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Ecological change of the gut microbiota during pregnancy and
progression to dyslipidemia
Xu Yang1,2,7, Mingzhi Zhang1,2,7, Yuqing Zhang3, Hongcheng Wei1,2, Quanquan Guan1,2, Chao Dong1,2, Siting Deng1,2,
Hein Min Tun 4,5,6 and Yankai Xia 1,2✉

The composition of the gut microbiome was previously found to be associated with clinical responses to dyslipidemia, but there is
limited consensus on the dynamic change of the gut microbiota during pregnancy and the specific microbiome characteristics
linked to dyslipidemia in pregnant women. We collected fecal samples from 513 pregnant women at multiple time points during
pregnancy in a prospective cohort. Taxonomic composition and functional annotations were determined by 16S rRNA amplicon
sequencing and shotgun metagenomic sequencing. The predictive potential of gut microbiota on the risk of dyslipidemia was
determined. The gut microbiome underwent dynamic changes during pregnancy, with significantly lower alpha diversity observed
in dyslipidemic patients compared to their healthy counterparts. Several genera, including Bacteroides, Paraprevotella, Alistipes,
Christensenellaceae R7 group, Clostridia UCG-014, and UCG-002 were negatively associated with lipid profiles and dyslipidemia.
Further metagenomic analysis recognized a common set of pathways involved in gastrointestinal inflammation, where disease-
specific microbes played an important role. Machine learning analysis confirmed the link between the microbiome and its
progression to dyslipidemia, with a micro-averaged AUC of 0.824 (95% CI: 0.782-0.855) combined with blood biochemical data.
Overall, the human gut microbiome, including Alistipes and Bacteroides, was associated with the lipid profile and maternal
dyslipidemia during pregnancy by perturbing inflammatory functional pathways. Gut microbiota combined with blood biochemical
data at the mid-pregnancy stage could predict the risk of dyslipidemia in late pregnancy. Therefore, the gut microbiota may
represent a potential noninvasive diagnostic and therapeutic strategy for preventing dyslipidemia in pregnancy.
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INTRODUCTION
Dyslipidemia is one of the most common metabolic disorders
characterized by abnormal lipid levels1, with the prevalence
estimated at 53.0% in North America2 and as high as 34.0% in
China3. Between 2010 and 2030, elevated blood cholesterol
(CHOL) levels in the population will lead to an increase of
approximately 9.2 million cardiovascular events4. Pregnancy
induces metabolic and immunological changes resulting in
elevated triglyceride (TG) and total cholesterol levels to meet
the needs of fetal growth5. In a normal pregnancy, women show a
30–50% physiological increase in plasma CHOL and TG concen-
tration, with a 2–4 fold increase in the third trimester6,7.
Dyslipidemia during pregnancy increases the risk of pregnancy
complications, such as gestational diabetes mellitus (GDM),
preterm birth, and cardiovascular risk later in life8.
The intestinal microbiota is essential in maintaining the host’s

metabolic function and lipid metabolism balance9. Epidemiologi-
cal studies revealed that patients with dyslipidemia were
characterized by a low richness of the gut microbiota commu-
nity10, and specific gut microbiota taxa showed significant
associations with lipid levels9. In addition, studies using washed
microbiota transplantation treatment in dyslipidemia patients
have revealed the gut microbiome’s role in the treatment of
dyslipidemia11. These studies provided evidence for the associa-
tions of blood lipid levels with the gut microbiota and highlighted
the gut microbiome as a potential therapeutic target. However, it

is unclear whether blood lipid levels during pregnancy are
associated with gut microbiota. Evidence indicated that the
community structure of the gut microbiota changes dramatically
throughout pregnancy12,13, and perturbed gut microbiota during
pregnancy was found to be associated with multiple commodities
such as GDM14 and inflammatory bowel disease15. Evidence also
indicated the role of gut microbiota in predicting metabolic
disorders16,17. However, whether the dynamic change of gut
microbiota during gestation was associated with dyslipidemia and
whether the gut microbiota structure can predict the risk of
dyslipidemia is unknown.
In the current study, we investigated the dynamic changes in

gut microbiota compositions during pregnancy and the associa-
tions of gut microbiota profiles with maternal lipid profile and
dyslipidemia, aiming to determine the potential role of the gut
microbiome in the pathophysiology of dyslipidemia during
pregnancy. In addition, we explored whether gut microbiota in
mid-pregnancy can predict the risk of dyslipidemia in late
pregnancy, thus aiming to offer potential noninvasive diagnostic
and therapeutic strategies for dyslipidemia during pregnancy.

RESULTS
Clinical characteristics of the study population
The study was based on the Mother and Child Microbiome Cohort
(MCMC) Study16,18. The study design is presented in Fig. 1a.
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Pregnant women were recruited from the affiliated hospital of
Nanjing Medical University between 2017 and 2018. A total of
1527 pregnant women were enrolled in the longitudinal study.
Stool samples were collected in the second (T2,
24.14 ± 0.95 weeks) and third (T3, 32.11 ± 0.59 weeks) trimesters
of pregnancy. Negative control samples (n= 10) were also
included during fecal samples’ collection, transportation, and
DNA extraction. All collected samples were stored at −20 °C in the
refrigerator until transferred to the laboratory at −80 °C (Fig. 1).
The study encompassed a total of 513 individuals with a median
age of 29.2 years (Supplementary Tables 1 and 2). About two-
thirds of the study population had median education (high school
to bachelor’s degree, 73.6%) and were primiparous (74.1%). 6.43%
of participants (n= 33) were overweight or obese before
pregnancy. As shown in Fig. 2a, the lipid levels increased
significantly from T2 to T3 (Wilcoxon rank-sum test, P < 0.001),
with the dashed line indicating the trend per person. Among
those women with normal lipid levels at T2, 32.9% developed
hyperlipidemia at T3. A small number of participants (2.5% with
dyslipidemia at T2) returned to normal lipid levels at T3.

Change of intra-individual microbiota composition over time
during pregnancy
We evaluated dynamic changes in microbiota diversity and
composition from T2 to T3. A Principal Coordinates Analysis
(PCoA) on the unweighted Unifrac distance was performed on the
overall microbiota communities at T2 to T3. Shannon index
increased significantly during gestation in all participants (Fig. 2b).
PERMANOVA test indicated that the composition of gut microbial
communities significantly differed between T2 and T3 (PERMA-
NOVA test, P < 0.001, Fig. 2c). In addition, compositional stability
changed with a decrease in Firmicutes, and an increase in
Bacteroidetes from T2 to T3 (Fig. 2d).
To identify the structural changes in the community, we

constructed Co-abundance Groups (CAGs) based on the spearman
correlation of genera. Five robust CAGs during pregnancy were
identified (Supplementary Fig. 1a). Genera in the same CAG were
positively associated with each other (Fig. 2e). Among these,
CAG2, CAG3, and CAG5 were significantly enriched at T3
(Wilcoxon rank-sum test, P < 0.05; Supplementary Fig. 1b). CAGs
depleted in T2 were mainly composed of genera of Firmicutes
(Fig. 2e). NetShift was used to identify potentially important
“taxonomic drivers” from T2 to T3 and several potential taxonomic
drivers involved in the changes of microbial correlations between
T2 and T3. The top taxonomic drivers were Paraprevotella,

Prevotella, Odoribacter, and Butyricimonas (Fig. 2f), mainly com-
posed of CAG5. Similarly, we constructed CAGs at both the second
and third trimesters. The network structure was significantly
different between the T2 and T3 groups (Supplementary Fig. 1c),
with various top microbiota taxa and distinct patterns of microbial
interactions. These results indicated that gut microbiota changed
significantly during pregnancy and that specific gut microbiota
taxa could play a vital role in microbial ecological changes during
pregnancy.

Associations of gut microbiota composition with dyslipidemia
during pregnancy
To determine whether microbiota community structure was
associated with lipid levels during pregnancy, we used the
Dirichlet multinomial mixtures (DMM) model to explore specific
clusters based on gut microbial community structure. Four DMM
clusters were identified based on the lowest Laplace approxima-
tion score (Fig. 3a; Supplementary Fig. 2a). Dominant bacterial
genera (top 25) differed among DMM clusters, and gut community
structure changed dramatically during gestation (Fig. 3b).
Participants in DMM cluster 2 showed higher TG and CHOL levels
compared to other clusters (Fig. 3c), where the dominant genera
included Faecalibacterium, Blautia, and Bacteroides (Fig. 3d). The
dominant genera in the other two clusters (Cluster 3 and Cluster 4)
were mainly composed of Lachnoclostridium.Unassigned and
Prevotella, separately (Supplementary Fig. 2b).
To investigate the association of gut microbiota community

with different types of dyslipidemia during pregnancy, we
compared the diversity indexes between healthy women and
women with dyslipidemia. Compared to healthy women, Shannon
indexes decreased significantly in hypertriglyceridemia at T2
(Supplementary Fig. 3a). A significant overall difference in gut
microbiome community composition in dyslipidemia groups was
shown at T2 (PERMANOVA test, P= 0.038). Shannon index was
negatively associated with TG levels at T2 but not at T3
(Supplementary Fig. 3b). In addition, the microbial structure was
different among dyslipidemia groups at T2 and T3 (Supplementary
Fig. 3c). We assessed the association of gut microbiota community
abundance with dyslipidemia during pregnancy using a linear
mixed model (LMM). We identified several genera associated with
TG levels during pregnancy at the genus level. The results from
LMM and MaAslin indicated that Bacteroides, Paraprevotella,
Alistipes, Christensenellaceae R7 group, Clostridia UCG-014, and
UCG-002 were negatively associated with TG levels during
pregnancy (Fig. 4a). The results were consistent during each

Fig. 1 Study design and flow diagram of the population. a Study design (Created with BioRender.com). b Flow diagram of the population
included in this study.
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pregnancy period (Supplementary Fig. 4a, b). In addition, we
compared the abundance of identified key genera among
dyslipidemia groups. The identified genera showed the same
trend with enrichment in the healthy women (Fig. 4b, Supple-
mentary Fig. 4c).
To investigate specific gut microbiota taxa in mid-pregnancy

associated with lipid levels in late pregnancy, we adopted a
generalized regression analysis adjusted for confounding factors.
Several genera were identified as being associated with TG and
CHOL levels (Supplementary Fig. 4b, c). In those genera, consistent
with the LMM methods, Alistipes and Christensenellaceae R7 group
were significantly enriched in healthy women (Supplementary Fig.
4c). Importantly, these genera associated with lipid levels were
stable during gestation.
To further identify species biomarkers and potential functional

pathways affecting lipid levels, we performed a metagenomic
analysis at T2. Several species were identified to be significantly

associated with TG levels at T2 (Fig. 5a). Among those species
identified at T2, Parabacteroides johnsonii, Coprococcus sp.ART55-1,
Clostridium bartlettii, Peptostreptococcaceae noname unclassified,
Veillonella dispar also showed consistent results at T3 (Supple-
mentary Fig. 5a). Species associated with TG levels belonged to
the genera that were significantly associated with TG levels at T2,
such as Parabacteroides johnsonii, Bacteroides ovatus and Lachnos-
piraceae bacterium 1 1 57FAA. Similarly, several species were
significantly associated with CHOL levels at T2 (Fig. 5b). Among
those identified, Bifidobacterium adolescentis, Bacteroides copro-
cola, Bacteroides faecis, Bacteroides fragilis, Veillonella parvula,
Veillonella unclassified were consistent at both T2 and T3. In
contrast, the various Bacteroides species revealed different, even
opposite results (Supplementary Fig. 5b).
At the functional level, 18 KEGG orthologous (KOs) were

identified to be associated with lipid levels during pregnancy
(Fig. 5c), mainly significantly associated with TG levels. Among

Fig. 2 Dynamic change of lipid levels and gut microbiota structure during pregnancy. a Violin plots showing the TG and CHOL levels
during pregnancy. The dotted lines indicated the trend of change within the participant. b Boxplots showing the change of alpha diversity
indexes during pregnancy. The center line denoted the median. The boxes covered the 25th and 75th percentiles, and the whiskers extended
to the most extreme data point, which was no more than 1.5 times the length of the box away from the box. Points outside the whiskers
represented outlier samples. P values in the plots showed P obtained from the Wilcoxon rank-sum test. c Change of beta diversity indexes
during pregnancy. The center line denoted the median. The boxes covered the 25th and 75th percentiles, and the whiskers extended to the
most extreme data point, which was no more than 1.5 times the length of the box away from the box. Points outside the whiskers represented
outlier samples. P values in the boxplots and blank squares showed P obtained from the Wilcoxon rank-sum test and PERMANOVA test,
separately. d Comparison of relative abundance of phylum. e Network plots of genera in participants during pregnancy. Each node
represented a genus. The size of each node correlates to the mean abundance of each genus across all samples. Nodes were shown if the
abundance of the respective genus was significantly correlated with each other (FDR < 0.05). Red line: positive correlation; Blue line: negative
correlation. Each node was colored according to its phylum. f Most common sub-network between the T2 and T3 network. All nodes
belonging to the same community were randomly assigned a same color. Grayed-out nodes represented the ones present in both but directly
interacted with the common sub-network in either T2 or T3. Node sizes were proportional to their scaled NESH score, and a node was colored
red if its betweenness increased from T2 to T3. Hence, big and red nodes were particularly important ‘drivers’.
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those KOs associated with TG levels, K00850 and K01885
belonged to 6-phosphofructokinase and glutamyl-tRNA synthe-
tase, respectively. Consistent with the identified species, the taxa
contributing to K00850 and K01885 were mainly composed of
Faecalibacterium species (Fig. 5d). Pathway-enrichment analysis of
KOs indicated that immune-associated pathways (IL-17 signaling
pathway and Th17 cell differentiation) were depleted in the
hyperlipidemia group. At the same time, inositol phosphate
metabolism and mineral absorption were enriched (Supplemen-
tary Fig. 5c, d).
To further investigate whether the biochemical profile can

mediate the microbial effect on dyslipidemia, we performed a
mediation analysis and revealed 13 mediation links (mediation
analysis, P < 0.05, Supplementary Fig. 6a). Interestingly, most of
these linkages were related to uric acid. As shown in Supplemen-
tary Fig. 6b, Alistipes might contribute to the decreased risk of
dyslipidemia by affecting serum levels of retinol-binding protein
(proportion: 8.8%, mediation analysis, P < 0.05) and uric acid
(proportion: 3.7%, mediation analysis, P < 0.05). Furthermore,
Bacteroides may contribute to decreased dyslipidemia by affecting
uric acid (proportion: 11.3%, mediation analysis, P < 0.05).

Microbial and clinical markers of discriminating dyslipidemia
during pregnancy
We employed a multi-level random forest classifier to discriminate
dyslipidemia patients based on the potential associations of the
mid-pregnancy gut microbiota community and the lipid levels in

late pregnancy. We trained the model for classifying healthy and
dyslipidemia groups using cross-validation with random training
in 80% of the samples and 100 bootstrap iterations based on
several vital genera. The micro-average area under the curve
(AUC) value for selected genera combined with biochemical
markers to predict dyslipidemia was 0.824 (95% CI: 0.782–0.855),
which improved the prediction performance of biochemical
markers alone (Fig. 6a). The AUC values for hypertriglyceridemia,
hypercholesterolemia, and hyperlipidemia were 0.796 (95% CI:
0.715–0.817), 0.765 (95% CI: 0.607–0.878) and 0.800 (95% CI:
0.714–0.865), respectively (Fig. 6c). Except for hypercholesterole-
mia, the F1 scores for other dyslipidemia types were larger than
0.6 (Supplementary Fig. 7a). To further identify the dyslipidemia-
type specific biomarkers, we constructed a two-level random
forest classifier that produced the AUC values of 0.841 (95% CI:
0.748–0.935) for hypertriglyceridemia, 0.850 (95% CI: 0.772–0.929)
for hypercholesterolemia, and 0.805 (95% CI: 0.720–0.890) for
hyperlipidemia (Fig. 6c), respectively, which is consistent with the
dyslipidemia classifier. The combination of biochemical markers
and selected gut microbiome biomarkers increased the range of
AUCs from 0.810 to 0.850 (Fig. 6c). Similarly, we constructed a
random forest regression model to predict lipid levels in late
pregnancy. The R2 was 0.516 and 0.568 for TG and CHOL levels,
respectively (Fig. 6b). The prediction performances were summar-
ized in Supplementary Table 3. The dominant factors contributing
to the prediction model based on gut microbiota and clinical
markers were similar. Apart from lipid levels, Alistipes and

Fig. 3 The entire dataset formed four distinct clusters based on the lowest Laplace approximation. a Principal coordinate analysis plot
based on genera. b Heatmap showing the relative abundance of the 25 most dominant bacterial genera per DMM cluster. c Boxplots showing
the lipid levels per DMM cluster. The center line denoted the median. The boxes covered the 25th and 75th percentiles, and the whiskers
extended to the most extreme data point, which was no more than 1.5 times the length of the box away from the box. Points outside the
whiskers represented outlier samples. P values in the plots showed P obtained from the Wilcoxon rank-sum test. d Barplots showing the
relative abundance of genera in DMM cluster 1 and cluster 2. Each bar was colored according to its phylum.
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Christensenellaceae R7 group were the main influencing genera
(Supplementary Fig. 7b).
We also built prediction models based on species level to

investigate whether gut microbiota at species level combined with
biochemical tests. However, there was no significant improvement
in the performance of species combined with biochemical
markers compared to biochemical markers alone (Supplementary
Fig. 7c, d).

DISCUSSION
In this study, we evaluated the dynamic changes of gut microbiota
during pregnancy and its association with dyslipidemia. The gut
microbiota community changed significantly with decreased
alpha diversity, increased beta diversity, and dramatic changes
in several taxa from T2 to T3. Using dyslipidemia and lipid levels at
T2 and T3 as the outcomes, we identified microbiome biomarkers
associated with dyslipidemia groups. The association of gut

Fig. 4 Association between the gut microbiota and dyslipidemia. a Genera associated with TG and CHOL levels with and without covariate
adjustment. Covariates included in all models were maternal age, prepregnancy BMI, parity, and sampling time. Genera shown had covariate-
adjusted FDR < 0.2 in one of the results identified by different periods. Symbols (yellow and blue) showed the beta coefficient, and error bars
represented standard error. b Differential genera between hypertriglyceridemia and non-hypertriglyceridemia groups. The center line
denoted the median. The boxes covered the 25th and 75th percentiles, and the whiskers extended to the most extreme data point, which was
no more than 1.5 times the length of the box away from the box. Points outside the whiskers represented outlier samples. P values in the plots
showed P obtained from the Wilcoxon rank-sum test.
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microbiome with dyslipidemia was further confirmed by the
random forest prediction model, which suggested that the mid-
pregnancy gut microbiome combined with biochemical markers
has the potential to predict dyslipidemia in late pregnancy.
In normal pregnancy, the gut bacterial load has been reported

to increase19. Limited studies investigated microbial diversity and
abundance changes during normal pregnancy, and the results
were conflicting. We found that gut microbiota changed
dramatically from T2 to T3 with an increased Shannon index, a
vast expansion of diversity, an overall increase in Bacteridota, and
a decrease in Firmicutes, which is in agreement with the previous
report13. Moreover, evidence indicated that as the fetus devel-
oped in the third trimester, the total maternal gut microbiota load
increased, and the beta diversity among pregnant individuals
increased, whereas the richness and evenness of individuals
decreased20. However, conflicting results from another study
indicated that the microbiota community, taxonomic composition
and diversity at all four body sites remained remarkably stable
during gestation21. An extensive population-level survey of the
gut microbiota that included 1479 pregnant women demon-
strated a relatively stable microbiota throughout gestation22. The
inconsistent observations of these studies may be due to the
complexity and variability of the gut microbiota and the limited
sample sizes, as well as the physical23 or psychological24 status of

pregnant women before and during pregnancy. Further studies
with larger sample sizes, standardized study designs, and sample
collection criteria are needed to validate the result.
We compared the gut community structure between dyslipi-

demia types and their healthy counterparts during pregnancy and
found that the community structure was significantly different
between groups at T2 but not at T3, accompanied by increased
lipid levels and prevalence of dyslipidemic women, indicating
patients with dyslipidemia have a unique gut microbiota structure
during pregnancy. In addition, we found that pregnant women
with dyslipidemia had lower alpha diversity compared to women
with normal lipid levels. Several genera changed dramatically
during gestation. However, genera we identified significantly
associated with lipid levels, including Alistipes, Bacteroides,
Paraprevotella, Christensenellaceae R7 group, Clostridia UCG-014,
and UCG-002 were stable during pregnancy. Those identified
genera were found to be associated with blood biochemical
profiles, and most of these linkages were related to uric acid.
Previuos data indicated that gut microbiota participated in uric
acid metabolism25, which modulated lipid metabolism26. Alistipes
is a propionate producer that expresses methylmalonyl-CoA
epimerase27 and an acetate producer28. The unique process of
fermenting amino acids allows Alistipes to play an essential role in
inflammation and disease29. Since previous studies have shown

Fig. 5 Association of the gut microbiota composition and KOs abundance with lipid levels. a Association of key species with TG levels at
T2. b Association of key species with CHOL levels at T2. c Significant KOs associated with lipid levels during pregnancy. d Taxa contributing to
KOs significantly associated with lipid levels.
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that short-chain fatty acids (SCFAs) have anti-inflammatory
mechanisms, it may be that the decrease of Alistipes contributes
to the reduction of SCFA, where SCFAs are not only involved in
lipid metabolism as substrates but also act as regulators to
modulate lipid metabolism30. The Christensenellaceae R7 group has
also been consistently reported to be negatively related to visceral
fat mass and indicated as a marker of lean phenotype31,32.
Moreover, Bacteroides, Alistipes, and Paraprevotella members,
belonging to the Bacteroidetes phylum, could play a role in
adiposity modulation through the production of two SCFAs,
acetate and propionate33. These identified genera shared similar
functional pathways, including inflammatory mechanisms, which
indicated the potential mechanism of gut microbiota affecting
lipid profile.
We further investigate the role of gut microbiota at the species

level in the development of dyslipidemia during pregnancy. Even
when belonging to the same genus, different species can exert
diverse effects on the lipid profile. Bacteroides faecis was found to
be associated with reduced CHOL. Other species, such as
Bacteroides coprocola and Bacteroides fragilis, were positively
associated with lipid levels, and both of them have been reported
to promote intestinal inflammation34. Functional analysis of the
gut microbiome across pregnant women at T2 revealed the
significant enrichment of KOs involved in carbohydrate metabo-
lism and immune-associated pathways. Previous findings have
indicated that inflammation contributes to dyslipidemia in both

the fasting and postprandial states35, reflecting the possibility that
the gut microbiota may influence lipid profiles during pregnancy
through inflammation.
We found that the gut microbiota during mid-gestation can

predict the risk of dyslipidemia to some extent and performed
well when combined with clinical variables. Predictive models
using genus-level microbiota data performed better than species,
and no single species could be considered a consistent biomarker.
This can be explained by the low relative abundance of key
species levels, resulting in a less distinct differentiation of
dyslipidemia groups and reduced predictive power. In addition,
these critical species biomarkers we identified have similar
functions as a whole genus group.
In addition to the large sample size of the cohort, our study has

multiple advantages. Firstly, we combined amplicon and metage-
nomic sequencing analysis of longitudinal microbiome data for
the participants to assess the association of gut microbiota and
dyslipidemia during pregnancy, which ensured that we explored
potential functional pathways by which the gut microbiota affects
lipid profile. In addition, based on the selected taxa, we developed
a microbiota-based prediction model, including biochemical
biomarkers, which ensured that we evaluated the risk of
dyslipidemia in the early stage of pregnancy. Although we
proposed the potential application of gut microbiome-based
therapeutics for patients with dyslipidemia, several limitations
remained in our study. Firstly, our cohort is single-centered, and

Fig. 6 Prediction of dyslipidemia using gut microbiome and biochemical tests and cross-validation. a Prediction performance of
dyslipidemia using random forest classifiers trained on the genus-level taxonomic profiles and biochemical test levels of the gut microbiome.
Numbers in parentheses represented the 95% confidence interval of the AUC. b Prediction performances of TG levels and CHOL levels using
random forest regression models trained on the genus-level taxonomic profiles of the gut microbiome and biochemical test levels. P values in
the plots showed P obtained from the linear regression. c Prediction performances of dyslipidemia groups using random forest classifiers
trained on various profiles of the gut microbiome and biochemical test levels. Numbers in parentheses represented the 95% confidence
interval of the AUC.
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the results should be validated in multiple cohorts in different
populations. Moreover, future studies should consider the
complex interactions between clinical factors and the gut
microbiome in the therapeutic process. In addition, current
methods for analyzing the gut microbiome allow for in-depth
investigation of taxonomic and functional aspects of the gut
microbial community but lack the ability to characterize the
microbiome immunologically, which should be further studied in
future studies. This study adds to our understanding of the role of
the gut microbiome in dyslipidemia in pregnancy and illuminates
the complexity of the microbiome’s role in human disease.

METHODS
Study design
Participants were excluded according to the following criteria: (1)
previously diagnosed with diabetes mellitus or GDM, thyroids
diseases, intrahepatic cholestasis of pregnancy, tumor, eclampsia,
or HBV; (2) antibiotics usage within three months prior to fecal
sample collection; (3) multiple pregnancies, and (4) pregnancy
with artificial reproductive technology (ART). We excluded women
without lipid levels and fecal samples missing during pregnancy at
T2 or T3 time points. Finally, 513 pregnant women remained for
further analysis. The flow diagram for selecting study subjects is
shown in Fig. 1b. Firstly, 16S rRNA sequencing of stool samples
from two-time points was performed to explore the dynamics of
the gut microbiota and to investigate the potential predictive
potential of the gut microbiota at the genus level. To further
identify and reveal the functional pathways by which the gut
microbiota affects lipid profiles and to determine whether critical
species associated with lipid profiles can predict the risk of
dyslipidemia, metagenomic sequencing was performed at T2.
Demographic information on the participants was collected

through a structured questionnaire, and clinical records, including
biochemical data of participants, were extracted from the hospital
information systems. The length of gestation was assigned based
on the self-reported date of the last menstrual period (LMP).
Dyslipidemia was diagnosed according to the guidelines of the

American Heart Association (AHA)36: CHOL levels ≥6.22mmol/L
(240mg/dL), TG levels≥ 2.26mmol/L (200mg/dL), LDL-C levels
≥ 4.1mmol/L (160mg/dL), or HDL-C levels < 1.0mmol/L (40mg/dL).
Based on the Chinese adult dyslipidemia prevention and treatment
guidelines (revised in 2016)37, we divided dyslipidemia into
hypercholesterolemia, hypertriglyceridemia, and hyperlipidemia
according to the levels of TG and CHOL levels in the participants.
We considered it hyperlipidemia only when both CHOL and TG levels
were above the threshold.
All study procedures were reviewed and approved by the

institutional review board at Nanjing Maternity and Child Health
Care Hospital. Written informed consent was provided by all
participants.

DNA extraction for 16S rRNA gene sequencing and taxonomy
profiling
Bacterial total DNA was extracted from 180 to 220mg of feces
using the QIAamp Fast DNA Stool Mini Kit (QIAGEN, Germany) in a
sterile environment. Variable regions V3-V4 of the 16 S rRNA gene
were amplified from fecal DNA extracts using the primers 338F (5’-
ACTCCTACGGGAGGCAGCAG-3’) and 806R (5’-GGACTACHVGGG
TWTCTAAT-3’). Purified amplicons were pooled in equimolar and
paired-end sequenced on an Illumina MiSeq PE250 platform
platform (Illumina, San Diego, USA) according to the standard
protocols by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai,
China). Reactions were performed under the following conditions:
94 °C for 2 min, 30 cycles, 94 °C for 20 s, 60 °C for 20 s, 72 °C for
30 s, and a final step of 72 °C for 10min. DNA concentration was
measured with Nanodrop 2000, and purity was quantified. 1%

agarose gel electrophoresis was used to determine the integrity of
the DNA. The amplification results were sequenced on the
Illumina Miseq PE250 platform. Sequence quality control was
performed with QIIME2. The paired-end Fastq files were truncated,
filtered, denoised, and merged using the dada2 pipeline38. Single
nucleotide exact amplicon sequence variants (ASVs) were
obtained with 100% sequence homology, and taxonomy was
assigned with reference to Silva v12839 (www.arb-silva.de; release
138). Contaminated sequences (n= 131 from 39, 691 total ASVs)
were identified and removed using the decontam package
(frequency methods, default parameter (0.1))40. Alpha diversity
and β-diversity were calculated with the vegan package, with all
the samples rarefied to the lowest sequence depth 32,007 (range
from 32,007 to 120,183). Genera with relative abundance ≥0.01%
across all samples collected and existing in ≥10% of samples (98
from 457 genera) were left for the downstream analysis.

DNA extraction for metagenomic shotgun sequencing
Total genomic DNA was extracted from feces samples using the
E.Z.N.A.® Soil DNA Kit (Omega Bio-tek, Norcross, GA, U.S.)
according to the manufacturer’s instructions. The concentration
and purity of the extracted DNA were determined with TBS-380
and NanoDrop2000, respectively. DNA extract quality was checked
on 1% agarose gel. DNA extract was fragmented to an average
size of about 400 bp using Covaris M220 (Gene Company Limited,
China) for paired-end library construction. The paired-end library
was constructed using NEXTflexTM Rapid DNA-Seq (Bioo Scientific,
Austin, TX, USA). Adapters containing the full complement of
sequencing primer hybridization sites were ligated to the blunt-
end of fragments. Paired-end sequencing was performed on
Illumina NovaSeq (Illumina Inc., San Diego, CA, USA) at Majorbio
Bio-Pharm Technology Co., Ltd. (Shanghai, China) using NovaSeq
Reagent Kits according to the manufacturer’s instructions
(www.illumina.com).

Shotgun metagenomic sequencing and taxonomic and
functional profiling
We randomly selected 30% of the samples (n= 154) for further
metagenomic sequencing. After filtering samples with low quality
(n= 13), 141 samples finally remained for metagenomic sequen-
cing. Paired-end sequencing was performed on Illumina NovaSeq
(Illumina Inc., San Diego, CA, USA) at Majorbio Bio-Pharm
Technology Co., Ltd. (Shanghai, China) using NovaSeq Reagent
Kits according to the manufacturer’s instructions
(www.illumina.com). From the raw metagenomic reads, quality
control was performed using the KneadData (v0.7.4) toolkit with
default parameters to remove Illumina adapters and reads that
were less than 50 bp in length, had an average mass value of less
than 20. Trimmed reads aligned to the human genome (GRCh37/
hg19) were further removed using the KneadData integrated
Bowtie241 tool (version 2.4.2) to avoid human gene contamination.
After that, quality control was conducted using the FastQC toolkit
(version 0.11.9). The MetaPhlAn242 tool (version 2.7.2) was used to
analyze the quantitative profiling of the taxonomic composition of
the metagenome, whereas HUMAnN243 (version 0.11.1) was used
to profile genes encoding microbial biochemical pathways, which
integrated with the DIAMOND alignment tool (version 0.8.22), the
uniref90 protein database (version 0.1.1), and the ChocoPhlAn
pangenome database (version 0.1.1). After this step, we identified
549 species, 503 KEGG pathways, and 8416 distinct KOs in
141 samples from the participants at T2. Specifically, species were
filtered to remove markers with low overall abundance (<0.01%)
and existing in <10% of samples. Functional profiles (KOs) were
preprocessed to remove abundance <1 × 10−6. KEGG pathways
were filtered to remove those with abundance <0.01% and
existing in <10% of samples. After the filtration, 176 species, 150
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KOs, and 268 KEGG pathways were left for the downstream
analysis.

Microbiome co-abundance groups network construction
Genera with relative abundance ≥0.01% across all samples
collected and existing in ≥10% of samples (98 from 457 genera)
were used to construct co-abundance groups (CAGs) using the
Ward clustering algorithm based on Kendall’s correlation coeffi-
cients with the made4 package. Networks were constructed at T2
and T3 separately. The correlation of the genera in constructed
CAGs was visualized by Cytoscape 3.7.1 software. Driver genera
from T2 to T3 were constructed based on microbial correlation
coefficients using the NetShift tool44 (https://web.rniapps.net/
netshift) based on the networks constructed at both time points.
Neighbor shift (NESH) scores and betweenness centrality (BC)
measures were used to identify the driver taxa responsible for the
correlation change in the two networks. The threshold set for the
correlation coefficient was 0.3.

Qualification and Statistical analysis
The analysis was conducted in four parts: (1) to characterize the
dynamic change of the microbiota and lipid levels during
pregnancy; (2) to determine the key gut microbiota taxa affecting
the lipid levels during pregnancy; (3) to explore the potential
functional pathway the key taxa affecting lipid levels and (4) to
predict dyslipidemia during pregnancy using key microbiota taxa
combined with correlated biochemical data information.
We used a paired Wilcoxon rank sum test to assess the change

in maternal lipid levels between the T2 and T3 trimesters for non-
normally distributed data. Similarly, the dynamic change of alpha
diversity indexes from T2 to T3 was compared by the Wilcoxon
rank sum test. Furthermore, the dynamic β-diversity changes of
maternal microbiota from T2 to T3 were assessed by permuta-
tional analysis of variance (PERMANOVA) based on an unweighted
UniFrac distances matrix, as implemented in the ADONIS test.
Dirichlet multinomial mixtures (DMM) clustering was used to
explore the community typing of microbial community profiling at
the genus level during pregnancy. DMM bins samples on the basis
of microbial relative abundance levels. We determine the optimal
number of clusters based on the lowest Laplace approximation
score45. We compared the difference in lipid levels among clusters
using the Kruskal-Wallis test and aimed to identify the dominant
genera affecting lipid levels.
Associations of gut microbiota community structure and

compositional abundance over time with lipid levels were tested
in the longitudinal cohort using a linear mixed effect model with
time as the fixed effect and subject ID as a random effect using
the lme-function in the nlme package46. The Benjamini–Hochberg
procedure was used to correct for multiple comparisons47, and a
corrected P < 0.2 was considered significant. MaAsLin analysis was
also performed to determine the association using Maaslin2
package. Subject ID was used as a random effect. The following
variables were used as fixed effects in addition to the variables of
interest for every analysis: pre-pregnancy BMI, parity, age, and
sampling time. Only genera both significant in these two analyses
were considered as significantly associated with lipid levels during
pregnancy. To explore whether species are associated with lipid
levels and which functional pathways played an essential role,
multiple linear regression and Lefse analyses were conducted. To
investigate the mediation linkages between microbial features,
biochemical profile, and dyslipidemia, we performed mediation
analysis using the R package mediation.
In all analyses, abundance information for genera and species

were log10-transformed after adding a pseudocount of 1 × 10−5

to avoid nonfinite values. KOs were log10-transformed after
adding 1 × 10−7 as a pseudocount.

To determine how well gut microbiota and biochemical test
data predicted dyslipidemia, multi-class random forest classifica-
tion was performed using the randomForest package. Specifically,
we develop two-class random-forest classifier models to evaluate
the prediction performance of gut microbiota combined with
biochemical test levels predicting dyslipidemia groups (Hyperch-
olesterolemia, hypertriglyceridemia, and hyperlipidemia). In brief,
the model was trained on key genera associated with lipid levels,
associated biochemical tests, and key genera combined with
associated biochemical biomarkers. The model was built using the
following parameters: growing 500 trees and n/3 features
randomly sampled at each split, where n represents the number
of features. The model was further validated with 100 bootstrap
cross-validations by splitting datasets by the ratio of 4:1 (training
set: testing set). The accuracy of the classifiers was determined by
calculating the area under the receiver operating characteristic
curve (AUC). Sensitivity, specificity, and F1 scores were used to
show the performance of the prediction model. The significance
of differences in the accuracy of the derived classifiers and
confidence intervals were assessed using the bootstrap method of
roc.test in the pROC package. The Gini index was used to measure
the features’ importance. In addition, we built random forest
regression models to predict the lipid levels at T3. R2 was used to
show the performance of the regression model. The mean
squared error (MSE) was used to measure the quality of predictors
in random forest regression models.
All statistical analyses were conducted using RStudio software

(version 1.2.5019). A two-tailed P < 0.05 was considered statisti-
cally significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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