis showed several taxa that were associated with previous cancer in all three groupings. Only one genus (Clostridia UCG-
014) in breast cancer and one ASV (Fusobacterium periodonticum) in colon cancer was identified by more than one DA tool. In
prospective cases three ASVs were associated with colon cancer, one ASV with breast cancer, and one ASV with prostate cancer.
Random Forest classification showed low levels of signal in both study designs in breast and prostate cancer. Contrastingly, colon
cancer did show signal in our retrospective analysis (AUC: 0.737) and in one of two prospective cohorts (AUC: 0.717). Our results
indicate that it is unlikely that reliable microbial oral biomarkers for breast and prostate cancer exist.. However, further research into
the oral microbiome and colon cancer could be fruitful.

npj Biofilms and Microbiomes            (2023) 9:23 ; https://doi.org/10.1038/s41522-023-00391-7

INTRODUCTION
The oral microbiome is a highly diverse microbial community that
is shaped by several different dietary, anthropometric and lifestyle
choices1,2. Recent works have shown that this community of
microbes plays important roles in both oral and systemic health,
suggesting that it may harbor potential biomarkers of disease3.
However, research on the relation of the oral microbiome and
some of the most common cancers such as prostate, colon, and
breast cancer are limited due to their focus on the gut microbiota
or organ of interest. However, we believe that saliva could be an
ideal sample type for microbial biomarker detection in these
cancers due to its ease of collection, storage, and transportation.
Moreover, previous works suggest that the oral microbiome may
be associated with various cancers such an pancreatic and
colon4,5.
Of these cancers, prostate cancer has arguably received the

least amount of attention within the microbiome field. Indeed,
studies on the microbial communities of healthy prostate tissue
have given conflicting results, with some indicating the presence
of bacteria and others finding no evidence of bacterial inhabi-
tants6. However, in the context of prostate cancer, multiple works
have demonstrated evidence for bacterial communities in tumors
and benign tissue7–9. Despite these findings the association
between disease and specific bacteria within prostate tissue
remains inconsistent. Although, ultimately these studies have
point toward similar communities being detected in tumors and
benign tissue7–9.
Several smaller studies have examined the relationship between

the gut microbiome and prostate cancer with mixed results. Two
studies by Liss et al., and Golombos et al., found higher levels of
Bacteroidetes in individuals with prostate cancer indicating a

potential linkage between the disease and this broad taxonomic
group10,11. Furthermore, work by Matsushita et al., in Japanese
men with high-Gleason prostate cancer linked an enrichment of
short chain fatty acid producing bacteria in the gut and cancer
status12. However, other works by Alanee et al. and Katz et al.,
have found no significant differences between individuals with
and without prostate cancer13,14 leading to mixed results on the
exact relation between prostate cancer and gut microbiome
composition.
To the best of our knowledge only one study has examined the

potential linkage between the oral microbiome and prostate
cancer, despite previous works linking periodontitis with the
likelihood of prostate cancer development15,16. Indeed work by
Estemalik et al., showed evidence of the same bacterial species
being found within both the oral cavity and prostatic secretions of
70% of patients (n= 24) with chronic prostatitis or benign
prostatic hyperplasia17. Highlighting the potential for associations
between the oral microbiome and prostate cancer.
Studies on breast cancer and the human microbiome have

shown variable results with some studies suggesting associations
between disease status and microbial community composition
within the gut, breast tissue, and urine18. Indeed, early work on
the gut microbiota and breast cancer suggested the presence of
an “estrobolome”19,20 which considers the potential for microbial
community members to process estrogen related metabolites.
From these works it has been suggested that the estrobolome
may play a role in the risk of breast cancer development through
the control of recirculating estrogen levels19,21,22.
Investigation into this hypothesis through examining the

relationship between the gut microbiome and breast cancer
status has shown varying results. For example, work by Goedert
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et al., found reduced microbial diversity within the gut of post-
menopausal breast cancer patients, however, work in 2018 by Zhu
et al., reported significant findings in the opposite direction23,24.
Similarly, several gut microbes have been associated with breast
cancer status depending on study and menopausal status23–27.
However, due to the high variability of results between studies
and the lack of non-sequenced based validation, no strong
conclusions have been made on the role of any specific gut taxon
and breast cancer risk.
In addition to the gut, several studies have examined breast

cancer status and microbial communities within and on breast
tissue and urine. Although, these studies just like the gut, have
also shown variable results indicating the need for further work
within the field18. Interestingly, in the case of the oral microbiome,
despite work showing that breast cancer is associated with
periodontal disease28 to the best of our knowledge only two
published studies have examined its relation with cancer status.
Early work by Wang et al., examining oral rinses from individuals in
the United States found no differences in community composition
or specific taxa29. However, recent work by Wu et al., did show
differences in both microbial diversity and specific taxon within
salivary samples from the Ghana Breast Health Study30. These
differing results highlight the need for further investigation into
the oral microbiome of breast cancer patients.
Finally, one of the most well studied cancers in the context of

the human microbiome is colon cancer. Numerous studies have
been conducted on the relationship between colon cancer and
the gut microbiome showing significant differences in community
composition31. Similarly work on the oral microbiome and colon
cancer has also shown that shifts in community composition are
associated with disease (Komiya et al.,32; Y. Wang et al.,33; Y. Yang
et al.,34, Flemer et al.,4). For example, Flemer et al., found that oral
microbiome composition could classify individuals with or without
colon cancer with an area under the receiver operator curve
(AUROC) of 0.914. Furthermore, their work along with others has
also shown that many taxa commonly attributed to the oral cavity
are enriched in the gut microbiome of colon cancer patients4,35.
However, despite the work presented above there still remains

large knowledge gaps in our understanding of the oral micro-
biome’s applicability to population screening for prostate, breast,
and colon cancer. For this reason, we were interested in
investigating these three cancers at a population level in both a
case-control retrospective and prospective study design. To do this
we leveraged two different population cohorts the Atlantic Partner-
ship for Tomorrow’s Health (PATH), and Alberta’s Tomorrow Project
(ATP). From these two cohorts we selected saliva samples from both
retrospective cases and prospective cases of prostate, breast, and
colon cancer. This unique study design allowed us to investigate the
relationship of these cancers with the oral microbiome both before
and after diagnosis allowing us to investigate whether associated
exist both before and after diagnosis.

RESULTS
Investigation of the oral microbiome in retrospective cases of
breast, prostate, and colon cancer
First, oral microbiome diversity trends between case and control
samples were examined within retrospective cases of breast,
prostate, and colon cancer within the Atlantic PATH cohort
(Table 1). In total we examined four different alpha diversity
metrics: richness, Shannon diversity, Evenness, and Faith’s
Phylogenetic Diversity while controlling for DNA extraction batch.
Investigation into these four metrics did not show any significant
differences in alpha diversity between case and non-cancer
controls in breast, prostate, or colon cancer (p > 0.05) (Fig. 1,
Supplementary Fig. 1, Table 2). Further adjustment of all four
alpha diversity models with either partial adjusted (age and sex),

or full adjusted (sex, height, waist-hip ratio, and daily vegetable
servings) further showed no significant associations (p > 0.05)
(Table 2). Subsequently, we also compared four different beta
diversity metrics, three that consider weighted abundances;
weighted UniFrac, Bray-Curtis dissimilarity, robust Aitchison’s
distance, and one that considers presence/absence; unweighted
UniFrac. When comparing cases of each cancer type to matched
non-cancer controls, we found no significant differences (p > 0.05)
in any weighted beta diversity metrics using unadjusted
PERMANOVA analysis or a microbiome regression-based kernel
association test (MiRKAT) (p > 0.05) (Fig. 1, Supplementary Fig. 2,
Table 3). However, after partially adjusting MiRKAT models for age
and sex we did find significant differences in weighted UniFrac
(p= 0.027), Bray-Curtis dissimilarity (p= 0.007) and Robust Atch-
inson’s distance (0.028) between colon cancer cases and non-
cancer matched controls (Table 2). Moreover, when comparing
unweighted Unifrac distances we did find a significant difference
between breast cancer cases and controls in unadjusted
(PERMANOVA: r2= 0.007, p= 0.011) (MiRKAT: p= 0.014) as well
as partially adjusted and fully adjusted models. (Supplementary
Fig. 2A, Table 3). This breast cancer association remained
significant for PERMANOVA models after partial (p= 0.018) and
full adjustment (p= 0.014) but went above our nominal p value
when tested with MiRKAT models (partial p= 0.119; full p= 0.099).
To investigate whether we were missing an effect of cancer

status due to the passage of time since diagnosis, we correlated
each alpha diversity metric to this variable (Supplementary Fig. 3).
We found no significant relationships except for colon cancer
which showed a positive association between time passed since
diagnosis and alpha diversity (rho= 0.62, p= 0.04). We also re-
examined samples that were within 6 years of diagnosis to see
whether more significant microbiome effects were present closer
to cancer diagnosis. Examining these samples showed only minor
differences to our original analysis. In this time filter analysis, we
found a significant decrease in richness in colon cancer samples
compared to matched controls (p= 0.012) that remained sig-
nificant after partial or full model adjustment (p= 0.024,
p= 0.033) (Supplementary Fig. 4). We additionally found a
significant association between breast cancer cases and non-
cancer matched controls in robust Aitchison’s distance (p= 0.024)
which remained significant in partially adjusted models (age and
sex) (p= 0.024).
After comprehensively examining samples for differences in

diversity we decided to conduct DA analysis to identify genera or
ASVs that might be associated with having previously been
diagnosed with cancer. Across all cancers examined we found a
total of 21 genera and 29 ASV’s associated with one or more
cancer diagnoses (Fig. 2, Supplementary Fig. 5). In breast cancer
we found one genus Clostridia UCG-014 that was detected as
being significantly lower in relative abundance in breast cancer
samples by two separate DA tools (Fig. 2). We also identified an
additional 3 ASVs one of which belonged within the Clostridia
UCG-014 genera (Supplementary Fig. 5). Interestingly, the top
BLAST hit within the Human Oral Microbiome database to the ASV
classified within Clostridia UCG-014 only shared 88% sequence
identity with its top alignment. Although this taxon has shown to
be a dominant member within other areas of the human body
such as gut36. The other two low abundance ASVs only detected
by ANCOM-II were classified within Capnocytophaga and
Bergeyella (Supplementary Fig. 5). Although only the ASV
classified within Capnocytophaga showed >90% nucleotide
identity to any taxa within the Human Oral Microbiome database
with a top hit to the species Capnocytophaga ochracea.
In prostate cancer, corncob identified 15 genera and 24 ASVs

that are potentially differentially abundant between case and
control samples (Fig. 2, Supplementary Fig. 5). However, no other
tools detected these taxa, and only six ASVs and one genus
showed an effect size larger than a 1.5-fold change in mean

J.T. Nearing et al.

2

npj Biofilms and Microbiomes (2023)    23 Published in partnership with Nanyang Technological University

1
2
3
4
5
6
7
8
9
0
()
:,;



relative abundance between case and control samples. Further-
more, in these low effect size associations, we found incon-
sistencies between corncob’s coefficient directionalities and the
observed differences between mean relative abundances
between case and control samples (Fig. 2, Supplementary Fig. 5).
In colon cancer we identified 9 genera and 9 ASVs as being

differentially abundant between retrospective case and non-
cancer matched control samples (Fig. 2, Supplementary Fig. 5). All
these features were identified by corncob and a single ASV
classified as Fusobacterium was additionally detected by ANCOM-
II to be increased in colon cancer cases (Supplementary Fig. 5,
Supplementary Fig. 6). Inspection into the identity of this ASV at
lower taxonomic levels using sortmeRNA37 identified this ASV as
potentially coming from the species Fusobacterium periodonticum.
Further examination of differential taxa associated with all three
cancers using partially or fully adjusted models showed similar
results (Supplementary Figs. 7–8).

Despite the relatively small taxonomic differences we were still
interested in determining whether Random Forest classification
models could pick up differences between case and control
samples. Examining model performance on repeated hold-out
sets during cross validation showed that both breast cancer and
colon cancer models performed best. Contrastingly, all prostate
cancer models regardless of input data type performed below an
AUC of 0.5 (Fig. 3). Although breast cancer models were only
modestly better with AUCs ranging from 0.566 to 0.618 (Fig. 3).
Colon cancer models performed the best although large

confidence intervals were observed due to low sample size.
Furthermore, colon cancer models showed highly variable
performance depending on feature normalization. Models built
using center-log-ratio normalizations performed only slightly
better than random expectation with ASVs having an AUC of
0.565 (0.353–0.777 95% CI), and genera having an AUC of 0.559
(0.380–0.738 95% CI). However, models built using relative

Table 1. Cohort characteristics for investigation of the oral microbiome in cases of breast, colon, and prostate cancer.

Cancer type Breast cancer Prostate cancer Colon cancer

Case vs. Control Case Control Case Control Case Control

Atlantic PATH cohort—Retrospective cases

Number of samples 54 218 24 92 11 47

Sex (% female) 100% 100% 0% 0% 53% 53%

Mean Age-years (SD) 57.5 (8.15) 55.6 (8.16) a 60.6 (5.92) 57.7 (6.36) 59.5 (10.2) 56.9 (9.21)

Mean BMI-kg/m2 (SD) 29.0 (5.01) 28.3 (4.72) 29.6 (3.27) 28.8 (3.49) 28.9 (4.16) 28.5 (4.13)

Standing Height-cm (SD) a 161 (5.25) 163 (6.46) 174 (6.21) 177 (7.58) 170 (10.4) 170 (8.53)

Waist-Hip Ratio (SD) 0.871 (0.114)
2 Missing

0.848 (0.066) 0.957 (0.053)
1 Missing

0.953 (0.061) 0.930 (0.097) 0.903 (0.064)

Daily Vegetable Servings (SD) 2.75 (1.14)
2 Missing

2.79 (1.60)
1 Missing

2.42 (1.61) 2.09 (1.27) 2.64 (1.63) 2.19 (1.24)

% Current Smoker 0 0 0 0 0 0

Median Time Since Diagnosis (years) 6 N/A 4 N/A 5 N/A

Atlantic PATH cohort—Prospective cases

Number of samples 54 54 28 28 10 10

Sex (% female) 100% 100% 0% 0% 70% 70%

Mean Age-years (SD) 56.6 (7.74) 56.9 (8.38) 60.6 (4.43) 61.0 (4.93) 60.4 (7.88) 60.7 (8.25)

Mean BMI-kg/m2 (SD) 26.9 (5.25) 26.9 (5.45) 28.3 (4.46) 28.1 (4.72) 27.9 (6.08) 28.3 (5.80)

Standing Height-cm (SD) 164 (4.88) 162 (5.99) 178 (7.98) 175 (6.55) 164 (5.47) 169 (12.6)

Waist-Hip Ratio (SD) 0.839 (0.072) 0.856 (0.066) 0.970 (0.060) 0.975 (0.076) 0.780 (0.284) 0.876 (0.089)

Daily Vegetable Servings (SD) 2.42 (2.18)
6 Missing

3.02 (1.45)
3 Missing

2.12 (0.971)
3 Missing

2.22 (1.62)
5 Missing

3.11 (1.27)
1 Missing

2.38 (1.51)
2 Missing

% Current Smoker 1.85% 3.70% 0% 3.57% 0% 0%

Median Time Before Diagnosis (years) 4 N/A 3.5 N/A 3 N/A

ATP cohort—Prospective cases

Number of samples 82 82 64 64 22 22

Sex (% female) 100% 100% 0% 0% 50% 50%

Mean Age-years (SD) 57.7 (8.74) 57.7 (8.70) 63.2 (6.92) 63.2 (6.88) 60.0 (10.0) 60.0 (9.99)

Mean BMI-kg/m2 (SD) 28.3 (6.00)
11 Missing

26.9 (5.60)
10 Missing

27.3 (4.3)
7 Missing

28.2 (4.94)
5 Missing

30.6 (6.94)
1 Missing

27.1 (4.49)
3 Missing

Standing Height-cm (SD) 162 (6.88)
11 Missing

163 (5.57)
9 Missing

177 (6.74)
7 Missing

178 (6.96)
5 Missing

167 (8.32)
1 Missing

167 (7.58)
3 Missing

Waist-Hip Ratio (SD) 0.912 (0.0862)
13 Missing

0.901 (0.047)
11 Missing

0.967 (0.060)
9 Missing

0.956 (0.051)
8 Missing

0.958 (0.063)
2 Missing

0.939 (0.044)
5 Missing

Daily Vegetable Servings (SD) a 2.85 (1.66)
1 Missing

3.55 (1.80)
4 Missing

2.02 (1.15)
2 Missing

2.18 (1.60)
2 Missing

2.76 (1.67)
1 Missing

2.86 (1.59)
1 Missing

% Current Smoker 1.22% 1.22% 15.6% 15.6% 9.09% 9.09%

Median Time Before Diagnosis-years 4.28 N/A 3.10 N/A 2.98 N/A

aIndicates significant difference from control within the same cancer type (p < 0.05). SD Standard deviation.
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abundances showed stronger results with models having AUCs
ranging from 0.675 to 0.737 (Fig. 3). Examining the top 10 most
important features of each of these models showed relatively
small decreases in accuracy for any single ASV/genera (Supple-
mentary Figs. 9–10). Indeed, further inspection also showed that
of these ASV/genera only 1 ASV overlapped with the previously
identified differentially abundant taxon (Supplementary Fig. 5,
Supplementary Fig. 9). This ASV was classified into the genera
Veillonella and upon further inspection, best aligned to Veillonella
atypica (100% identity) within the SILVA V138 database.

Investigation of the oral microbiome in prospective cases of
breast, prostate, and colon cancer
We next decided to investigate if compositional changes within
the oral microbiome are present before the diagnosis of breast,
prostate, and colon cancer. Like our retrospective analysis we first
examined changes in overall microbial community structure by
looking for differences in alpha and beta diversity between cancer
cases and matched non-cancer controls. We found no significant
differences in alpha diversity in either cohort in unadjusted,
partially adjusted or fully adjusted linear models comparing case
vs. control in any of the four metrics (Fig. 4, Supplementary
Figs. 11–12, Table 2). Correspondingly we did not find any

significant differences in four different beta diversity metrics
(weighted UniFrac, unweighted UniFrac, Bray-Curtis dissimilarity,
robust Aitchison’s distance) using unadjusted, partially adjusted or
fully adjusted PERMANOVA tests (Fig. 4. Supplementary Figs.
13–14, Table 3) (p > 0.05). Similar non-significant results were also
obtained when all four beta diversity metrics were examined
using MiRKAT (Table 3).
Like our previous retrospective analysis, we also examined

whether the time between sample collection and diagnosis had a
major impact on signal within the case samples. Spearman
correlations showed no significant relationships in any of the
alpha diversity metrics in both cohorts (Supplementary
Figs. 15–16) (p > 0.05). Furthermore, examining case samples that
were collected within 4 years of diagnosis showed non-significant
diversity results except for prostate cancer in the Atlantic PATH
cohort which showed a significant increase in Faith’s phylogenetic
diversity (p= 0.025) and richness (p= 0.041) in case participants
(Supplementary Figs. 17–18).
After examining overall oral microbial community structure

through various diversity metrics, we were interested in determin-
ing whether there was any evidence of specific ASVs, or genera
being associated with disease status. In both prospective cohorts
(Atlantic PATH, ATP) we found no genera being associated with
disease status, however, we did find a small number of ASVs
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Fig. 1 Oral microbiome diversity metrics of retrospective cases of breast, colon, and prostate cancer in the retrospective Atlantic PATH
cohort. Comparing microbial diversity of non-cancer matched controls to case samples of retrospective prostate, colon and breast cancer
showed no significant differences in alpha diversity as measured by richness (a), and Shannon diversity (b). Principal coordinates of analysis
comparing weighted UniFrac profiles between cancer cases and non-cancer controls. Colon Cancer was found to be significant in an age and
sex adjusted MiRKAT test (p= 0.027), however remained insignificant in PERMANOVA testing of the same co-variates (p= 0.122) (c). The
interquartile range (IQR) of boxplots represent the 25th and 75th percentiles while maxima and minima represent the maximum and
minimum values outside 1.5 times the IQR. The central line represents the median within that group.
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associated with disease status in both cohorts. In the Atlantic
PATH cohort, we found an increase in the relative abundance of
an ASV classified as Alloprevotella rava in prostate cancer
(Supplementary Figs. 19–20). We additionally found a decrease
in the relative abundance of an ASV classified as Streptococcus in
colon cancer (Supplementary Figs. 19–20). Interestingly, none of
these ASVs overlapped with those identified in the ATP dataset.
Within the ATP cohort we detected two ASVs being decreased in
relative abundance in colon cancer, although the significance of
these taxa was mostly driven by outliers within control samples
(Supplementary Figs. 21–22). Within this cohort ANCOM-II also
detected that the relative abundance of an ASV classified to an
uncultured Stomatobaculum to be decreased in prospective
breast cancer samples (Supplementary Figs. 21–22).
As with our previous analysis we were interested in applying

Random Forest models to each prospective cancer type to help
identify whether disease signatures exist within the oral micro-
biome. Separate models were generated for each cancer type and
cohort. Overall, models for breast cancer performed poorly in both
cohorts with accuracies similar to random classification in both
Atlantic PATH and ATP cohorts (Supplementary Figs. 23–24).
Interestingly, in the case of prostate cancer three of four models in
the Atlantic PATH cohort performed slightly above random
classification with AUCs ranging from 0.602 to 0.665 (Supplemen-
tary Fig. 23). However, in the ATP cohort all models performed at
or below an AUC of 0.5 (Supplementary Fig. 24), although it should
be noted that 95% confidence intervals on these AUCs were large
due to small sample sizes (Table 1).
Finally, models of prospective cases of colon cancer showed

variable results between the two cohorts of interest. With
models in the Atlantic PATH cohort showing low performance
AUCs ranging from 0.380 to 0.620 (Fig. 5). Contrastingly, in the
ATP dataset stronger classification accuracies were found when
using center-log-ratio normalizations with the genera level
model performing the best (AUC 0.717; 95% CI: 0.549–0.884)
(Fig. 5).
Inspecting the top ten most important genera through out-of-

bag permutation analysis within our CLR normalized colon cancer
model showed no single genera as being particularly important to
classification accuracy (accuracy decrease ranging from: 0.003 to
0.016). The most important genera within the model only
decreased out-of-bag accuracy by 0.016 (SD; 0.002) although
inspection of its CLR abundance did show a notable increase in
case samples when compared to non-cancer controls. Inspection
of other important genera within this model showed interesting
CLR abundance patterns although none were identified in our
previous differential abundance analysis (Fig. 6).
Unfortunately, we were unable to validate our prospective

models across the two cohorts due to batch effects between
them. Indeed, examination of Bray-Curtis dissimilarity profiles of
the non-cancer controls between the two cohorts showed
significant differences (PERMANOVA r2: 0.03, p= 0.001) most likely
caused by different DNA extraction methods (Supplementary Fig.
25). However, we were also interested in examining whether
Random Forest models trained on retrospective colon cancer oral
microbiome data could accurately classify prospective colon
cancer cases within the same cohort. Surprisingly, after training
retrospective models showed better than random classification on
prospective disease cases (Supplementary Fig. 26). However, as
with our previous analysis confidence intervals were large and
accuracy was only marginally above random performance.

DISCUSSION
Herein we examined the oral microbiome in the context of both
retrospective and prospective cases of prostate, colon, and breast
cancer in a population setting. Our analysis showed no significant
changes in oral microbiome diversity in prospective cases of these

Table 2. P value results from unadjusted, partially adjusted, and fully
adjusted linear models comparing alpha diversity between case and
non-cancer matched controls across each dataset.

Cancer type: Breast cancer

Model Unadjusted Partial adjusted Fully adjusted

Statistic: p value p value p value

Atlantic PATH cohort—Retrospective cases

Faith’s PD 0.224 0.206 0.179

Richness 0.996 0.958 0.857

Shannon 0.256 0.24 0.272

Evenness 0.343 0.292 0.297

Atlantic PATH cohort—Prospective cases

Faith’s PD 0.258 0.266 0.72

Richness 0.482 0.495 0.963

Shannon 0.933 0.902 0.459

Evenness 0.668 0.634 0.32

ATP cohort—Prospective cases

Faith’s PD 0.308 0.303 0.525

Richness 0.382 0.369 0.719

Shannon 0.603 0.591 0.561

Evenness 0.151 0.147 0.221

Cancer Type: Prostate Cancer

Atlantic PATH cohort—Retrospective cases

Faith’s PD 0.486 0.555 0.761

Richness 0.816 0.963 0.831

Shannon 0.788 0.892 0.682

Evenness 0.799 0.826 0.724

Atlantic PATH cohort—Prospective cases

Faith’s PD 0.679 0.664 0.642

Richness 0.584 0.56 0.489

Shannon 0.905 0.841 0.913

Evenness 0.872 0.935 0.792

ATP cohort—Prospective cases

Faith’s PD 0.21 0.204 0.115

Richness 0.152 0.147 0.084

Shannon 0.312 0.305 0.136

Evenness 0.48 0.476 0.273

Cancer Type: Colon Cancer

Atlantic PATH cohort—Retrospective cases

Faith’s PD 0.249 0.33 0.254

Richness 0.722 0.751 0.671

Shannon 0.647 0.627 0.575

Evenness 0.604 0.627 0.544

Atlantic PATH cohort—Prospective cases

Faith’s PD 0.646 0.618 0.216

Richness 0.375 0.376 0.2909

Shannon 0.685 0.661 0.9

Evenness 0.967 0.95 0.49

ATP cohort—Prospective cases

Faith’s PD 0.528 0.527 0.908

Richness 0.725 0.728 0.96

Shannon 0.365 0.338 0.705

Evenness 0.34 0.37 0.685
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Table 3. P value results from unadjusted, partially adjusted, and fully adjusted PERMANOVA and MiRKAT analysis comparing beta diversity between
case and non-cancer matched controls across each dataset.

Cancer type: Breast cancer

Model Unadjusted Partial adjusted Fully adjusted

Statistic: PERMANOVA p value MiRKAT p value PERMANOVA p value MiRKAT p value PERMANOVA p value MiRKAT p value

Atlantic PATH cohort—Retrospective cases

Weighted UniFrac 0.483 0.463 0.544 0.678 0.545 0.657

Unweighted UniFrac a 0.011 a 0.014 a 0.018 0.119 a 0.014 0.099

Bray-Curtis 0.325 0.373 0.372 0.441 0.49 0.483

Robust Atchinson’s 0.408 0.369 0.402 0.35 0.456 0.243

Atlantic PATH cohort—Prospective cases

Weighted UniFrac 0.188 0.208 0.238 0.214 0.255 0.191

Unweighted UniFrac 0.334 0.371 0.338 0.374 0.725 0.809

Bray-Curtis 0.603 0.629 0.654 0.641 0.648 0.652

Robust Atchinson’s 0.654 0.646 0.65 0.657 0.817 0.778

ATP cohort—Prospective cases

Weighted UniFrac 0.912 0.922 0.911 0.921 0.478 0.519

Unweighted UniFrac 0.487 0.46 0.457 0.452 0.366 0.39

Bray-Curtis 0.194 0.206 0.184 0.201 0.338 0.377

Robust Atchinson’s 0.201 0.22 0.205 0.214 0.179 0.175

Cancer Type: Prostate Cancer

Atlantic PATH cohort—Retrospective cases

Weighted UniFrac 0.69 0.604 0.757 0.863 0.911 0.916

Unweighted UniFrac 0.337 0.383 0.423 0.1 0.509 0.053

Bray-Curtis 0.47 0.45 0.475 0.78 0.457 0.825

Robust Atchinson’s 0.164 0.179 0.246 0.689 0.172 0.865

Atlantic PATH cohort—Prospective cases

Weighted UniFrac 0.966 0.981 0.967 0.985 0.758 0.644

Unweighted UniFrac 0.835 0.818 0.85 0.829 0.881 0.857

Bray-Curtis 0.723 0.734 0.71 0.739 0.516 0.472

Robust Atchinson’s 0.596 0.592 0.552 0.584 0.284 0.258

ATP cohort—Prospective cases

Weighted UniFrac 0.09 0.085 0.073 0.084 0.08 0.08

Unweighted UniFrac 0.711 0.66 0.727 0.658 0.338 0.32

Bray-Curtis 0.442 0.473 0.49 0.47 0.337 0.333

Robust Atchinson’s 0.254 0.252 0.251 0.254 0.106 0.123

Cancer Type: Colon Cancer

Atlantic PATH cohort—Retrospective cases

Weighted UniFrac 0.139 0.283 0.122 a 0.027 0.577 0.106

Unweighted UniFrac 0.222 0.448 0.209 0.558 0.191 0.318

Bray-Curtis 0.116 0.367 0.165 a 0.007 0.293 0.056

Robust Atchinson’s 0.336 0.452 0.387 a 0.028 0.348 0.127

Atlantic PATH cohort—Prospective cases

Weighted UniFrac 0.722 0.768 0.745 0.769 0.536 0.996

Unweighted UniFrac 0.692 0.663 0.668 0.663 0.066 0.164

Bray-Curtis 0.49 0.521 0.541 0.507 0.433 0.794

Robust Atchinson’s 0.603 0.631 0.637 0.641 0.606 0.816

ATP cohort—Prospective cases

Weighted UniFrac 0.531 0.494 0.507 0.48 0.987 0.973

Unweighted UniFrac 0.432 0.408 0.421 0.43 0.797 0.799

Bray-Curtis 0.7 0.706 0.735 0.686 0.97 0.92

Robust Atchinson’s 0.152 0.156 0.193 0.19 0.542 0.458

aIndicates significant difference from control within the same cancer type (p < 0.05).
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cancers. Retrospective beta diversity results did show differences
in unweighted UniFrac breast cancer profiles. Moreover, weighted
UniFrac, Bray-Curtis dissimilarity, and Robust Atchinson’s distance
in partially adjusted colon cancer MiRKAT models were also found
to be significant. Investigating the relationships of individual taxon
and cancer status showed some evidence of potential associa-
tions, although the majority were only detected by one of four DA
tools tested and showed relatively low effect sizes. Accordingly,
Random Forest classification of case samples and non-cancer
matched controls showed relatively low classification accuracies
with colon cancer showing the strongest signal in both retro-
spective and prospective analysis. Overall, our findings suggest

that no large community changes exist in the oral microbiome of
individuals with retrospective or prospective cases of prostate and
breast cancer. Although a minor amount of evidence in our report
does suggest there may be potential individual taxon relations
within these diseases. Contrastingly, signal found in prospective
colon cancer cases using Random Forest modelling highlights the
need for larger studies on prospective colon cancer cases.
Examining our results in breast cancer more closely showed

strong concordance with previous work by Wang et al., who also
found no changes in overall oral microbiome composition in
United States individuals with breast cancer29. These results
contrast with a recent study by Wu et al., who identified

Fig. 2 Several genera are detected as differentially abundant in the oral microbiome of retrospective cases of prostate, colon and breast
cancer in the Atlantic PATH cohort. The heatmap is divided by cancer type where the first four columns represent the detection of significant
associations by one of four tools: MaAsLin2, Corncob, ANCOM-II, and ALDEx2. Blue bars in the first four columns of each subgroup represent a
detected increase in control samples while red bars represent a detected increase in case samples. The final two columns within each cancer
sub grouping represent the log10 mean relative abundance of each genus with red representing higher abundance values and blue
representing lower abundance values. Overall, corncob found the largest number of associated genera with a single genus in breast cancer
also being detected by ANCOM-II.
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differences in microbial diversity and the abundance of Porphyr-
omonas and Fusobacterium30. This could be due to several
reasons including the fact that these studies were conducting
under highly different populations, as geographic differences have
been shown to impact oral microbiome composition38. Unlike
either of these studies, we did find evidence for a modest
decrease in the relative abundance of Clostridia UCG-014 an
uncultured genus that we previously linked to differences in
height within healthy individuals of the same cohort1. Whether
this taxon plays any role in disease status is unclear. Similarly, we
also identified an increase in one ASV classified within the genus
Capnocytophaga which matched with 98% nucleotide identity to
an isolate of Capnocytophaga ochracea within the Human Oral
Microbiome Database. While this taxon hasn’t been linked to
cancer other species in this genus such as C. gingivalis have
previously been associated with oral squamous cell carcinomas39.
Investigating signal within the oral microbiome of breast cancer

individuals using Random Forest modeling showed relatively little
signal with accuracies in retrospective cases only slightly better
than random assignment. Based on these modelling results and
the above diversity results, we believe it is unlikely that the oral
microbiome harbors large shifts in composition that could be used
as a breast cancer biomarker in a population setting.
To the best of our knowledge, this report is the first to examine

the relationship of the oral microbiome and prostate cancer
diagnosis. Like breast cancer, we found no large shifts in oral
microbiome diversity in prospective or retrospective cases of
prostate cancer. Although, we did see a possible time dependent
effect in the prospective Atlantic PATH cohort which was seen in
our other prospective cohort. Whether these differing results are
due to DNA extraction, regional differences, or simply a false
positive discovery would require further investigation in future
studies.
Despite not identifying any consistent differences in diversity,

multiple ASVs and genera were identified by corncob to be
associated with retrospective cases of prostate cancer. Unsurpris-
ingly, comparing these results to those previously identified within
the gut showed little overlap10–12. In addition, none of these
retrospective taxonomic relationships were recovered in our
prospective datasets. Although it is interesting to note that some

of the identified genera including Actinomyces, Prevotella,
Gemella, Granulicatella, Fusobacterium, Neisseria, and Hemophilus
were a part of the core genera identified in 99% of individuals in
our previous analysis of the oral microbiome in healthy Atlantic
Canadians1. However, these associations could be related to other
broad lifestyle changes that occur after prostate cancer diagnosis.
Indeed, several of these retrospective taxa associations were
previously associated with various lifestyle, dietary and anthropo-
metric measurements within healthy PATH participants1.
Accompanying these results, we saw little to no signal in our

Random Forest prostate cancer classification models. Some signal
was recovered from the best models trained on the prospective
Atlantic PATH cohort (AUROC 0.665); however, due to small
sample sizes (N= 28) confidence intervals remained large. More-
over, this signal was not recovered in our additional prospective
ATP cohort. These results suggest that the oral microbiome is
unlikely to be a strong biomarker of prostate cancer risk.
Our colon cancer analysis of oral microbiome diversity only

showed significant differences in retrospective cases after the use
of partially adjusted MiRKAT models. Other beta diversity testing
in both retrospective and prospective cases showed results close
to our crital alpha value but remained insignificant. Although this
may be attributed to the small size of our datasets. Indeed, these
insignificant results conflict with previous work by both Flemer
et al., and Wang et al., who found significant differences in oral
microbiome beta diversity between healthy controls and indivi-
duals diagnosed with colon cancer4,33. However, after filtering
retrospective sampling to be within 6 years of diagnosis we did
find a significant reduction in oral microbiome richness suggesting
that time of diagnosis plays an important role in oral microbiome
composition. Highlighting the need for future prospective studies
on the oral microbiome and colon cancer diagnosis.
In retrospective cases of colon cancer, we found evidence of an

increase in an ASV classified as Fusobacterium peridonticum by two
different microbiome DA frameworks (corncob, ANCOM-II). This
species a member of the core oral microbiome genus Fusobacter-
ium has previously been identified as being increased in relative
abundance in the oral microbiome of oral small cell carcinoma40,
head and neck cancer41, and pancreatic cancer patients42.
Whether this oral microbe represents a specific connection to
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composition in the Atlantic PATH cohort. Receiver operator curves (ROC) showing the specificity and sensitivity of the classification of non-
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colon cancer, cancer development, or other events associated
with cancer diagnosis such as treatment or lifestyle changes is yet
to be investigated.
Finally, of the three cancers examined, colon cancer showed the

most consistent signal in our Random Forest modeling, although
substantial differences in classification accuracies were noted
between our two prospective cohorts. This could have been due
to a few factors including sample size differences, collection
method, or possibly differences in health risk factors between
Atlantic Canada and Alberta. Unfortunately, attempts to train
Random Forest models on combined datasets were not successful
due to different collection and DNA extraction approaches
causing significant bias between studies43,44.
One puzzling result we noticed from our colon cancer Random

Forest models, was that different data normalization had large
impacts on model accuracies and was not consistent between
retrospective and prospective datasets. We found total-sum-
scaling (referred to as relative abundance) to perform the best
in our retrospective cohort but found center-log-ratio

transformation to perform better in our prospective ATP cohort.
Whether this has biological significance is unclear and suggests
that future models may be interested in testing several different
data normalizations during model training.
Within our analysis we have also identified several limitations

that should be noted when reviewing our results. The first is that
our study suffered from small sample sizes for both prostate
cancer and colon cancer analysis. Specifically, the sample size of
prostate cancer case samples was 24 in the retrospective and 28 in
the prospective PATH cohort (Table 1). Moreover, the number of
colon cancer cases was only 11 in retrospective and 10 in
prospective PATH cohort datasets and 22 in the ATP prospective
dataset (Table 1). These smaller sample sizes most likely interfered
with our ability to detect small differences in both community
composition and individual taxa abundances. Furthermore, they
also limited our ability to examine the relation between diagnosis
time and oral microbiome community shifts. Indeed future
retrospective and prospective population studies could benefit
from surveying larger populations and making attempts to
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increase sample size through the use of multiple cohorts.
However, pre-planning of how samples will be collected and
stored in each of these cohorts is critical. This is because the
second limitation we ran into during our study is that different
DNA extraction methods were used within the Atlantic PATH and
ATP cohorts. Moreover, since these studies were note originally
designed to examine the oral microbiome, they suffered from
other technical variations such as differences in sample collection
and storage. These variations led to the inability to validate
machine learning models across cohorts, a critical step in
determining model performance on outside datasets. Another
side effect of not including oral microbiome analysis in the original
intent of these studies led to the inability for us to control for
some co-variates that have shown association with microbiome
structure including the time of day samples were collected and
the individuals oral health.
Finally, we would also like to acknowledge that our datasets

were relatively homogenous, being predominantly from white
Canadians, with income and education levels above average
Canadian census data45,46. As such, this significantly limits our
ability to identify distinct oral microbial signatures in groups that
are disproportionately affected by cancer development. Future
work could aim to address these issues by promoting enrollment
across a diverse population background and providing additional
support to underserved communities when needed.
In conclusion, we believe that our report shows that the oral

microbiome is unlikely to be an effective population-based risk
marker for cases of prostate or breast cancer, although changes in
specific bacterial abundances within these diseases may still exist.
Contrastingly, in the case of colon cancer our work indicates that
disease status is likely related to changes in the oral microbiome
and may be useful as a risk marker for colon cancer development.
Future studies should aim to evaluate when oral microbiome
changes occur in prospective colon cancer cases to determine its
suitability for risk stratification.

METHODS
Study design
This report includes the analysis of saliva samples from individuals
who had previously been enrolled in two regional cohorts within
the Canadian Partnership for Tomorrow’s Health project (Can-
Path), a pan-Canadian prospective cohort study focused on
examining the influence of genetics, the environment, and
lifestyle factors on Canadian’s health. The regional cohorts of
interest for this study include Atlantic PATH (which includes
participants from the 4 Atlantic provinces: (Nova Scotia, New
Brunswick, Prince Edward Island, and Newfoundland and Labra-
dor) and ATP (participants from the western province of Alberta).
For this study, both retrospective (cases diagnosed prior to
baseline data and sample collection) and prospective (cases
diagnosed after baseline data and sample collection) nested case-
control designs were employed. This study was granted ethics
approval from Dalhousie University Health Sciences Research
Ethics Board (REB #2018-4420). All participants provided written
informed consent prior to participation.

Atlantic partnership for tomorrow’s health (PATH) cohort
characteristics
At baseline, demographics, lifestyle, personal and family medical
history were self-reported on questionnaires, and a subset
attended assessment centers where physical measurements and
biospecimens such as saliva were collected. For more details on
baseline characteristics of the Atlantic PATH cohort, an in depth
descriptive cohort profile has already been published46. Follow-up
questionnaire data was collected between 2016 and 2019. All
participants provided written informed consent prior to
participation.
For the purposes of this study sample selection within the

Atlantic cohort was divided into either a retrospective or
prospective nested case-control design. Prior cancer diagnosis
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was determined through baseline questionnaires filled out by
each participant. All available breast, prostate, and colon cancer
case saliva samples were included in this study, and control
samples (non-cancer) were selected to match cases (1:5) by sex,
age (±3 years), BMI (±3), and smoking status (current vs. never/
former). The retrospective design included 588 saliva samples
from the Atlantic PATH biospecimen repository based on case and
non-cancer control matches to individuals that had been
diagnosed with breast (n= 61), prostate (n= 23), or colon cancer
(n= 14) prior to baseline saliva collection.
For the prospective design, new incident cases of cancer were

determined through follow-up questionnaire surveys filled out by
each participant. A one-to-one case control design was used with
non-cancer control samples being matched to case samples based
on age (±3 years), sex, and BMI (±3). A minor number of current
smokers ranging from 0 to 3.70% depending on cancer status
were included in this analysis (Table 1). The prospective design
included 230 samples from the Atlantic PATH cohort who had
breast (n= 67), prostate (n= 35), or colon cancer (n= 13).
The median length of time between sample collection and

cancer diagnosis for each cancer can be found in Table 1 along
with other sample characteristics broken down by cancer type,
study design, and case control status.

Alberta’s tomorrow project (ATP) cohort characteristics
Recruitment and baseline data collection took place between
2000 and 2015 with biospecimen collection beginning in 2009.
Details on cohort overall characteristics, recruitment, and design
have been published45. Saliva biospecimens used for this study
were collected using Oragene DNA OG-250 kits at study centers.
Sample characteristics were recorded using self-reported baseline
and follow-up questionnaire data on demographics and health
risks which were completed both at study centers and through

the mail. New incident cases of cancer were confirmed through
linkage to Alberta Cancer Register (ACR). Case and control samples
were matched in 1:1 design based on age (±2 years), sex, and
smoking status (current, former, never). In total 414 saliva samples
were identified from ATP’s biospecimen repository based on non-
cancer controls and cases of breast (n= 102), prostate (n= 76), or
colon cancer (n= 29) that were diagnosed after saliva sample
collection. The median length of time between saliva collection
and cancer diagnosis along with other relative metadata can be
found in Table 1.

Oral microbiome 16S rRNA gene sequencing
Samples from the Atlantic PATH cohort used both previously
characterized1 and new to this study cancer case samples. Both
previously characterized and novel samples to this study were
sequenced and processed at the same time following the same
protocol. Frozen saliva samples collected from participants and
placed in cryotubes were stored at −80°C and then thawed at
room temperature and aliquoted into 96 well plates. In a biosafety
cabinet using ethanol for sterilization and nitrile gloves (standard
sterile techniques), DNA was extracted using a QIAamp 96
PowerFecal QIAcube HT kit following the manufacturer’s instruc-
tions using a TissueLyser II and the addition of Proteinase K at the
indicated optional step. Sequencing was done at the Integrated
Microbiome Resource at Dalhousie University. PCR amplification of
the V4-V5 16 S rRNA gene region was done using V4-V5 fusion
primers (515FB - 926 R) and a high-fidelity Phusion polymerase. A
total of 25 cycles of PCR were done: denaturing at 98 °C, annealing
at 55 °C, and elongating at 72 °C. Pooled sequencing was then
conducted using an Illumina MiSeq to produce 300 bp demulti-
plexed paired-end reads.
This primer set was chosen due to its usage in our previous

study examining the relation between the oral microbiome and
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anthropometric, dietary, and demographic features. Furthermore,
this primer set has been previously validated to target a large
range of prokaryotes found within the human microbiome47.
Although it should be noted that specific taxa may be over-
represented or underrepresented when compared to other primer
sets. Indeed, no primer set can achieve equal detection efficiency
between all microbial members within a sample (Nearing
et al., 2021).
Saliva samples from the Alberta’s Tomorrow Project cohort were

collected using an Oragene® DNA OG-250 kit manufactured by
DNA Genotek. Samples were collected either in person at local
study centers or saliva sample kits were sent to participants by
regular postal mail with a return envelope included. Participants
were instructed not to eat, chew gum, or smoke 30min prior to
providing a saliva sample. They were asked to spit into the
container until the saliva reached the indicated level, screw the
cap on, shake for 10 s and send the sample back through the mail.
DNA from samples were then extracted using a DNA Genotek
PrepIT PT-LP2 kit. After extraction samples were sequenced at the
Integrated Microbiome Resource in the same manner as samples
from the Atlantic PATH cohort.

16S rRNA gene sequence processing
Primers were removed from 16S rRNA reads using cutadapt with
default settings48. Primer-free reads were stitched using the
QIIME2 VSEARCH join-pairs plugin49,50 using default settings.
Stitched reads were then filtered with default settings using the
QIIME2 plugin q-score-joined. Reads were then corrected into
amplicon sequence variants using the QIIME2 plugin Deblur with a
trim length of 360 bp, and one read set as the minimum number
required to pass filtering51. For each dataset examined, 0.1% of
the mean sample depth was calculated and ASVs below this
abundance across all samples within that dataset were removed.
This is to keep in line with the potential sequence bleed-through
rate of an Illumina MiSeq. ASVs were placed into the Greengenes
13_8 99% reference 16S rRNA tree using the QIIME2 fragment-
insertion SEPP plugin52–54. Rarefaction curves were generated for
each dataset separately and a suitable rarefaction depth of 5000
was chosen for the Atlantic PATH retrospective cohort and 3000
for the Atlantic PATH prospective and ATP prospective cohorts.
Rarefied data was used to generate both alpha and beta diversity
metrics. Samples below these sequencing depths along with those
that had no remaining case or control samples were removed
from further analysis. In addition, a single sample in the ATP
prospective dataset was removed due to significant contamina-
tion during sample preparation. Final case-control sample
numbers for each dataset that pass all quality filtering are
presented in Table 1. ASVs were then assigned taxonomy using a
naive Bayesian QIIME2 classifier trained on the 99% Silva V138 16S
rRNA database55,56.

Microbial diversity analysis
Alpha and beta diversity metrics were generated using the QIIME2
command “core-metrics-phylogenetic” with the previously
described rarefaction values and phylogenetic tree. Diversity
matrices were then exported into R and analyzed between case
and control samples for each separate cohort and study design.
Alpha diversity between case/control samples were examined
using linear models with the inclusion of an “extraction_run”
covariate for the Atlantic PATH retrospective samples due to the
large number of batch extractions and amount of time passed
between sample extractions. Additional alpha diversity models
were also examined with partially adjusted models including age
and sex, or fully adjusted models including age, sex, height, waist-
hip-ratio, and daily vegetable servings. In total four different alpha
diversity metrics were investigated: Faith’s phylogenetic diversity,
Shannon diversity, evenness, and richness. For diversity analysis a

nominal p value of 0.05 before FDR correction was chosen as our
significance threshold before conducting any statistical analysis.
Violin boxplots were generated using ggplot2 while jitter points
were added using the R package ggbeeswarm57.
Beta diversity metrics were compared using a PERMANOVA test

between case samples and case matched control samples for each
cancer type within each cohort and study design using the
‘adonis2’ function within the vegan R package58. In the case of the
Atlantic PATH retrospective data, we included the covariate
extraction number due to the large number of different extraction
runs and time taken between sample extractions for this dataset.
Moreover, two additional adjusted models were examined one
that adjusted for age and sex, and the other that adjusted for age,
sex, height, waist-hip-ratio and daily vegetable servings. An alpha
value of 0.05 was chosen before any statistical testing was
conducted. In total four different beta diversity metrics were
examined: weighted UniFrac, unweighted UniFrac, Bray-Curtis
dissimilarity, and Robust Atchison’s distance. These four beta
diversity metrics were visualized using principal coordinate
analysis using the function cmdscale within an R programming
environment and ggplot2. Ellipses were added to each sample
type using the function ‘stat_ellipse()’.
Further statistical analysis of beta diversity results were

conducted using microbiome regression kernel association testing
with the R package MiRKAT. Significance values (p values) were
calculated using the Davies method unless sample sizes were
below 50, where permutation-based p values were generated
instead. Omnibus p values were examined across all four beta
diversity metrics previously tested using PERMANOVA analysis. As
with the previous analysis associations that were unadjusted,
adjusted for age and sex, and adjusted for age, sex, waist-hip-ratio
and daily vegetable servings were examined.

Microbial differential abundance analysis
Differential abundance analysis was conducted using four
different tools developed to analyze microbiome data: ALDEx259,
ANCOM-II60,61, corncob62, and MaAsLin263. These tools range in
their consistency and power to detect differences between
groupings and should give a broad range on the ability to detect
differentially abundant taxa64. Each tool was run at both the ASV
and genus taxonomic levels. All tools were run comparing
taxonomic abundance against case vs. control status. Each tool
was run separately for each cancer type, cohort, and study design.
During the examination of the Atlantic PATH retrospective dataset,
we also included DNA extraction as a covariate due to not all
samples being extracted at the same time. Like beta diversity and
alpha diversity analysis additional adjusted models for age and
sex, and age, sex, height, waist-hip-ratio and daily vegetable
servings were also examined. For all tools, taxa that were not
found in at least 5% of samples were removed from consideration.
Filtered p values were then corrected for false discovery using
Benjamini–Hochberg correction65. A nominal q value (FDR
corrected p value) of <0.05 was chosen to determine significance.
ALDeX2 analysis was run using default settings and general

linear models. This includes using a center-log-ratio transforma-
tion, and 128 Monte Carlo samplings to generate probability
distributions from the observed count data.
ANCOM-II was run using scripts available at: https://github.com/

FrederickHuangLin/ANCOM-Code-Archive. Genus and ASV abun-
dance tables were first processed using the function “feature_-
table_pre_process”. The main grouping variable of interest during
pre-processing and the determination of structural zeros was case
vs. controls. A value of 0.05 was used to determine outlier zeros
and outlier values. Pre-processed tables were then passed into the
main ANCOM function with the inclusion of DNA extraction batch
as a covariate when examining retrospective PATH data.
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Significance was determined using a percentage cutoff of 70% for
the w statistic.
Corncob was run by first importing taxonomic abundance

tables and their corresponding metadata into phyloseq objects66.
The function differentialTest was then run using the above
phyloseq object with the “wald” test option. The phi formula was
set to match the phi-null formula to control for differences in
variability across sample groupings.
MaAsLin2 was run using default settings and an arcsine

transformation. Case vs. control was used as a fixed effect. In
the case of the PATH retrospective dataset an additional fixed
effect of the DNA extraction batch was included.

Random forest model training
Random Forest models were trained and used to classify case and
control samples from each dataset and study design. Training and
classification were done using 100-repeat-5-fold cross validation.
In the retrospective dataset control samples were randomly
downsampled within each fold training session to avoid
unbalanced model training and biasing data within the hold-out
fold. In all datasets taxon found in <5% prevalence were filtered
out prior to model training. After training and cross validation, the
mean number of votes on each hold-out set across all repeats was
then calculated. Receiver operator curves were constructed using
pROC and confidence intervals were estimated using 2000
bootstrap replicates67. Variable importance was calculated from
models trained on the entire dataset by determining the
difference in the out-of-bag prediction error rate after the variable
of interest was permuted.
An additional Random Forest model was also trained on the

entire retrospective PATH colon cancer dataset using 5-repeat-5-
fold cross validation to determine the optimal ‘mtry’ parameter.
This trained model was than tested on the prospective PATH
dataset to determine model accuracy on future colon cancer
diagnosis.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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