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Active layer dynamics drives a transition to biofilm fingering
Ellen Young1, Gavin Melaugh1 and Rosalind J. Allen 1,2✉

The emergence of spatial organisation in biofilm growth is one of the most fundamental topics in biofilm biophysics and
microbiology. It has long been known that growing biofilms can adopt smooth or rough interface morphologies, depending on the
balance between nutrient supply and microbial growth; this ‘fingering’ transition has been linked with the average width of the
‘active layer’ of growing cells at the biofilm interface. Here we use long-time individual-based simulations of growing biofilms to
investigate in detail the driving factors behind the biofilm-fingering transition. We show that the transition is associated with
dynamical changes in the active layer. Fingering happens when gaps form in the active layer, which can cause local parts of the
biofilm interface to pin, or become stationary relative to the moving front. Pinning can be transient or permanent, leading to
different biofilm morphologies. By constructing a phase diagram for the transition, we show that the controlling factor is the
magnitude of the relative fluctuations in the active layer thickness, rather than the active layer thickness per se. Taken together, our
work suggests a central role for active layer dynamics in controlling the pinning of the biofilm interface and hence biofilm
morphology.
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INTRODUCTION
Biofilms are diverse in their morphology. Biofilms grown under
flow can be smooth or rough, or even ‘mushroom-shaped’1–3,
while biofilms on liquid interfaces can show intricate wrinkly
patterns4. Characterising distinct types of biofilm spatial structure,
and the mechanisms by which they emerge, can lead to a better
understanding of the underlying principles of this multicellular
assembly process. It is also a prerequisite for understanding
phenomena including genetic mixing and hence potential for
cooperation, the extent of pathogen adhesion, as well as antibiotic
penetration and the chances of fixation of antibiotic-resistant
mutants5–9.
Biofilm spatial structure is often characterised in terms of the

interface roughness, i.e. the standard deviation of the biofilm
height. From a mechanistic point of view, it is well established that
the interplay between local growth and the nutrient concentration
field is important in controlling interface roughness10–13. Dockery
and Klapper11 showed the existence of a fingering instability in
which a local ‘bump’ on the growing interface tends to grow
larger, since microbes in the ‘bump’ have better access to
nutrients (diffusing from above) than those in adjacent areas; the
growing bump then depletes nutrients from adjacent regions of
the interface, further enhancing its growth. However, growth-
generated pressure within the biofilm tends to fill in troughs in the
biofilm interface, counteracting the tendency towards
fingering11,14.
The balance between nutrient supply and microbial growth

clearly lies at the heart of the biofilm-fingering transition. Analysis
of the reaction-diffusion equation for nutrient close to the
growing biofilm led Dockery and Klapper to identify a dimension-
less controlling parameter ðDBYðkS þ SbulkÞ=ðL2yρμmaxÞÞ

1
2, which

describes the balance between nutrient transport and microbial
growth, and is associated with the distance that nutrient
penetrates into the biofilm 11. Here, Ly is the horizontal system
size, Y is the yield (units of biomass produced per unit of nutrient
consumed), kS the nutrient concentration for half-maximal growth,

Sbulk is the nutrient concentration far from the biofilm, DB is the
diffusion constant of nutrient within the biofilm and ρ is the
biomass density within the biofilm. In earlier work using a cellular
automaton model, Picioreanu et al.13 had identified a similar
parameter, but with Sbulk in place of the factor (kS+ Sbulk) (and the
system height in place of the lateral width). Nadell et al.15 also
proposed a related parameter combination with units of distance,
the ‘active layer depth’, to describe the thickness of the layer of
growing cells at the top of the biofilm.
While the combined parameters identified in these works are

different, they all express the idea that the extent of nutrient
penetration into the biofilm, which depends on the balance
between nutrient supply and growth, is central in controlling
spatial structure. Growth occurs only in this ‘active layer’ close to
the biofilm interface that has access to nutrients, while cells
deeper within the biofilm are not able to grow15–19 (Fig. 1). This
phenomenon is observed in simulations15,19 and experimental
flow cells18,20 as well as in in vivo samples18. In this study, we use
individual-based simulations of growing biofilms to investigate in
detail the connection between the active layer and the biofilm-
fingering transition. We develop a computational method that
allows us to simulate biofilm growth over long times, to obtain a
clear picture of the steady-state spatial structure. We observe
three qualitatively different types of biofilm growth, each with a
distinct active layer behaviour and interface roughness trajectory.
These growth types are distinguished qualitatively by their active
layer dynamics. We show that the formation of gaps in the active
layer can lead to local parts of the interface ‘pinning’, or becoming
stationary and falling behind the advancing biofilm interface.
These pinning sites, which can be transient or permanent,
ultimately lead to the fingering of the interface. Therefore we
argue that, while the average active layer thickness is important,
active layer dynamics also play a key role in the fingering
transition. Framing our results in the form of a phase diagram, we
find that the biofilm pinning transition is controlled by the relative
fluctuations in the active layer thickness, i.e. by the ratio between
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the standard deviation of the active layer thickness and its
average. Interestingly, this corresponds closely with the combined
parameter proposed by ref. 11. Since the standard deviation
reflects fluctuations in the active layer thickness, this supports the
hypothesis that active layer dynamics play a key role in driving the
spatial structure of the growing biofilm interface.

RESULTS
Individual-based simulations produce distinct biofilm
morphologies
To investigate biofilm morphology, we performed individual-
based simulations of biofilm growth using the well-established
iDynoMiCS simulation software21. Our simulations model indivi-
dual bacteria as discs (in 2D) which consume nutrients, grow,
divide, and push each other apart (see Methods). The nutrient is
assumed to diffuse from above, mimicking approximately an
experimental flow-cell setup (see Methods)21. We performed a
grid of simulations, varying systematically the bulk nutrient
concentration Sbulk and the maximum specific growth rate of
the bacteria μmax. These parameters could, in principle, be
controlled experimentally by changing the nutrient concentration
of the fluid medium in a flow cell setup, and the bacterial strain.
All other parameters remain fixed in our simulations (see Table 1).
The overall biofilm growth rate (cell number vs time) depends

strongly on our simulation parameters, with small values of Sbulk,
or large values of μmax, leading to slow growth (Supplementary
Fig. 1). Therefore, to make a fair comparison between biofilms at a
similar developmental stage, we chose to compare simulated
biofilms of the same size (cell number), rather than age (time)22.
Figure 2 shows snapshots from our grid of simulations, for

biofilms of 75,000 cells. A variety of different biofilm morphologies

emerge, from approximately flat (high Sbulk and low μmax) to
fingered (low Sbulk and high μmax). We identify cells as belonging
to the active layer if their growth rate is greater than 1/1000 of the
maximal growth rate possible in a given simulation μmaxSbulk/
(kS+ Sbulk) (see Methods). In our simulations, we can compute the
average thickness of the active layer, across the biofilm width (see
Methods). After an initial period corresponding to biofilm
formation, the average active layer thickness reaches a steady
state value (Supplementary Figs. 2, 3), consistent with previous
work15–17,19. As expected, the steady state value of the average
active layer thickness varies for different simulation parameters
(Fig. 2 and Supplementary Figs. 2–4). The active layer is, on
average, thicker for the smooth biofilms, which correspond to
high values of Sbulk and low values of μmax and thinner for the
fingered biofilms, which correspond to low values of Sbulk and
high values of μmax

11,13,15,19.
In our simulations, the active layer thickness can vary greatly

between different local positions along the biofilm interface
(Fig. 2). We quantify the extent of local variation in the active layer
by computing the standard deviation of the active layer thickness
across the biofilm width (see Methods for details). The standard
deviation of the active layer thickness takes longer to reach its
steady state than the average active layer thickness (Supplemen-
tary Figs. 2, 5), highlighting the need for long-time simulations
such as those performed here. The standard deviation of the
active layer thickness is larger in fingered biofilms (low Sbulk and
high μmax) than in smooth biofilms (low Sbulk and high μmax). This
reflects the fact that the active layer is unbroken in the smooth
biofilms, but broken in the fingered biofilms, where growth only
occurs at the tips of the fingers (hence the troughs correspond to
gaps in the active layer).
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Fig. 1 The concept of the active layer. A biofilm configuration generated in our simulations is shown, with the cells in the biofilm colour-
coded according to their specific growth rate. The nutrient concentration field is shown on the blue scale. The nutrient is consumed by cells at
the top of the biofilm, so that cells deeper in the biofilm are deprived of nutrients and do not proliferate. The active layer is defined as the
layer of growing cells at the top of the biofilm (see Methods for further details).
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Dimensionless control parameter governs relative active layer
fluctuations
Previous studies11,13,15 have proposed that biofilm structure is
controlled by the thickness of the active layer, which in turn is
determined by the balance between nutrient transport and
microbial growth. This balance can be described by a combination
of model parameters; in particular, Dockery and Klapper11

suggested the dimensionless parameter G
�1
2

1 ¼ðDBYðkSþSbulkÞ=ðL2yρμmaxÞÞ
1
2.

To test whether this parameter indeed controls the behaviour of
the active layer in our simulations, we plotted the average active
layer thickness (in steady state), its standard deviation, and its
coefficient of variation (standard deviation divided by mean),
versus G

�1
2

1 (Fig. 3). Both the average and standard deviation of the
active layer thickness are well predicted by the value of G

�1
2

1 , but
the prediction is not perfect (Fig. 3a and b, respectively). However,
the coefficient of variation is much better predicted by G

�1
2

1 (Fig. 3c).
Therefore, in our simulations, the combined parameter proposed
by Dockery and Klapper actually describes the magnitude of the
fluctuations in the active layer thickness, relative to the mean
active layer thickness.
Other studies13,15 proposed other control parameters, in which

Sbulk takes the place of the factor kS+ Sbulk (among other
differences). We encapsulate this by defining another dimension-

less parameter G
�1
2

2 ¼ðDBYSbulkÞ=ðL2yρμmaxÞÞ
1
2. An equivalent analysis for the

parameter G
�1
2

2 produces similar conclusions, but the correlation is
somewhat less good than for G

�1
2

1 (Supplementary Fig. 6).

The biofilm structural transition can be defined by interface
pinning
We observe three distinct types of biofilm structures, which are
also associated with different interfacial dynamics. For large Sbulk
and small μmax the biofilm interface is smooth (Fig. 4, top).
Quantifying the interface roughness as the biofilm grows
(accounting for overhangs; see Methods) shows that the rough-
ness quickly reaches a steady state at a low value (Fig. 5a, blue
trajectories). In these simulations the active layer is unbroken
(Fig. 4, top). For intermediate Sbulk and small μmax the interface is
less smooth, and the active layer shows transient gaps, i.e., regions
along the interface where there are no growing cells (Fig. 4,
middle, point A). The interface roughness reaches a steady state as
the simulation progresses but the steady state is characterised by
dramatic fluctuations (Fig. 5a, red trajectories). Finally, for small

Sbulk and large μmax, the interface becomes fingered. These
simulations show permanent gaps in the active layer (Fig. 4,
bottom) and the interface roughness does not reach a steady state
but instead increases monotonically throughout the simulation
(Fig. 5a, green trajectories). We also observe some simulations
where the interface roughness appears to transition between
different dynamical behaviours (Fig. 5a, black and grey
trajectories).
In our simulations, biofilm structure is linked with active layer

dynamics via interface pinning. Pinning, in which part of a moving
interface stops advancing and falls behind the rest of the moving
front, is a well-known phenomenon in interface growth theory in
statistical physics (see, e.g. ref. 23). In our simulations, a gap in the
active layer produces a local region of the interface that is not
growing, and so remains stationary as other parts of the biofilm
grow (e.g. Fig. 4, middle, point B). This part of the interface is
therefore pinned. Pinning directly impacts biofilm structure, since
it creates a trough in the interface at the pinned region. This
correlates with an increase in interface roughness (defined as the
standard deviation of the interface height) since the surrounding
parts of the interface continue to advance while the pinned region
does not. Quantifying the fraction of the interface that is pinned
(i.e. stationary for at least 6 hours of simulated time; see Methods
for details), we find a close correlation between trajectories of the
interface roughness and the pinned interface fraction (Fig. 5b–d;
see also Supplementary Figs. 7, 8). Our simulations may show no
pinning (if the active layer remains unbroken), correlating with a
smooth interface (Fig. 5b), or they may show transient pinning
(where active layer gaps form and close up again, e.g. Fig. 4,
middle, point C), corresponding to strong fluctuations in the
interface roughness (Fig. 5c), or they may form permanently
pinned regions of the interface, leading to biofilm-fingering and
monotonically increasing roughness (Fig. 5d). Interestingly, the
interface roughness is correlated with the standard deviation of
the active layer thickness when the interface is unpinned, but not
when it is pinned; see Supplementary Fig. 9.
The central role of interface pinning in structure formation

motivates us to classify different simulations according to their
pinning behaviour. Inspired by the concept of the pinning
transition in interface growth theory in statistical physics24, we
class our simulations as being in the ‘unpinned phase’ (unbroken
active layer, no pinning), the ‘transiently pinned phase’ (transient

Table 1. Table of the input values used in our iDynoMiCS biofilm simulations.

Parameter Values Description References

Sbulk 6.6 × 10−3 g/liter Bulk concentration of limiting growth resource (oxygen) Saturation concentration of water
at 37 oC56

Y 0.64 g ⋅ g−1 Yield - grams of biomass produced per gram of oxygen consumed 57

μmax 0.29 1/h Maximum specific growth rate 57

kS 8.12 × 10−4 g/liter Concentration of oxygen at which the growth is half maximal 2

DS 2.3 × 10−4 m2/day Solute (oxygen) diffusion coefficient 58

Biofilm Diffusivity 0.8 Factor multiplying DS to give solute diffusion coefficient inside the
biofilm

58,59

h 80 μm Diffusion boundary layer height 13,60,61

ρB 200 g/liter Biomass density of bacteria 60,62

rdiv 2 μm Average cell maximum (division) radius 57

kShov 1.15 ‘Shove factor’ which multiplies the cell’s radius to give the radius of the
‘zone of influence’ for mechanical shoving

21

Ly 1032 μm Simulation width

N0 300 Number of initialised cells

These values aim to be consistent with Pseudomonas aeruginosa in an oxygen-limited flow cell type setup2,51.
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active layer gaps, transient pinning), or the ‘pinned phase’
(permanent active layer gaps and pinning; fingered biofilm).

Pinning happens when active layer gaps merge
Tracking the dynamics of the active layer along the biofilm
interface provides a more detailed picture of the mechanism
underlying interface pinning. An active layer kymograph plot for a
simulation in the transiently pinned phase provides a convenient
way to visualise the creation, annihilation, and motion of active
layer gaps (Fig. 6). The kymograph reveals that active layer gaps
appear spontaneously (emergence of a new dark line reading
bottom to top in the kymograph), but they disappear only by
merging with other active layer gaps. We also observe the motion
of active layer gaps (sloping of the dark lines in the kymograph),
due to pushing between adjacent bulges in the interface (since
active layer gaps correspond to the troughs between bulges). This
motion is clearly not diffusive (Fig. 6; see also Supplementary
Fig. 10 for the kymographs of our complete grid of simulations).
Superposing the location of pinning sites onto the active layer

kymograph (Fig. 6) allows us to connect the dynamics of the active
layer to interface pinning. In this simulation, frequent formation
and annihilation of pinning sites occurs. Strikingly, new pinning
sites are formed when two active layer gaps merge. Inspection of
the corresponding simulation snapshots shows that the merger of
two active layer gaps occurs when a small bulge in the interface is
engulfed by the lateral expansion of surrounding, larger, bulges
(Fig. 6). In the simulation of Fig. 6, the ‘bulge engulfment’ event
that leads to active layer gap merging and formation of a new
pinning site is accompanied by the appearance of a new active
layer gap at a different point along the interface. Supplementary
Fig. 10 confirms that this behaviour is common in the transiently
pinned phase.

In contrast, the annihilation of a pinning site happens when a
trough in the interface closes up. Careful inspection of movies
from our simulations (see Supplementary movies) shows that this
occurs because of lateral expansion, i.e. the trough becomes
narrower from the sides. This lateral expansion appears to be
driven by mechanical pushing interactions that are transmitted
from the growing cells at the biofilm front down to the non-
growing cells in the walls of the trough.

Towards a phase diagram for biofilm pinning
Our work suggests that a growing biofilm can undergo a transition
from a smooth, ‘unpinned’ state to a rough ‘transiently pinned’ or
‘pinned’ state. To understand better the nature of this transition,
we plot a phase diagram. A phase diagram is a central concept in
the physical sciences, used to describe how a system transitions
from one state to another. The phase diagram shows how the
state of the system changes as the environment changes. The
environment is described by a ‘control parameter’, while the state
of the system is described by an ‘order parameter’25,26. For
example, in the classic textbook case of the magnetisation
transition of a magnetic material, the control parameter is the
temperature of the material and the order parameter is its degree
of magnetisation. The nature of the order parameter and control
parameter, and the shape of the resulting phase diagram, can
reveal important information about the key physical principles
underlying the transition (Supplementary Figs. 11, 12). Although
phase diagrams are usually used to describe systems at
thermodynamic equilibrium, they can also provide useful insights
for non-equilibrium, driven systems; see, e.g. refs. 17,27–30.
To construct a phase diagram for interface pinning in our

simulations, we therefore aim to plot an order parameter,
describing the extent of interface pinning, as a function of a
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Fig. 2 Emergence of distinct biofilm morphologies. Snapshots from our grid of simulations, for biofilm sizes of ~75,000 cells. Our grid of
simulations was defined by varying the bulk nutrient concentration Sbulk and maximum specific cell growth rate μmax. The remainder of the
simulation input parameters are held constant, and detailed in Table 1. In the snapshots, the active layer is shown in dark blue, while the
inactive part of the biofilm is shown in light blue. The active layer is defined as described in the Methods section. The coloured borders
around the snapshots indicate the phase of biofilm growth—blue for unpinned, red for transiently pinned, green for pinned and black for
transitional, as defined in the text and in Figs. 4 and 5.
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control parameter. As our order parameter we choose the average
steady-state fraction of the interface that is pinned (see Methods).
This is a well-defined quantity that takes different values in the
three phases of biofilm growth. In the unpinned phase it is zero,
while it lies in the ranges 0.010–0.284 and 0.741–0.875 for our
simulations in the transiently pinned and pinned phases,
respectively.
Our observations so far suggest that interface pinning is closely

coupled to the dynamical behaviour of the active layer (e.g. Fig. 6).
Therefore, as candidate control parameters in our phase diagram,
we tested the steady-state values of the average active layer
thickness, the standard deviation of the active layer thickness, and
the coefficient of variation of the active layer thickness (Fig. 7a–c)
respectively). We define a control parameter as optimal if it causes
our simulation data to collapse onto a single curve in the control
parameter - order parameter space.
As a candidate control parameter, the average active layer

thickness does distinguish between the three phases, but it does
not produce a perfect collapse of the data onto a single line,
particularly in the transiently pinned phase (Fig. 7a). This suggests
that the average active layer thickness is not the only factor
controlling the pinning transition.
The standard deviation of the active layer thickness provides a

crude measure of active layer fluctuations. As a candidate control
parameter, it also distinguishes between the three phases, but the
transiently pinned phase data does not collapse perfectly, and the
pinned phase data shows a strange behaviour where the order
parameter decreases with increasing control parameters (Fig. 7b).
Finally, we tested the coefficient of variation of the active layer

thickness, i.e. the standard deviation divided by the mean, as a
control parameter. This makes intuitive sense, since we expect

that the creation of an active layer gap (which can lead to a
pinning site) requires the active layer thickness to fluctuate by an
amount that is comparable to its mean value. We are also
motivated by the fact that this quantity correlates well with the
dimensionless combined parameter of Dockery and Klapper11

(Fig. 3c). This candidate control parameter produces a much better
data collapse than our previous candidate control parameters
(Fig. 7c). As the coefficient of variation of the active layer thickness
increases, the system transitions from the unpinned to the
transiently pinned to the pinned phase. Therefore we conclude
that (i) active layer fluctuations are important in driving the biofilm
pinning transition and (ii) the magnitude of these fluctuations
relative to the mean active layer thickness is the relevant quantity.

DISCUSSION
In this work, we used individual-based computer simulations to
investigate the spatial structure of growing bacterial biofilms. Our
simulations include the effects of local nutrient limitation
(modelled via a reaction-diffusion equation) and mechanical
pushing between the cells (modelled via a ‘shoving’ algorithm;
see Methods). Varying the nutrient concentration and the maximal
specific growth rate of the bacteria, we observed a diversity of
biofilm morphologies, ranging from smooth to highly-fingered
interfaces. The active layer of growing cells at the biofilm interface
plays a central role in biofilm morphology; previous work has
suggested that the balance between nutrient transport and
consumption controls active layer thickness; this balance can be
expressed by a dimensionless combined parameter11,13,15. Inter-
estingly, in our simulations, the dimensionless parameter corre-
lated better with the relative fluctuations of the active layer

Fig. 3 Dimensionless control parameter and the active layer. a Average active layer thickness (averaged across the biofilm width for steady-
state simulations, see Methods), b Standard deviation of the active layer thickness, and c Coefficient of variation of the active layer thickness,
i.e. standard deviation divided by the mean. In all panels, the parameter on the horizontal axis is the dimensionless combined parameter
proposed by ref. 11, G�1

2
1 ¼ðDBYðkSþSbulkÞ=ðL2yρμmaxÞÞ

1
2. The data points correspond to 19 simulations with different values of the parameters Sbulk and

μmax. Data points are grouped according to their Sbulk values. Blue squares: Sbulk= 0.0005 g/L, μmax= (0.1, 0.2, 0.3, 0.4)/h; Red diamonds:
Sbulk= 0.001 g/L, μmax= (0.1, 0.2, 0.3, 0.4)/h; green triangles: Sbulk= 0.005 g/L, μmax= (0.1, 0.2, 0.25, 0.4)/h; black circles: Sbulk= 0.01 g/L,
μmax= (0.1, 0.2, 0.3, 0.33, 0.37, 0.4, 0.45)/h. See Supplementary Fig. 6 for an equivalent analysis with the alternative combined parameter G

�1
2

2 .
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thickness than with the mean active layer thickness. This suggests
that active layer dynamics play an important role in driving biofilm
structure; a conclusion that is supported by a detailed analysis of
our simulations. Collisions between local gaps in the active layer
lead to interface pinning, in which a part of the interface stops
growing relative to the rest of the biofilm. Interface pinning then
leads to fingering.
Our simulations could be classified into three ‘phases’ of biofilm

growth. In the ‘unpinned’ phase, the interface is smooth and does
not pin, and the active layer is thick and unbroken. The ‘transiently
pinned’ phase is characterised by the appearance of transient local
pinning sites along the interface and large temporal fluctuations
in the interface roughness. In the ‘pinned’ phase, the interface
develops fingers, which arise from pinning sites that appear but

do not disappear; correspondingly, the interface roughness
increases throughout the simulation. Using the coefficient of
variation of the active layer thickness as a control parameter, we
were able to plot a phase diagram for biofilm pinning. The finding
that the coefficient of variation of the active layer thickness is a
better control parameter than the mean strengthens our view that
fluctuations in the active layer are important in controlling biofilm
spatial structure.
The form of the phase diagram can also tell us about the

underlying nature of a phase transition. Statistical physics
distinguishes ‘discontinuous’ transitions, in which the order
parameter jumps discontinuously from zero to a finite value at a
critical value of the control parameter, from ‘continuous’ transitions,
in which the order parameter changes continuously from zero to a

Unpinned Phase

Pinned phase

Cell Number

~25000 ~50000 ~75000 ~100000

Pinned interface

A B
CTransiently pinned phase

Fig. 4 Distinct phases of biofilm dynamics. Biofilm growth is illustrated for three parameter sets, representing three qualitatively different
types of biofilm behaviour, or `phases'. The top row of snapshots is for parameters Sbulk= 0.01 g/L, μmax= 0.1 1/h, which represent the
unpinned phase. The central row of snapshots is for parameters Sbulk= 0.01 g/L, μmax= 0.4 1/h, representing the transiently pinned phase. The
bottom row of snapshots is for parameters Sbulk= 0.0005 g/L, μmax= 0.4 1/h and represents the pinned phase. Biofilm growth is shown from
left to right; snapshots are shown for biofilm sizes of 25,000, 50,000, 75,000 and 100,0000 cells. In the snapshots, cells are colour-coded
according to their specific growth rate. Parts of the interface that are pinned (i.e. have not moved in the previous six hours of simulated time)
are represented in red. The parts of the interface labelled A, B and C in the figure correspond respectively to a gap in the active layer, a pinning
site and a gap in the active layer gap after a pinning site has closed.
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finite value as the control parameter varies (Supplementary
Fig. 11)25. This distinction has relevance for the kinetics of the
phase transition since, for equilibrium systems, a discontinuous
transition implies that stochastic fluctuation is required to over-
come an activation barrier (i.e. it is a nucleated process), while for a
continuous transition, the transition happens spontaneously25

(Supplementary Fig. 12). A similar picture can hold for non-
equilibrium phase transitions; see, e.g. ref. 31. In practice, the
distinction between discontinuous and continuous transitions can
become blurred by finite size effects (one only observes a true
discontinuity in the phase diagram for systems of infinite size)32.
In our phase diagram, there is a large jump in the value of the

order parameter between the transiently pinned and pinned
phases (Fig. 7c). Therefore, we tentatively suggest that this may be
a discontinuous transition, with the apparent smoothing arising
from finite size effects. In this discontinuous transition scenario,
the transiently pinned phase would arise only in systems of finite
size (including real biofilms), while a hypothetical biofilm of
infinite lateral size would transition directly from the unpinned to
the pinned state upon varying the control parameter. This might
also suggest that the transition to a pinned state is a nucleation
phenomenon (Supplementary Fig. 12), such that a critical
fluctuation, e.g. the appearance of a gap in the active layer that
is wide enough that it does not close up again, may be needed to
initiate biofilm fingering (Supplementary Fig. 12). This point could
be clarified in future simulations by systematically varying the
system size.
Our study is limited to parameter sets for which the active layer

is thickness is at least several cell diameters. For extreme
parameter sets (very small Sbulk or very large μmax), a different
type of biofilm morphology can emerge, in which the fingers split
into multiple branches. This phenomenon shows apparent

similarity with diffusion-limited aggregation in statistical
physics33, and may be worthy of investigation in future work.
In this work, we have taken care to study biofilm growth over

long times, once a steady state has been reached; this required
the development of a computationally efficient clipping algorithm
(see Methods and Supplementary Material). We note that at earlier
times in our simulations, the interface roughness can appear to
reach a plateau (even in the pinned phase), before later increasing
(Supplementary Fig. 13). Therefore, in shorter simulations, it may
be hard to know whether the true steady state has been reached.
Our long-time simulations suggest that, in the pinned phase, the
interface roughness does not, in fact, reach a steady state but
rather continues to increase because the tips of the fingers
continue to grow while the interface remains pinned at the
troughs. In contrast, a finite steady-state roughness would
correspond to an interface that has stalled in its net growth.
From a practical point of view, the fact that the biofilm fingers
continue to grow in our simulations presents computational issues
since the use of our clipping algorithm is constrained in the case
of fingered biofilms (see Methods). This means that while the
steady state of the active layer dynamics and interface roughness
behaviour can be reached, it remains challenging to reach the full
steady state of the pinned interface fraction in the case of the
pinned biofilms (see, e.g. Supplementary Fig. 8).
Our simulations are performed in two dimensions, for reasons

of computational feasibility. The dimensionality of a system can
have profound effects on phase transitions24: therefore, it will be
important to determine in future work whether the same
phenomena occur in 3D models. We also note that the
representation of mechanical interactions in our simulations is
rather crude (the iDynoMiCS algorithm simply resolves overlaps
due to growth by a random ‘shoving’ algorithm; see Methods and
ref. 21). Other studies have represented mechanical interactions in

(a)

(b) (c) (d)

x105 x105 x105

Fig. 5 Biofilm roughness dynamics driven by interface pinning. Panel a shows roughness trajectories (roughness vs cell number) for each of
the simulations of Fig. 2, i.e. for varying Sbulk and μmax. Trajectories in blue, red and green correspond to simulations in the unpinned,
transiently pinned and pinned phases, respectively, as defined by their interface pinning behaviour (see Fig. 4). The trajectories shown in black
and grey appear to be transitioning between phases. Panels b–d show a sample roughness trajectory for each of the phases (blue/red/green
line) plotted together with the corresponding trajectory for a fraction of the interface that is pinned, i.e. that has not moved in the previous
6 hours of simulated time (purple line). Panels b–d show the same simulations for each phase as Fig. 4, i.e. Sbulk= 0.01 g/L, μmax= 0.1 1/h for
the unpinned phase, Sbulk= 0.01 g/L, μmax= 0.4 1/h for the transiently pinned phase and Sbulk= 0.0005 g/L, μmax= 0.4 1/h for the pinned
phase. Note that for the unpinned phase (b) the blue and purple curves are indistinguishable. Supplementary Figs. 7 and 8 show the same
trajectories of interface roughness and pinned interface fraction for all of our simulations individually.
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more detail14,34–36; use of such algorithms may lead to deeper
insight into the role of mechanical interactions in the pinning
transition.
Our work has an interesting analogy with pattern formation in

crystal growth, where complex crystal morphologies arise from
instabilities in the advancing solidification front37. The local rate of
crystal growth can be limited by the rate of diffusion of heat away
from the crystallisation front (e.g. crystallisation of small molecules
or metals), or by the rate of diffusion of molecules to the growth
front (e.g. in polymer crystallisation). This leads to fingering
instabilities similar to the nutrient-driven fingering instability in
biofilm growth11. The emergence of different crystal forms might
also have parallels with the emergence of mutant clones in a
biofilm. However, we note that in crystal growth, the morpholo-
gical instability is ultimately limited by surface tension, which
tends to smooth the interface37, while the limiting factor for
biofilm growth is less clear (although it probably involves
mechanical interactions). We also note that in a crystal, growth
occurs only right at the interface, while for a biofilm, there is a

growing region of finite thickness at the interface (the active
layer).
Our work also has a clear connection with the statistical physics

of pinning-depinning transitions in interface growth. Here, diverse
interface growth phenomena are grouped into a small number of
‘universality classes’, based on their scaling behaviour (the values
of the exponents in plots of, e.g. roughness vs time). Phenomen-
ological stochastic differential equations are then used to describe
interface growth within a particular universality class; for example,
the classical Kardar–Parisi–Zhang (KPZ) equation describes fluc-
tuations of an unpinned growing interface, while the addition of a
quenched noise term to the KPZ equation leads to a model for
interface pinning. This ‘quenched KPZ (qKPZ)’ model shows a flat
phase with no pinning sites, a pinned phase and an intermediate
phase in which pinning sites are overcome24,38 (although it is
unclear whether this model predicts monotonically increasing
roughness in the pinned phase). The qKPZ equation has been
applied to biofilm growth39,40, but the source of the quenched
noise is usually ascribed to external inhomogeneities in the
environment. In our simulations, there are no such

(i) (i)

(ii) (ii)

(iii)

(iii)
(iv)

(iv)(v)

(v)

(vi)

(vi)

x10 -4g/L

Pinned interface 

A

B

C

Fig. 6 Active layer gap dynamics and pinning. The left panel shows an active layer kymograph plot for a simulation in the transiently pinned
phase (Sbulk= 0.005 g/L, μmax= 0.2 1/h). The local active layer thickness is plotted along the biofilm width (horizontal axis). Active layer
thickness is indicated by the colour scale, such that darker colours represent regions with thin or no active layer and lighter colours represent
regions with a thicker active layer. The vertical axis represents the number of bacterial cells in the biofilm (i.e. the total biomass), revealing the
dynamics of the active layer as biofilm growth progresses. In the kymograph, gaps in the active layer are visible as dark lines. The red dots
indicate local regions of the interface that are pinned (see Methods). Snapshots (i–vi) on the right-hand side correspond to the dashed lines
on the kymograph. Labels A, B and C indicate regions of the interface corresponding to just before, during and after the formation of a
pinning site. In particular, a small bulge in the interface (labelled A), bordered by two active layer gaps (arrows) is engulfed by the lateral
expansion of surrounding, larger bulges (B and C).
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inhomogeneities; rather, pinning arises from the spontaneous
emergence of gaps in the active layer. In the interface growth
theory literature, KPZ-type models also exist where interface
pinning arises from internal fluctuations in the growth pro-
cess38,41,42, or where the growing interface is coupled to a non-
equilibrium field (such as a nutrient field)43. However, the
relevance of such models for bacterial biofilms and colonies has
not been investigated. It is also possible that biofilm growth might
be described by an alternative type of interface growth model,
such as diffusion-limited aggregation33. While our focus here was
on a more mechanistic analysis of the role of the active layer, it
would certainly be interesting in future work to clarify the
connection with interface growth theory by measuring the scaling
exponents for biofilm growth in individual-based simulations.
From a biological point of view, our simulations are, of course,

highly simplified. Perhaps most importantly, our model does not
include the extracellular matrix (EPS), which means that our
simulated biofilms have a much higher cell density than flow cell
biofilms formed by, e.g. Pseudomonas aeruginosa. We would also
expect the mechanical properties of the biofilm to be strongly
influenced by EPS44. This could affect the predictions of the
model, since, for example, EPS-mediated interactions might act
non-locally (between cells relatively far apart in the biofilm), which
could alter the phase behaviour. Attachment and detachment of
planktonic bacteria from the biofilm6, and possible external forces
acting on the biofilm (e.g. from host tissue or mucus as in infected
cystic fibrosis lung tissue45) are also expected to strongly affect
the spatial structure. We also neglect many other features of real
biofilms, such as fluid flow, chemical signalling between cells and
phenotypic changes associated with biofilm growth. The size of
our simulated biofilms is also unrealistic. In order to reach the
steady state, which is necessary for a rigorous analysis of the
underlying physics, our simulations generate extremely thick
biofilms, much thicker than those seen in experimental flow cell
experiments.
Routine characterisation of surface roughness in confocal laser-

scanning microscopy images of flow-cell biofilms is now
possible46,47. Previous experimental studies of biofilm develop-
ment have mainly focused on early-stage biofilms, where
mechanisms such as collective surface motion48, transitions

between 1, 2 and 3-dimensional forms22,49,50 and biofilm seeding
from preformed aggregates2,51 have been discussed. Motility can
also play a role in later-stage biofilms, where mushroom-shaped
structures can form in which non-motile bacteria form ‘stalks’
while motile bacteria form ‘caps’3. Up to now, few studies of
dynamical tracking of changes in biofilm structure, such as the
formation and annihilation of bulges in the growing interface that
we see in the ‘transiently pinned phase’, have been performed for
mature biofilms. Our study suggests that such analysis, while
technically challenging, could lead to interesting insights—
although it is clear that biological mechanisms, including cell
motility, that are not considered in our study, may prove to be
important.
Despite the simplicity of the model that has been studied in this

work, our simulations reveal fundamental insights into the spatial
structure of growing biofilms. Specifically, our work points to
pinning of the growing interface, as a driver for spatial structure.
Furthermore, our simulations reveal a key role for the dynamics of
the active layer in driving the creation and annihilation of pinning
sites at the biofilm interface, resulting in transitions in spatial
structure, with drastic effects on the interface roughness.

METHODS
Simulation methods
In this work, we use individual-based biofilm modelling software
iDynoMiCS21. Briefly, iDynoMiCS models the bacteria in a biofilm
as individual agents whose behaviour is coupled to a solute
reaction-diffusion equation21. The agents, which are assumed to
be discs in continuum 2D space, each grows with a specific
growth rate μ according to the Monod equation:

μ ¼ μmax
S

kS þ S
; (1)

where μmax is the maximum specific growth rate of the bacteria, kS
is the concentration of the solute at which the growth is half
maximal, and S is the local solute concentration of the bacterial
cell52. Once a bacterial cell reaches a maximum radius (which has
a stochastic element), it divides into two daughters. Bacteria
interact with one another mechanically via a shoving algorithm.

Fig. 7 Phase diagram for the pinning transition. In each panel, our chosen order parameter, the average steady-state pinned interface
fraction, is plotted against three potential control parameters for the data from our simulations. These are the average active layer thickness
(a), the steady state of the standard deviation of the active layer thickness (b), and the steady state coefficient of variation (i.e. standard
deviation/mean) of the active layer thickness (c). Simulation data points are coloured according to whether the simulation is in the unpinned
(blue), transiently pinned (red) or pinned (blue) phase. The simulations included in our plot are as in Fig. 4, but the transitional simulations (see
Fig. 5) are not included. The simulation with μmax= 0.4 1/h, Sbulk= 0.005 is also not included, as it had not fully reached the steady state (see
Supplementary Fig. 8). To gain resolution in the transition region, we also included additional simulations in the transiently pinned phase, with
parameter values of μmax= 0.3 1/h, Sbulk= 0.007 g/L; μmax= 0.33 1/h, Sbulk= 0.01 g/L, μmax= 0.45 1/h, Sbulk= 0.01 g/L; μmax= 0.25 1/h,
Sbulk= 0.005 g/L; μmax= 0.37 1/h, Sbulk= 0.01 g/L. Error bars are calculated using the standard error of the mean for correlated data (see
Methods).
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Briefly, this algorithm detects pairs of bacteria whose ‘zones of
influence’ (defined to be the radius multiplied by a ‘shove
parameter’) overlap, and shuffles bacterial positions to avoid such
overlaps21. Although iDynoMiCS has the facility to model
extracellular matrix (EPS) as non-replicating particles, we did not
model EPS in this study. In iDynoMiCS, the solute is represented by
a concentration field which varies in space and time due to
diffusion and consumption by the bacteria. A separation of
timescales is assumed, such that the reaction-diffusion equation
for the solute is assumed to reach a steady state faster than the
timescale for bacterial growth; hence the solute concentration
equations are solved to a steady state for each interaction of the
bacterial growth updates. The computational domain is set up to
resemble a flow cell, where the biofilm grows on a hard surface
and nutrients diffuse from above. Convective flow is not modelled,
but rather it is assumed that there is a stationary layer of fluid
close to the biofilm (the ‘boundary layer’)21,53. It is also assumed
that the diffusion constant for solute is reduced inside the biofilm
by a fixed factor compared to outside the biofilm. The input values
we use in our simulations are based on experimental values for
oxygen-limited Pseudomonas aeruginosa biofilms, as outlined in
Table 1. The iDynoMiCS start files used in this study are publicly
available (see section ‘Code availability’).
In order to reach long simulation timescales, we also use an

additional ‘clipping’ algorithm in combination with iDynoMiCS.
This algorithm periodically removes inactive cells far below the
growing front, such that a computationally feasible number of
cells remain in the simulation space. This is achieved by pausing
the iDynoMiCS simulation and removing the relevant cells, or
‘clipping’, and then restarting the simulation. This clipping
procedure is done at regular time intervals, such that each
complete biofilm simulation consists of N segments, each of
length (in time) Ts, producing a total simulated time T= NTs. In the
clipping procedure, bacterial cells, which are both below the
lowest actively growing cell and below the minimum point of the
interface (which can be different points depending on the biofilm
configuration), are removed. The complete algorithm is shown in
the Supplementary Information and the clipping code is publicly
available (see section ‘Code availability’). We rigorously tested this
algorithm to ensure it does not perturb biofilm growth
(Supplementary Figs. 14, 15).

Characterisation of spatial structure
As we have seen, our analysis focuses on the active layer, which
we define as the layer of growing cells at the top of the biofilm.
More specifically, we begin by defining a threshold growth rate;
cells which grow faster than this rate are defined to be part of the
active layer. We consider a cell to be in the active layer when it
grows at greater than 0.1% of the maximal specific growth rate
μ= μmaxSbulk/(kS+ Sbulk) that is possible under the conditions of
the simulation (i.e. for given values of μmax and Sbulk). Therefore
the condition for a cell to be part of the active layer is

μ>
μmax

1000
Sbulk

ks þ Sbulk
: (2)

We now outline how the average and standard deviation of the
active layer thickness are calculated. We define a grid spanning
the simulation domain with D columns (horizontal bins) and H
rows (vertical bins) of width 8 μm. For each of the D columns, we
find the total number of ‘active’ grid squares whose biomass has
an average specific growth rate above the threshold in Equation
(2). This defines the local active layer thickness. For some biofilm
configurations, for example, if the biofilm is rough, there can be a
growing layer both at the leading edge of the biofilm, and within a
trough, so the active grid squares are not necessarily adjacent to
one another (Supplementary Fig. 16). Once the active layer width
for each vertical strip has been found, the mean active layer

thickness is found by averaging over all the D columns. The
standard deviation of the active layer thickness is, in turn,
calculated as the standard deviation of the active layer thickness
of each of the columns i.e. it is the standard deviation of the local
thickness of the active layer for a particular configuration. An
active layer gap occurs when a vertical column on the grid
contains no active grid squares.
Roughness is defined as the standard deviation of the height of

the biofilm interface. In our simulations, especially in the pinned
phase, we often see interface overhangs, in which the boundary of
the biofilm has multiple values for a given position along the
horizontal direction (see, e.g. the bottom right panels of Fig. 2). To
correctly account for overhangs, we use a multi-valued inter-
face23,54. On our grid of D 8 μm columns and H 8 μm rows, we
search for grid squares which contain biomass but have a nearest
neighbour that does not contain biomass. This produces a set of
grid squares corresponding to the interface {k}, k= 1, ... Nint where
Nint ≥ D. Defining the interface in this way allows there to be
multiple vertical points for each horizontal point along the
boundary—hence its description as a multi-valued interface
(Supplementary Fig. 16).
We then define the interface width, i.e. the interface roughness,

as the root mean square height of the points on the interface:

WðtÞ ¼ hðtÞ � hhðtÞi½ �2
D E1=2

: (3)

Here, 〈h〉 is defined as the mean value of hk, where hk is the
vertical coordinate of the kth point along the interface, namely,

hhi ¼ 1
Nint

XNint

k¼1

hk (4)

with Nint being the number of points along the interface.
We also define the stationary or pinned interface fraction. Here,

we define the interface boundary as above, then look for parts of
the interface which are both inactive and have not moved in a six-
hour period (this being the frequency of output files). Specifically,
we compare the positions of those interface grid squares which
are inactive (i.e. they do not meet the condition of Eq. (2), with the
interface boundary of the configuration 6h earlier. If this interface
point is common to both configurations, it is defined to be both
inactive and pinned. The pinned interface fraction fP is then
defined as

f P ¼ NP

Nint
(5)

where NP is the number of inactive, pinned interface points and
Nint is the number of points on the interface.
The error bars in Fig. 7a–c are calculated as the standard error of

the mean (SEM) of the n time points that were recorded for each
variable (average active layer thickness, standard deviation of the
active layer thickness and the pinned interface fraction) once the
steady state had been reached, adjusted for the fact that our time
series are correlated data. The auto-correlation time τ was
calculated using code from ref. 55. The effective number of
independent data points neff in our correlated data could be
calculated as neff= n/τ. Finally, the standard error of the mean
(SEM) was calculated as SEM ¼ σ=

ffiffiffiffiffiffiffi
neff

p
, where σ is the standard

deviation of the n steady-state time points.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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