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Activity-based protein profiling identifies alternating activation
of enzymes involved in the bifidobacterium shunt pathway or
mucin degradation in the gut microbiome response to soluble
dietary fiber
Bryan J. Killinger1,2,4, Christopher Whidbey1,3,4, Natalie C. Sadler1, Adrian J. DeLeon1, Nathalie Munoz1, Young-Mo Kim 1 and
Aaron T. Wright 1,2✉

While deprivation of dietary fiber has been associated with adverse health outcomes, investigations concerning the effect of dietary
fiber on the gut microbiome have been largely limited to compositional sequence-based analyses or utilize a defined microbiota
not native to the host. To extend understanding of the microbiome’s functional response to dietary fiber deprivation beyond
correlative evidence from sequence-based analyses, approaches capable of measuring functional enzymatic activity are needed. In
this study, we use an activity-based protein profiling (ABPP) approach to identify sugar metabolizing and transport proteins in
native mouse gut microbiomes that respond with differential activity to the deprivation or supplementation of the soluble dietary
fibers inulin and pectin. We found that the microbiome of mice subjected to a high fiber diet high in soluble fiber had increased
functional activity of multiple proteins, including glycoside hydrolases, polysaccharide lyases, and sugar transport proteins from
diverse taxa. The results point to an increase in activity of the Bifidobacterium shunt metabolic pathway in the microbiome of mice
fed high fiber diets. In those subjected to a low fiber diet, we identified a shift from the degradation of dietary fibers to that of gut
mucins, in particular by the recently isolated taxon “Musculibacterium intestinale”, which experienced dramatic growth in response
to fiber deprivation. When combined with metabolomics and shotgun metagenomics analyses, our findings provide a functional
investigation of dietary fiber metabolism in the gut microbiome and demonstrates the power of a combined ABPP-multiomics
approach for characterizing the response of the gut microbiome to perturbations.
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INTRODUCTION
In healthy mammalian hosts, microbes within the gastrointestinal
(GI) tract form a mutually beneficial relationship with their host
through the exchange of nutrients and metabolic products1,2. For
example, carbohydrates that can be metabolized by the host are
limited to mostly starch due to a lack of host-derived enzymes
capable of metabolizing the wide array of polysaccharides
commonly found in the diet3. These indigestible polysaccharides,
termed dietary fiber, are commonly found in vegetables and fruit.
In contrast to mammals, the metagenome of gut microbiota does
encode for enzymes capable of degrading dietary fibers into
nutrients that are tractable to the host and beneficial to the
microbes4. Metabolic assimilation of these carbohydrates by gut
microbes leads to the production of metabolites such as short-
chain fatty acids (SCFAs) that can be absorbed by the host within
the GI tract5. SCFAs can have substantial effects on the host by
regulating gut barrier function, inflammation, and host metabo-
lism6–8. In contrast to the benefits provided by increased fiber
consumption, a low fiber diet has a considerably negative impact
on host health. Increased susceptibility to pathogens, obesity, type
2 diabetes, cancer, and cardiovascular disease have all been
associated with a low fiber diet9–11. A mechanistic understanding
for these correlations has yet to be fully uncovered but is needed,

because the literature suggests that these adverse health
outcomes may largely be caused by the response of the gut
microbiome12,13.
Studies on the effect of dietary fiber intake on the microbial

composition of the gut has revealed bacteria capable of
degrading dietary fiber tend to increase in abundance in humans
when they are fed a plant-based diet14. A westernized low fiber
diet reduces microbial diversity, while a diet rich in dietary fiber
increases the capacity for production of SCFAs such as acetate,
butyrate, and propionate. While sparse, there is evidence that low
dietary fiber leads to selective pressure favoring gut microbes that
do not rely on carbohydrates ingested by the host for energy11.
Other sources of carbohydrates, such as the mucin glycans of the
protective mucosal barrier lining the gut, may provide an
alternative energy source for microbes encoding the appropriate
enzymatic capabilities15. Mucin glycans vary in composition and
configuration and contain sugars such as N-acetylgalactosamine,
galactose, fucose, and N-acetylneuraminic acid (Neu5Ac). While
there is a constant turnover of mucin glycans by gut bacteria in
healthy individuals, certain conditions may optimize the environ-
ment for mucin-foraging bacteria to degrade the mucosal layer
and provide access for pathogens to infect the underlying
epithelial cells of the GI tract11. Specifically, deprivation of dietary
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fiber decreased the thickness of the gut mucosal barrier in
gnotobiotic mice while increasing their susceptibility to the
pathogenic bacteria Citrobacter rodentium. Corresponding tran-
scriptional data indicated that the low fiber diet increased
expression of microbial enzymes in the gut that likely release
sugars from host glycans. This suggests that the decrease in
observed mucosal barrier thickness was likely due to microbial
degradation. However, this system utilized gnotobiotic mice
colonized with a synthetic, 14-member microbial community
based on genomic sequence availability and their relevance to
human gut microbiota. As gut microbiota differ between
mammalian hosts, direct measurement of the response of the
native microbiota is needed may reveal microbial activity that
cannot be observed in gnotobiotic models.
Identifying the molecular basis of interactions of dietary fiber

and gut microbiota are needed to understand the impact on host
health. Most studies of the gut microbiome rely on metagenomic
or metatranscriptomic methods to predict community members
and genes that are responsible for a given function. However,
these studies can only identify a correlation between abundance
and functional activity. To understand response of the gut
microbiome to perturbations at a functional level, approaches
capable of identifying and quantifying biochemical activity are
needed. Activity-based protein profiling (ABPP) is one such
approach16, which employs small molecules termed activity-
based probes (ABPs) to enrich and measure functionally active
enzymes that have an affinity for the ABP. Enriched proteins can
then be identified by mass spectrometry, providing a direct
measurement of protein function within complex systems such as
the gut microbiome. The aim of this study was to characterize the
gut microbiome response to dietary fiber at the functional level
using ABPP coupled to microbial composition and metabolome
analyses. This study addresses the hypothesis that a low fiber diet
upregulates mucin foraging enzyme activity exposing the host to
health consequences. We applied the sugar-derived activity-based
probe GH2c-ABP17 to the GI content of mice fed diets either high
or low in soluble dietary fiber to enrich microbial proteins with an
affinity for the sugar moiety of the probe. We then analyzed the
multi-omics and ABPP measurements and identified significant
alterations to microbial protein activity between the high and low
fiber groups.

RESULTS
GH2c-ABP enriches carbohydrate active enzymes from the
microbiome
As a model system, we established littermates (three sets of four
mice each) that were provided with dietary pectin and inulin (high
soluble fiber or HF; two littermates per set) or cellulose (low
soluble fiber or LF; the other two littermates per set) (Fig. 1).
The GH2c-ABP (Fig. 1, top right) contains three distinct parts: an

affinity group designed to bind to target enzymes (a sugar
moiety), an enrichment group to enable isolation of active
proteins (a bead conjugated to the probe using copper-
catalyzed azide alkyne cycloaddition), and a reactive group to
form a covalent bond with the target protein (iodoacetamide).
Because of the comparably wide-ranging reactivity of iodoaceta-
mides with nucleophilic residues, the GH2c-ABP was applied to
broadly identify and measure the functional activity of sugar-
binding proteins present in the GI content of the mice via LC-MS/
MS measurements. This resulted in the identification of 295
proteins containing uniquely identified peptides. Statistical
analysis with PECA18 resulted in the identification of 50 proteins
enriched in the LF group and 107 proteins enriched in the HF
group (q value < 0.05; all protein results use a t test with
moderated t-statistic) while the remaining 138 had no significant
difference between groups (q value ≥ 0.05). Of the total 295

identified proteins, we were able to annotate 78 via sequence
alignments to the UniProt database (E value < 1E-9, see Supple-
mentary Table 1)19–21 or by mapping their sequences to Cluster of
Orthologous Groups orthologs with the eggNOG Mapper22–25.
From these 78 proteins, 42 were significantly enriched under HF
conditions (q value < 0.05), 23 enriched under LF conditions
(q value < 0.05), and 13 did not reach statistical significance
(q value ≥ 0.05). Proteins were selected for further analysis if a
CAZy domain was confidently assigned (≥2 tools from dbCAN2). A
selection of these proteins reveals enzymes produced by many
distinct taxa with functions ranging from ABC transporters and
isomerases to glycosidases and kinases (Fig. 2).

A high fiber diet results in elevated activity of carbohydrate
transporters from diverse taxa and excreted CAZymes
Given that secreted proteins play a key role in degradation of
dietary fibers, we searched for secretion signals in all of our
detected probe-targeted proteins using SignalP26. Under HF
conditions, we detected increased activity for three
carbohydrate-active enzymes (CAZymes) that had predicted
secretion signals. One of these proteins has a PL9 polysaccharide
lyase domain and aligned to a protein sequence from the
Firmicutes taxa Caldicoprobacter faecalis (Fig. 2b). Characterized
members of this family have demonstrated pectate lyase
activity27–29. The other two CAZymes with predicted secretory
signals were a glucosidase belonging to the GH3 family and a
GT28-family glycosyltransferase (Fig. 2b). The majority of secreted
proteins that were more active under HF conditions are annotated
as solute binding protein (SBP) components of ABC transporters.
Additionally, we found several organisms that produced distinct
proteins under the different conditions (Fig. 2b).

The bifidobacterial “bifid shunt” pathway and α-glucan
metabolism are more active in a high fiber environment
We detected eight enzymes produced by Bifidobacterium pseudo-
longum, which is commonly found in the GI tract of mammalian
and avian hosts30,31. A defining feature of bifidobacterial carbon
metabolism is the presence of an alternative carbohydrate
fermentation pathway known as the “bifid shunt”32,33. This
pathway is defined by a key enzyme, fructose-6-phosphoketolase,
and is theoretically capable of generating more moles of ATP per
mole of glucose than the more common Embden–Meyerhof
Parnas pathway. Among the eight B. psuedolongum enzymes we
detected, seven were significantly more active in the HF group (q
value < 0.05; t test with moderated t-statistic) and included the
bifid shunt enzymes fructose-6-phosphate phosphoketolase,
transketolase, ribulose phosphate 3-epimerase, and the down-
stream enolase (Fig. 3).
Relevant to the upstream degradation of inulin, we also

detected a GH32-family β-fructofuranosidase as well as two
proteins predicted to be involved in α-glucan metabolism: a
GH13 1,4-glucan branching enzyme and a GH77 amylomal-
tase34–36. The substrate of these enzymes may be the provided
dietary fiber or endogenous glycans such as bacterial glycogen.
One predicted β-xylosidase was also identified with increased
abundance under HF conditions, though it did not reach statistical
significance.

Low fiber conditions result in elevated activity of mucin
glycan degradation by “M. intestinale”
Of the 23 annotated proteins significantly enriched in the LF
group, many were predicted to be carbohydrate ABC transporter
SBPs from various microbes belonging to the Firmicutes phylum
(Fig. 2b). The most commonly identified organism producing
enriched proteins in the LF group was the recently described
Bacterium 1XD8-92 or “Musculibacterium intestinale”37. This
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organism was isolated from the feces of a Lepob/ob or leptin-
deficient C57BL/6J mouse and is genetically similar to Eisenber-
giella tayi, a human-associated isolate assigned to the family
Lachnospiraceae38. Of the 10 “M. intestinale” proteins with elevated
activity in the LF group, five are carbohydrate ABC transporter

SBPs and two are enzymes involved in the degradation of Neu5Ac
(Fig. 4a).
Neu5Ac is a monosaccharide commonly found as a terminal

residue of mucin glycans, which are essential components of the
mucosal barrier lining the GI tract. We identified elevated activity

Fig. 2 Distinct enzymes revealed by ABPP as active in high and low fiber conditions. Peptide intensities shown in red on the heatmap
indicate the log2-transformed sum of unique peptide intensities for proteins that were targeted by the GH2c-ABP (rows) for each littermate
sample group (columns). White cells indicate the protein was not detected in the specified littermate sample group. Littermate sample groups
were clustered using Aitchison distance. A blue log2 fold change indicates enrichment in HF conditions while green indicates proteins
enriched under LF conditions (directly right of heat map; * q-value < 0.05; + q value < 0.01). The predicted phyla that produced the
corresponding protein is shown in the rightmost column (Tan: Actinobacteria; light green: Bacteroidetes; light blue: Firmicutes). a The 78
carbohydrate-related proteins identified by ABPP. b A subset of the 78 carbohydrate-related proteins consisting of putative CAZymes and
transporters.

Fig. 1 Experimental design for functional resolution of the microbiome response to altered fiber diets. Four littermates were cohabitated
for 1 week before splitting into high fiber (HF) and low fiber (LF) littermate pairs. After 1 week, GI content was investigated with ABPP and
multi-omics analyses. A GH2c-ABP linked resin was used to enrich proteins with metabolic or transport activities for sugar moieties from the GI
proteome. Enriched proteins were then identified and quantified using mass spectrometry. The gut metagenome for each mouse was
obtained via shotgun sequencing. Metabolites were analyzed via mass spectrometry. Omics measurements for the HF and LF groups were
then compared.
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Fig. 3 ABPP identifies Bifidobacterium enzymes involved in carbon catabolism with increased activity under HF conditions. Of the eight
bifidobacterial enzymes, seven were significantly enriched (q value < 0.05) under HF conditions. Steps of the pathway are shown to the left
and a heatmap of protein intensity is shown on the right. The log2-transformed sum of unique peptide intensities for proteins is shown in red,
while white cells indicate the protein was not detected in that sample group. Imputed log2 fold change is shown on the right where blue
indicates proteins enriched in HF conditions and green indicates proteins enriched under LF conditions.

Fig. 4 “M. intestinale” proteins involved in carbohydrate uptake and sialic acid (Neu5Ac) breakdown are more active under LF
conditions. a 10 of 11 identified “M. intestinale” proteins were significantly enriched under LF conditions (q value < 0.05), while a predicted
L-arabinose isomerase was only detected under HF conditions. The log2-transformed sum of unique peptide intensities for proteins is shown
in red, while white cells indicate the protein was not detected in that sample group. Imputed log2 fold change is shown on the right (blue:
enriched in HF conditions, green: enriched in LF conditions). b Two key enzymes in Neu5Ac degradation—an N-acetylneuraminate lyase and
an N-acetylglucosamine-6P-deacetylase—were more active under LF conditions, indicating “M. intestinale” actively catabolizes Neu5Ac in the
absence of soluble dietary fiber.
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in the LF group of the first key enzyme involved in degradation of
Neu5Ac, N-acetylneruaminate lyase (NanA), which converts
Neu5Ac to pyruvate and N-acetylmannosamine (Fig. 4b).
N-acetylmannosamine can further be converted to fructose-6-
phosphate by four enzymes, one of which, N-acetylglucosamine-6-
phosphatase (NagA), was also enriched under LF conditions.

Metagenomics supports ABPP by providing evidence of
increased mucin glycan degradation and “M. intestinale”
abundance in response to low dietary fiber
To support the ABPP analysis, we assigned a lowest-common
ancestor to metagenomic reads using Kraken239 and quantita-
tively compared estimated taxonomical abundances between the
HF and LF groups using LEfSe40 (see Supplementary Table 2). Out
of 19,062 taxa with kingdom to subspecies taxonomic ranks, we
identified 12 taxa with significantly elevated abundance due to
the HF diet and 12 with significantly elevated abundance due to
the LF diet (LDA-score > 3.0, P value < 0.05). In the HF group, we
observed an increase in the Bacteroides genera (5.13 LDA score, P
value < 0.004), aligning with similar observations from previous
microbiome studies41–43. Notably, in the LF group, we found “M.
intestinale” to have a significantly elevated abundance (3.69 LDA
score, P value < 0.004). In terms of relative abundance, an average
of 1.11% of total bacterial reads were assigned to “M. intestinale”
per sample in the LF group while only 0.06% were assigned to “M.
intestinale” in the HF group. These observations align with our
ABPP analysis and provides evidence of this organism’s ability to
thrive under LF conditions.

We then sought to determine how dietary fiber impacted the
functional capacity of the gut metagenome. Protein coding
sequences from assembled metagenomes were annotated with
Gene Ontology (GO) identifiers and statistically tested for
enrichment of function between the HF and LF groups (see
Supplementary Table 3). Out of 1332 GO functional identifiers, we
identified 8 with differential abundance between dietary condi-
tions (q value < 0.05; all q-values were determined using a Kruskal-
Wallis sum-rank test followed by Wilcoxon rank-sum test)44. The LF
diet led to a statistically significant increase in reads mapping to
exo-alpha-sialidase activity [GO:0004308] (1.19 log2 fold increase;
q value < 0. 0.0118), indicating an increase in the total metage-
nomic capacity for cleavage of terminal mucin sialic acid residues
such as Neu5Ac45. In contrast, the HF diet led to statistically
significant increase in reads mapping to GO identifiers for
galactarate dehydratase activity [GO:0008867] (0.955 log2 fold
increase; q value < 0.0232) and butyryl-CoA dehydrogenase
activity [GO:0004085] (0.9355 log2 fold increase; q value < 0.0198).
Notably, the GO identifiers corresponding to the ABPP targets
NanA and NagA were not identified as being significantly enriched
under LF conditions.

Metabolomics data supports changes in enzymatic activities
detected by ABPP
In addition to ABPP and metagenomic sequencing analysis, we
investigated how the gut metabolome changed in response to the
availability of dietary fibers (Fig. 5, see Supplementary Table 4). We
observed that the HF diet resulted in a relative increase in

Fig. 5 Differentially abundant metabolites in the GI tract in response to inulin and pectin. Volcano plot of detected metabolites.
Significantly differentially abundant metabolites (q value < 0.05, |log2 fold-change| > 1.0) are labeled and colored green or blue, while
metabolites with no significant difference between groups are colored gray. A positive (green nodes) or negative (blue nodes) log2 fold-
change indicates a relatively higher abundance in the LF or HF group respectively. Node shapes indicate metabolite class while nodes
indicating metabolites discussed in the text are enlarged and labeled.
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abundance of the dietary fiber components galacturonic acid and
fructose (Fig. 5a). The HF diet also resulted in a significant
increased abundance of the microbial-derived SCFAs acetate and
propionate. Increased amounts of butyrate did not reach statistical
significance. Other metabolites such as mannose, mannitol-
phosphate, and scyllo-inositol were also more abundant under
HF conditions. When compared to the HF diet, the LF diet resulted
in a significant relative increase of all detected proteogenic amino
acids and many lipids. Notably, the gut mucin sugar Neu5Ac was
significantly more abundant in the LF group (Fig. 5).

DISCUSSION
A major step toward applying gut microbiome research to
improve health outcomes is the ability to identify causal relation-
ships between biochemical function and specific taxa and
enzymes. As such, it is important to apply new techniques that
couple protein identification to a measurement of activity. ABPP is
well suited to this challenge. In this study we performed a multi-
omics analysis incorporating ABPP to investigate the functional
response of the mouse gut microbiome to high or low dietary
fiber conditions at the molecular level.
Organisms present in the gut microbiome interact with each

other in several ways. One type of interaction is cross-feeding, in
which the products of one organism’s metabolic activity may
serve as a carbon or energy source for another46. In some cases,
the product may be a “public good” where both the metabolite
producer and other community members are capable of further
metabolizing the product. This has been previously demonstrated
for Bifidobacteria strains and Bacteroides strains grown on dietary
polysaccharides in vitro47,48. Using ABPP, we found that most
secreted proteins in vivo were carbohydrate ABC transporter SBPs
from diverse taxa, while only a few secreted proteins were
enzymes involved in fiber degradation. This suggests that when
dietary fiber is provided, the identified taxa producing these
transporters are more active in assimilating the oligo- and
monosaccharide components of soluble dietary fibers liberated
by secreted CAZymes such as the PL9-containing protein
described above. This suggests that a “public good” type of
cross-feeding may be occurring using the soluble fiber as a
substrate. Intriguingly, we also found different proteins from the
same taxon to be active under different conditions. This may be
due to strain-level differences, or it may be that the taxon persists
under both conditions but switch active proteins depending on
substrate availability. Incorporating metatranscriptomics and
global metaproteomics would help elucidate what level or levels
of regulation control that switch.
In the high fiber group, we observed elevated activity of

enzymes produced by B. pseudolongum involved in the degrada-
tion of fructo-oligosaccharides (FOS) via the “bifid shunt” pathway.
Downstream of FOS degradation, our results show that B.
pseudolongum produces active bifid shunt enzymes in vivo,
including the fructose-6-phosphate phosphoketolase central to
this pathway. To our knowledge, this is the first evidence of in vivo
bifid shunt pathway activity at the enzyme level in a mammalian
GI tract. These data connect to another type of cross-feeding
where the waste products of the bifid shunt (acetate and lactate)
are utilized by other organisms as a carbon source. Both acetate
and lactate were detected in our metabolomics analysis. While
acetate was present at higher levels under HF conditions, lactate
was more abundant under LF conditions. The exact ratio of lactate
to acetate produced by bifidobacterial fermentation is reported to
be dependent on strain, carbohydrate source, and environment49.
In our system, lactate may serve as a cross-feeding metabolite
under HF conditions that is further degraded by other gut
community members. This would agree with the observation that
propionate, a product of cross-feeding, is elevated under HF
conditions as well50,51. Alternatively, lactate could be produced as

an end product under LF conditions, leading to a higher relative
abundance. Absolute quantification of key metabolites could
serve as a way to address this question.
Previous work has demonstrated that the absence of dietary

fiber results in degradation of the mucosal barrier and leads to an
increased susceptibility to pathogenic infection15,52. In our LF
group, we found an increase in activity of specific enzymes
predominantly produced by the recently isolated organism “M.
intestinale”. Two of these enzymes are involved in the assimilation
of the mucin-derived monosaccharide Neu5Ac, providing func-
tional enzymatic evidence for degradation of the mucosal layer
under LF conditions. Shotgun metagenomics and metabolomics
supported the ABPP analysis and revealed that dietary fiber
deprivation results in an increase of “M. intestinale” abundance,
increased total metagenomic capacity for exo-alpha-sialidase
activity, and increased abundance of free Neu5Ac. Thus, each
omics analysis yielded complementary information regarding
microbial Neu5Ac degradation and assimilation in response to
dietary fiber deprivation.
Our functional study does have some limitations. An increased

number of biological replicates would increase the power of the
findings, and larger sample sizes would provide more material for
proteomics analysis. Our studies will extend to clinical cohorts of
human stool, which will expand sample number and size. ABPP,
while powerful, still requires a search database built from available
genomes. We have determined that characterizing the taxa to
build the database is the best current approach, but as informatics
analyses grow and strengthen in microbiome studies we
anticipate results will further improve. As performed, proteins
deriving from an organism not included in the database or lacking
an available genome were not detected. As more species- and
strain-resolved genomes become available, this may help identify
additional enzymes that are not present in current databases.
Ultimately, our results demonstrate the capability of an ABPP-

based multi-omics approach to characterize the microbiome’s
response to perturbations, and we anticipate this approach will
provide further functional insights in future microbiome studies.

METHODS
Experimental design
To investigate the effect of dietary fiber on the microbiome, we employed
metagenomic, metabolomic, and ABPP analyses to the GI content of mice
fed diets that varied in fiber content. Three sets of four female C57BL/6J
littermates age 6–8 weeks were purchased from Jackson Laboratories and
housed with a 12-h light/12 hour dark light cycle. High fiber rodent chow
(HF, TD.140006) and low fiber chow (LF, TD.140004)11 was purchased from
Envigo (Indianapolis, IN, USA). Chow and water were provided ad libitum.
Mice were co-housed with littermates and provided with standard diet for
7 days prior to the onset of treatment (PMI 5001) purchased from Animal
Specialties, Inc. After this time, each litter was divided into two groups for
dietary treatment (2 mice per litter set). One group from each set of
littermates (n= 6 total) were given HF chow containing inulin (75 g/kg)
and pectin (75 g/kg), while the other groups (n= 6 total) were given LF
chow analogous to the HF chow except increased maltodextrin (+20%,
+19.8 g/kg), cornstarch (+18%, +55.2 g/kg), and cellulose (+300%,
+75 g/kg) were substituted for pectin and inulin. Pectin was derived from
citrus, and contained >74% galacturonic acid. The degree of esterification
was >65% and the degree of methylation was >6.7%. Inulin was derived
from chicory root and had a reported degree of polymerization of 10
(Cargill Oliggo-Fiber). Mice were maintained on this diet for 7 days, during
which time weight was monitored. After 7 days, mice were euthanized and
GI tracts were removed, stored in phosphate-buffered saline (PBS) and
frozen at −80 oC until further processing. Each analysis incorporated a
hierarchical experimental design identifying dietary effects between the
HF and LF groups while accounting for littermate groups. All statistical
tests are two-sided with further details in their respective subsection.
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Ethics declaration
This study was approved by the Institutional Animal Care and Use
Committee at Pacific Northwest National Laboratory (Protocol 2015-14).

Isolation of small molecule metabolites and metabolomic
measurements
GI tracts were thawed and GI content was isolated into sterile tubes and
weighed. Approximately one quarter of the GI content was placed into a
clean Eppendorf tube and weighed. Metabolites were extracted and further
processed for polar and volatile metabolomics analysis53,54. For the global
and non-volatile metabolomics analysis, the GI content was extracted using
the MPLEx protocol extraction. Briefly, 400 µl of a chloroform: methanol (2:1)
solution were added to ~100mg of sample and kept on ice for 10min.
Samples were vortexed for 30 s and centrifuged at 17,000 g at 4 °C for 5 min.
Upper and lower phases were transferred to a glass vial and dried in a
speed-vac concentrator. Dried extracts were derivatized in a two-step
reaction (55). To protect carbonyl groups and reduce the number of
tautomeric isomers, 20 µl of methoxyamine in pyridine (30mg/ml) was
added to each dried extract, followed by vortexing for 30 s and incubation
at 37 °C with shaking (1000 r.p.m.) for 90min. To derivatize hydroxyl-,
amino-, carboxyl- and thiol- groups to trimethylsilylated forms, 80 µl of N-
methyl-N-(trimethylsilyl)trifluoroacetamide with 1% trimethylchlorosilane
were then added to each vial, followed by vortexing for 10 s and incubation
at 37 °C with shaking (1000 r.p.m.) for 30min. Samples were run in an
Agilent GC 7890A using a HP-5MS column (30m× 0.25mm× 0.25 μm;
Agilent Technologies) coupled with a single quadrupole MSD 5975C
(Agilent Technologies). One microliter of sample was injected into a splitless
port at constant temperature of 250 °C. The GC temperature gradient
started at 60 °C, with a hold of temperature for 1 min after injection,
followed by increase to 325 °C at a rate of 10 °C/min and a 5-minute hold at
this temperature. A fatty acid methyl ester standard mix (C8-28) (Sigma-
Aldrich) was analyzed in parallel as standard for retention time calibration.
GC-MS raw data files were processed using the Metabolite Detector
software. Retention indices of detected metabolites were calculated based
on the analysis of a FAMEs mixture, followed by their chromatographic
alignment across all analyses after deconvolution. Metabolites were initially
identified by matching experimental spectra to a PNNL augmented version
of Agilent GC-MS metabolomics Library, containing spectra and validated
retention indices for over 850 metabolites. Then, the unknown peaks were
additionally matched with the NIST17/Wiley11 GC-MS library. All metabolite
identifications and quantification ions were validated and confirmed to
reduce deconvolution errors during automated data-processing and to
eliminate false identifications.
For the volatile metabolomics analysis, the GI content was mixed with

methanol in a 1:1.5 ratio. The slurry was centrifuged for 10min at 4 °C and
60 µl of the upper part of the solution were transferred to glass vials
equipped with inserts for direct GC-MS analysis without chemical
derivatization. Samples were run in the same Agilent GC-MS instrument
mentioned above but equipped with a HP-FFAP column
(30m × 0.250mm× 0.250 μm; Agilent Technologies) (54). One microliter
of sample was injected into a splitless port at a constant temperature of
240 °C. The GC temperature gradient started at 50 °C, with a hold of
temperature for 1 min after injection, followed by increase to 240 °C at a
rate of 20 °C/min and a 3.5-min hold at this temperature. Two technical
replicates were injected of each sample. A fatty acid methyl ester standard
mix (C8-28) (Sigma-Aldrich) was analyzed in parallel as standard for
retention time calibration. Processing of GC-MS raw data files and
identification of metabolites was done as detailed in the previous section.

Isolation and sequencing of DNA
Approximately one-quarter of the GI content sample was aliquoted and
utilized for metagenomic sequencing. DNA was isolated using the DNeasy
PowerSoil Kit (Qiagen) per manufacturer’s instructions. The library
preparations and sequencing were conducted by GENEWIZ, Inc (Whole
Metagenome Sequencing service; South Plainfield, NJ). DNA was
sequenced on an Illumina HiSeq in the 2x150bp configuration.

Activity-based protein profiling
Preparation of gut microbiome protein samples. The remaining approx-
imate one-half of GI content was utilized for ABPP. Because of low biomass,
samples from the two littermate mice of the same treatment groups were
pooled. Pooled GI content was transferred to a 50mL conical tube and

resuspended in 10mL of PBS. The sample was centrifuged at 700 g for
5 min to clear large debris. This supernatant was transferred to a new
50mL conical tube and centrifuged at 7000 g for 5 min to collect microbial
cells. The pellet from this centrifugation was resuspended in 1mL of
acetate-buffered saline (50mM acetate, 150 mM NaCl, pH= 5.0) and
transferred to a 1.7 mL Eppendorf tube. This sample was centrifuged again
at 7000 g, and the pellet was washed two additional times via resuspension
in 1mL of acetate-buffered saline and centrifugation. The pellet was then
resuspended in 600 μL of acetate-buffered saline with EDTA-free protease
inhibitor cocktail (Roche). Approximately 100 μL of 0.1 mm silica beads
were added and cells were lysed via 4 rounds of bead beating (Bullet
Blender). The tubes were centrifuged at 7000 g for 15 min to remove beads
and unlysed cells. The supernatant was transferred to a new Eppendorf
tube and the concentration of protein was determined via BCA assay
(Thermo). Protein volumes were adjusted to equal the lowest concentra-
tion (0.134mg/mL).

Preparation of probe-conjugated resin. To minimize enrichment of off-
target proteins, we covalently attached the GH2c-ABP to resin prior to
labeling. To this end, 300 μL of alkyne-agarose resin (six samples at 50 μL
resin per sample; Click Chemistry Tools) was aliquoted into Eppendorf
tubes, centrifuged (1 min at 600 g) to collect resin. In tandem, a second
aliquot of resin was prepared as a “no probe” control. The supernatant was
removed, resin was washed with 1mL of PBS, and centrifuged again. Three
total washes were performed, and resin was resuspended in 500 μL of PBS.
The amount of probe was calculated based on the desired concentration
of probe in the final reaction (100 μM), assuming 100% conjugation. Probe
was conjugated to the resin using copper-catalyzed azide-alkyne
cycloaddition via the addition of 500 μM GH2c, 20 mM CuSO4, 10 mM
THPTA, 25mM sodium ascorbate. In tandem, a second aliquot of resin was
prepared as a “no-probe” control. Resin was processed in the exact same
way, except GH2c was replaced with an equal volume of vehicle only
(DMSO). The tubes were wrapped in foil and attached to a vortex shaker
and mixed for 90min at room temperature. The resin was washed three
times in PBS as described above prior and aliquoted equally into one
1.7 mL Eppendorf tube per sample.

Enrichment of proteins targeted with the GH2c-ABP. The aliquoted, GH2c-
conjugated resin or the no probe control resin was resuspended in 200 μL
of sample and incubated rotating at 37 °C for 90min. The resin was then
collected via centrifugation (1 min at 600 g) and resuspended in 1 mL of
4% sodium dodecyl-sulfate in PBS. The tubes were then incubated rotating
at 37 °C for one hour. After this point, ABPP samples were washed 3× with
PBS, digested with trypsin in PBS, and the buffer was removed by
evaporation55. Peptides were resuspended in 25 µL ammonium bicarbo-
nate (25 mM, pH 8) for subsequent MS analysis.

LC-MS/MS proteomics analysis. A Waters nano-Acquity M-Class dual
pumping UPLC system (Milford, MA) was configured for on-line trapping
of a 5 µL injection at 3 µL/min with reverse-flow elution onto the analytical
column at 300 nL/min. Columns were packed in-house using 360 µm o.d.
fused silica (Polymicro Technologies Inc., Phoenix, AZ) with 5-mm Kasil frits
for media retention and contained Jupiter C18 media (Phenomenex,
Torrence, CA) in 5 µm particle size for the trapping column (150 µm
i.d. × 4 cm long) and 3 µm particle size for the analytical column (75 µm
i.d. × 70 cm long). Mobile phases consisted of (A) 0.1% formic acid in water
and (B) 0.1% formic acid in acetonitrile with the following gradient profile
(min, %B): 0, 1; 8, 1; 10, 8; 28, 12; 83, 30; 105, 45; 108, 95; 118, 95; 122, 50;
124, 95; 126, 1; 128, 50; 130, 50; 132, 1; 152, 1.
MS analysis was performed using a Q-Exactive Plus mass spectrometer

(Thermo Scientific, San Jose, CA) outfitted with a home-made nano-
electrospray ionization interface. Electrospray emitters were prepared
using 150 μm o.d. × 20 μm i.d. chemically etched fused silica56. The ion
transfer tube temperature and spray voltage were 300 °C and 2.2 kV,
respectively. Data were collected for 100min following a 20min delay from
sample injection. FT-MS spectra were acquired from 300 to 1800m/z at a
resolution of 35k (AGC target 3e6) and while the top 12 FT-HCD-MS/MS
spectra were acquired in data dependent mode with an isolation window
of 2.0m/z and at a resolution of 17.5k (AGC target 1e5) using a normalized
collision energy of 30 and a 30 s exclusion time.

Activity-based protein profiling data analysis
Prediction and annotation of protein-coding sequences from metagenome
sequencing. Predicted open-reading frames from assembled metagenomes
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were used for the generation of a searchable protein-sequence database for
matching theoretical spectra to experimental proteomics data. To do this, we
began with the cleaning of metagenomic sequencing reads from samples of
GI content matching those used in our proteomics experiments. First, we
removed low-quality bases and adapters from our metagenome paired-end
reads with Trim Galore57 (Trim Galore v0.6.4, q-cutoff of 15 as defined by the
software package). Reads for each sample were then assembled using the
metagenomic assembler metaSpades58 (SPAdes v3.13.1 [metaSPAdes mode],
paired-end reads, all other options as default). Open-reading frames were
predicted from the assembled metagenomes with Prodigal59 (Prodigal v2.6.3,
metagenome option, all other options as default). Predicted open-reading
frames were then aligned against the combined UniProt19 TrEMBL and Swiss-
Prot databases (release 2021_03) using the Diamond60 alignment software for
functional and taxonomical annotation (Diamond v0.9.26, one high-scoring
pair per sequence).

Peptide-spectrum matching of LC-MS/MS data. Regardless of alignment
results, all predicted open-reading frames, in addition to a common
contaminant sequence and all proteins in the canonical mouse proteome
available from UniProt (release 2019_09), were then concatenated to
generate a single FASTA file. Sequence duplicates were removed and
sequences with duplicated names were renamed using the seqkit61

program (seqkit v0.11.0, sequence duplicate removal: seqkit rmdup;
renaming of sequences: seqkit rename). This FASTA was then used in an
initial MS-GF+ 62 search to identify experimental tryptic peptides (MS-
GF+ v2019.07.03, default options). A second fasta file containing all full
protein sequences encoding for any tryptic peptide from the initial search
identified with a SpecEValue < 1e-8 was then generated. A second MS-
GF+ search was then performed with the reduced FASTA file while
maintaining the same parameters as the initial search. In a similar fashion
to other iterative approaches63, peptides detected with an FDR < 5% were
selected for statistical quantitative comparison.

Peptide quantification and statistical comparison of probe-targeted proteins.
Statistical comparison of proteomics data was performed on MS-GF+
identified peptides with quantification obtained from the log2-transfor-
mated peak area intensity calculated by MASIC64 (MASIC v3.0.7235, default
options). After combining MS-GF+ and MASIC results, peptides that were
not observed in all biological replicates for at least one of the comparative
treatments or were identified as a known contaminant were removed from
the analysis. Remaining missing peptide intensities were imputed using a
left-censored stochastic minimal value approach from the imputeLCMD R
package65 (R v3.6.1, imputeLCMD v2.0). The PECA18 R package (PECA
v1.24.0, test: modified t-test, type: median) was then used for statistical
comparison of peptide peak area intensities to obtain P values of probe-
targeted proteins through comparison of probe and no-probe control
samples. Probe-targeted proteins in either diet condition were then
isolated for further analysis. Peptides from probe targets matching to
multiple proteins were then removed so that only unique peptides
matching to a single protein remained. PECA was then used to compare
the enrichment of probe-targeted proteins between the high and low fiber
diet conditions. Multiple hypothesis correction was then performed to
determine probe targets with differential enrichment between the
different dietary conditions (q value < 0.05, average log2 fold-change > 2.0;
q value determined by t test with moderated t-statistic within PECA). Fold-
changes for each protein were calculated by averaging their constituent
peptide-level log2 fold-changes. Proteins were then matched to their
aligned UniProt identifiers and annotated by sequential requests to the
UniProt database via the UniProt API. Proteins for further analysis were
selected as described in the text. Heatmaps were generated using the R
packages ComplexHeatmap (PMID: 27207943) and robComposition66.

Metagenomic taxonomy analysis
Kraken2 was used to calculate taxonomical abundances prior to differential
abundance testing. To prepare a Kraken2 database that contained
organisms likely present in our samples, protein coding sequences that
aligned with 100% sequence similarity to sequences in the Uniprot
database were mapped to their corresponding lineage identifiers via
Uniprot. These lineage identifiers were then used to search for bacterial
genomic assemblies on NCBI (accessed 7-14-2021), which were subse-
quently downloaded and used to prepare a Kraken2 database. After
taxonomical assignments of metagenomic reads by Kraken2, LEfSe40 (LEfSe
v1.0.0) was then used to detect differentially-abundant features between
dietary conditions from Kraken2 output (P value < 0.05).

Metabolomics data analysis
Intensities of identified metabolites were log2-transformed. Missing values
were imputed using a left-censored stochastic minimal value approach
from the R imputeLCMD package, similar to our proteomics analysis.
Metabolites were then statistically tested for differential intensities
between dietary conditions using multiple linear regression with the
“lm” function available in R. Reported P values for each metabolite were
corrected using the Benjamini-Hochberg multiple hypothesis correction.
Significantly changing metabolites were determined as those with a q-
value < 0.05 (t test).

Gene Ontology functional analysis
Protein coding sequences that aligned to proteins in the Uniprot database
with greater than 90% similarity were selected for functional analysis after
the removal of human and mouse proteins. The corresponding Uniprot
identifiers were externally cross-referenced to Gene Ontology (GO)
functional identifiers on the Uniprot website. After filtering for functional
identifiers with at least 100 observations across all conditions, the counts
of each identifier were summed for each sample. A negative binomial
generalized log-linear model from the R package edgeR67 (edgeR v3.26.8)
was then used to statistically test for differential enrichment of GO
functional identifiers (q value < 0.05; likelihood ratio test).
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