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Mechanisms of fungal community assembly in wild stoneflies
moderated by host characteristics and local environment
Yu-Xi Zhu1,2, Qing-Bo Huo1,2, Tao Wen3, Xin-Yu Wang1,2, Meng-Yuan Zhao1,2 and Yu-Zhou Du 1,2✉

Deterministic and stochastic forces both drive microbiota assembly in animals, yet their relative contribution remains elusive,
especially in wild aquatic-insect-associated fungal communities. Here, we applied amplicon sequencing to survey the assembly
mechanisms of the fungal community in 155 wild stonefly individuals involving 44 species of 20 genera within eight families
collected from multiple locations in China. Analysis showed that fungal diversity and network complexity differed significantly
among the eight stonefly families, and that the fungal communities in stoneflies exhibited a significant distance-decay pattern
across large spatial scales. Both a structural equation model and variance partitioning analysis revealed that environmental factors
(e.g., geographical, climatic) outweigh host attributes in shaping the fungal community of stoneflies. Using neutral and null model
analyses, we also find that deterministic processes play a larger role than stochasticity in driving the fungal community assembly.
However, the relative contribution of ecological processes including dispersal, drift, and selection, varied strongly with host
taxonomy. Furthermore, environmental conditions also significantly affect the strength of these ecological processes. Overall, our
findings illustrate that variations in host attributes and environment factors may moderate the relative influence of deterministic
and stochastic processes to fungal community composition in wild stoneflies, which provides new insights into mechanisms of
microbial community assembly in aquatic arthropods.
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INTRODUCTION
Stoneflies (Plecoptera) are one of the smallest and most ancient
orders of insects, with approximately 3,700 species in 16 families
worldwide1. Nymphs of the vast majority of species live mainly in
streams and feed on leaves or other invertebrates, while adults are
terrestrial and generally shredders of leaves2. Stoneflies are widely
renowned as a key indicator of water quality and a flagship
environmental parameter3. Despite this importance, several
species remain threatened with extinction due to water pollution,
climate change, habitat alterations, and other environmental
factors4. To protect these vital species requires and in-depth
understanding of their biology, but also understanding of species
that are tightly associated with them. In particular, host-associated
microbiota perform vital functions for the stonefly5, and changes
to their homeostasis might be disrupted during rapid shifts in the
host habitat environment and indirectly affect host health6.
Deciphering the mechanisms underlying microbiota community
assemblage is essential to stonefly conservation, especially over
evolutionary and ecological timescales.
Community assemblies are determined by four basic processes:

diversification, selection, drift, and dispersal7. Multiple determinis-
tic factors (e.g., selection) have been shown to modulate microbial
community diversity patterns in many animals8–11. Specifically, the
host is a major force in governing microbial community structures
in several animal species12–16. In parallel, environmental factors
such as diet17–19, climate, and geographic variables20,21 are also
important. The relative contribution of these two types of factors
in shaping the host-microbiota remains highly controversial22–24.
In contrast, neutral community assembly theory emphasizes the
importance of stochastic processes (e.g., drift, dispersal limitation)

in governing microbial communities25,26. While stochastic assem-
bly is often neglected in studies in microbial ecology27,28, it has
been revealed to work simultaneously with deterministic pro-
cesses in driving microbial communities in a broad range of
natural systems. The relative contribution of each ecological
process varies among different host taxa and different environ-
ments19,29–31. For instance, strong effects of deterministic forces
on gut microbial community composition have been reported in
studies on wild Drosophila32, while neutrality is dominant over
selection in the differentiation of the gut bacterial community in
honeybees33. As these works demonstrate, the microbial commu-
nity assembly in terrestrial insects has received some attention
32–35. However, to our knowledge, no studies have systematically
evaluated the relative importance of deterministic and stochastic
processes in aquatic insect mycological assemblies across large
geographical areas. Stoneflies, which are not only an ecologically
critical taxa but also exhibit ecological specialization over a broad
habitat range, offer an excellent system for investigating microbial
community assembly within an environmental and geographic
context.
Here, we report on a comprehensive survey of fungal

microbiomes in natural populations of stoneflies using a fungal
ITS genes high-throughput sequencing. The work involves 155
individuals from 52 populations sampled from multiple locations
across China and represents 44 species and 20 genera from eight
families within Plecoptera. The purpose of the study was to (i)
investigate whether variation in fungal composition is related to
host condition and multiple environmental factors, and (ii) clarify
the mechanisms underlying fungal community assembly in wild
stoneflies. We first examined the patterns of stonefly fungal
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communities across different subgroups and large geographic
regions. We then conducted neutral and null model analyses to
quantitatively decipher the relative contribution of ecological
processes including selection, dispersal, and drift in driving the
assembly of stonefly-associated fungal communities. Lastly, we
explored the differences of these processes across spatial scales.

RESULTS
Fungal community diversity and structure among stonefly
taxa
A total of 6,675,681 clear reads with an average of ~ 43,068 reads
per sample were obtained from 155 individuals from 20 genera
belonging to eight families after filtering for quality and removal
of samples with low read numbers (Fig. 1; Supplementary Table 1).
The α diversity of the fungal community significantly differed
among eight stonefly families (Kruskal-Wallis test: Richness, p <
0.05; Shannon index, p < 0.05), with the highest Shannon index
observed in Perlidae (Fig. 2a). Principal coordinate analyses (PCoA)
based on the Bray-Curtis distance matrix revealed that composi-
tions of the fungal communities varied significantly among
stonefly taxa (perMANOVA: F= 3.55, R2= 0.14, p < 0.001; Fig. 2b).
Taxonomic assignment revealed that the majority of OTUs (~80%)
were unassigned. Of the assigned taxa, the relative abundance of
the dominant fungal genera, such as Aspergillus, Holtermanniella,
Penicillium, and Sterigmatomyces, differed among eight stonefly
families (Fig. 2c). The most prevalent fungal genus in all sampled
stoneflies was Aspergillus (44.52%), which we identify as a core
member of mycological communities in wild stoneflies.
Network analyses showed that co-occurrence of species

exhibited different patterns among eight stonefly families, with
more connections in fungal communities from Capniidae (872
edges, 592 positive and 280 negative) and Choloroperlidae (555
edges, 377 positive and 178 negative) compared to the other six
families (Fig. 2d). Of the set of network topological features
calculated, network complexity, indicated by the average degree
value, was noticeably higher in Capniidae (19.16) and Cholor-
operlidae (11.1) than in Leuctridae (2.23), Perlidae (2.32) and
Nemouridae (1.45; Table 1). In addition, the taxonomic composi-
tion of the networks differed among eight stonefly families, and in
most stonefly families some hub nodes were unassigned (Fig. 2d).

The geographic distance-decay pattern of fungal community
composition
We further investigated spatial variation in stonefly fungal
communities. In communities that span across multiple geo-
graphic regions, significant distance-decay relationships between
fungal Bray–Curtis similarities and geographical distances were
detected overall (R=−0.091, p < 0.0001) (Fig. 3).

The relation between host-related and environmental
variables and fungal community composition
A structural equation model (SEM) was used to explore the
correlation between fungal community variation and both host-
related and environmental variables. Results showed that fungal
community structure was directly and significantly impacted by
host-related and environmental variables, and their path coeffi-
cients were 0.35 and 0.59, respectively (Fig. 4a). Moreover, variance
partition analysis (VPA) showed that host-related factors explained
only 4.8% of fungal community composition and environmental
variables only 6.2% (Fig. 4b). This leaves the large majority of the
compositional variance (89%) unexplained (Fig. 4b), suggesting
that complex processes govern fungal community assembly.
We then estimated the relative contribution of multiple

environmental factors including location, altitude, latitude, long-
itude, annual mean temperature (AMT), and annual mean
precipitation (AP), to overall fungal community compositional
variation. Among these variables, the fungal community was the
most significantly impacted by AP (explained variation: 1.47%; F=
1.61, p < 0.001), followed by AMP (1.30%; F= 1.70, p < 0.001),
altitude (1.28%; F= 1.76, p < 0.001), latitude (1.14%; F= 1.57, p <
0.001), longitude (1.10%; F= 1.60, p < 0.001), and location (0.88%;
F= 1.35, p < 0.001) (Supplementary Fig. 1; Supplementary Table 2).

Ecological processes governing stonefly fungal community
assembly
To explore the role of neutral processes in determining stonefly
fungal communities, we first deployed the Sloan neutral model to
assess all samples and also each stonefly family separately. For all
stonefly samples, the frequency of fungal OTUs within metacom-
munities of stoneflies fit rather weakly to the neutral model, and
the majority of OTUs fell outside of the 95% confidence interval of
the neutral model prediction (R2= 0.139, m= 0.002) (Fig. 5). This
indicates that deterministic processes play a more critical role than
stochasticity in the formation of stonefly fungal communities.
However, the degree of influence that neutral processes have on
fungal community assembly differed among stonefly families
(Supplementary Fig. 2).
As a second approach, the null model was used to quantify the

relative impact of stochastic and deterministic forces in shaping
fungal community assembly. When disregarding taxonomic
information, we found that variable selection, a deterministic
process, was the top factor in influencing fungal community
assembly (βNTI > 2, relative contribution 56.58%; Fig. 6a), followed
by drift (40.86%) and homogenizing dispersal (2.35%) (Fig. 6b).
Upon examining individual stonefly families, influence of each
ecological process varied among groups (Fig. 6c): drift was the
primary process governing the fungal communities from five
families (Capniidae, Perlodidae, Styloperlidae, Leuctridae, and
Choloroperlidae) to divergence, while the process of variable
selection dominated in driving the fungal communities from
Nemouridae, Petloperlidae and Perlidae to convergence. In
contrast, dispersal limitation and homogenizing dispersal had a
negligible degree of influence on fungal community assembly in
the majority of stoneflies (Fig. 6d). These results suggest that a
combination of variable selection and drift, their relative influence
strongly dependent on host taxa, drive the assembly of stonefly
fungal communities.

Fig. 1 Sampling locations of wild stoneflies across multiple
geographic regions of China. Differently colored symbols represent
different stonefly families. The figure was generated using ArcGIS 10
Crack software based on a template map from the Chinese National
Basic Geographic Information Center (http://ngcc.sbsm.gov.cn).
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Environmental variables affect fungal community assembly
To evaluate the influence of environmental factors on stonefly
fungal community assembly, we explored the relation between
βNTI value and five environmental factors with the Mantel test.
The results revealed that the βNTI value was significantly

positively correlated with altitude (r= 0.113, p= 0.002), latitude
(r= 0.102, p= 0.004), longitude (r= 0.095, p= 0.001), AMT (r=
0.092, p= 0.003), and AP (r= 0.073, p= 0.002) (Fig. 7), indicating
that these environmental variables have significant impact on the
fungal community assembly in stoneflies.

Fig. 2 Fungal community diversity and composition among eight stonefly families. a Richness and Shannon indices of different stonefly
fungal communities. Different letters denote significant differences between stonefly families with ANOVA tests (p < 0.05). b Principal
coordinate analysis (PCoA) of fungal community Bray-Curtis dissimilarities with permutational analysis of variance among different stonefly
families. The variation explained by each principal coordinate is denoted in parentheses. c Relative abundances of each fungal genus in
different stonefly families. d Co-occurrence networks of the fungal communities from each stonefly family based on Spearman’s correlation
analysis between OTUs. Blue and red lines represent significant negative and positive correlations, respectively. The sizes of the points indicate
the relative abundance of OTUs in each microbial community.
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DISCUSSION
Disentangling the mechanisms of community assembly is a critical
topic in microbial ecology23,36. To our knowledge, this work
represents the large-scale study investigating fungal community
diversity patterns and assembly mechanisms that incorporates the
majority of wild stonefly species from various geographic
locations in China. We demonstrated that both host-related andTa
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Fig. 3 Geographic patterns in stonefly fungal communities.
Distance-decay curves of fungal communities based on Bray–Curtis
similarities in wild populations of stoneflies. The line represents the
ordinary least-squares linear regression.

Fig. 4 The effect of host-related and environmental factors on the
stonefly fungal community composition. a Structural equation
model provided insight on connections between both host-related
and environmental variables to fungal community composition. The
blue and red arrows indicate statistically significant negative and
positive paths, respectively. The width of the arrows represents the
strengths of these relationships. The R2 values under each box
indicate the amount of variation in that variable explained by the
input arrows. Numbers next to arrows are unstandardized slopes.
b Variance partitioning analysis (VPA).
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environmental factors significantly affect the stonefly fungal
community with different relative contribution. In addition, we
found that deterministic processes (i.e., variable selection)
dominated over stochastic processes (e.g., stochastic drift) in
shaping stonefly microbiota composition. The relative contribu-
tion of ecological processes varied among stonefly taxa and was
also strongly linked to the environment.

The keystone taxa for stonefly fungal microbiome
In addition to being a valuable method in studying the patterns of
host-associated microbial communities, network analysis is also
used to detect keystone taxa that have an essential ecological role
in microbiome assemblies or crucial ecosystem functions37,38.
While many keystone taxa identified in our analyses were
unassigned (Fig. 1d), the assigned groups revealed some network
hub taxa in the stoneflies fungal community belonged to
Ascomycota, and of these, Aspergillus were particularly abundant
in some stonefly families. Similarly, members of Ascomycota have
ubiquitous occurrences and have been observed to be a key
member of fungal communities in other insects, such as the
silkworm39 and rice planthoppers40, playing a key role in the
degradation of plant materials41. Due to many stonefly species
feeding on leaves42,43, we speculate that the higher abundance of
Aspergillus in stoneflies might be linked with involvement in the
degradation of plant cell wall polysaccharides and in turn
providing nutrition for hosts. Further research might elucidate
the biological or ecological functions of these keystone taxa in
wild stoneflies. In addition, we found that fungal network patterns
differed among stonefly families. Considering variations in
morphology, physiology, and ecology that exist among different
stonefly taxa42–44, the co-occurrence network patterns of stonefly
fungal communities might, at least partially, be dependent on the
complex interplay between environmental factors and host
history.

Effects of environmental factors and host attributes on the
fungal community of stoneflies
The host plays a primary role in shaping associated microbiota in
diverse arthropods45. Microbiota composition is known to vary

among host species, sex, and developmental stages, and these
differences have been generally attributed to host-specific
selection15,32,46. Host morphology and physiochemical conditions
vary among species and developmental stages, impacting the
community structure of microbiota12,16,32. Thus, despite sympatric
or adjacent wild stonefly species sharing the same or similar
environmental conditions, various morphological and physio-
chemical differences may explain their different fungal community
composition. Aside from host-related influences, environmental
factors, mainly geographic and climatic factors, also affect the
fungal composition in stoneflies20,47. Indeed, a significant geo-
graphical distance-decay pattern of the fungal community was
detected in our work. There are two main hypotheses that might
explain how environmental factors could affect the microbiota in
arthropods. First, theoretically, the microbiota of the host may be
acquired from its environmental pool of microbial species, and
different host taxa might encounter different microbial pools38.
Alternatively, some environmental factors (e.g., temperature)
could act as a filter providing selection pressure for host
microbiomes, which directly or indirectly affect host microbial
composition. For instance, our previous study showed that some
dominant symbionts, such as Wolbachia, were highly sensitive to
extreme temperature21,48,49; these symbionts reshaped the
structure of microbiota communities20,50. It remains unclear which
of these hypotheses better apply to fungal community differences
among stonefly species from different environments. Furthermore,
a major portion of community variation (89%) could not be
explained by any variables involved in this study (Fig. 4),
suggesting that other environmental factors are involved in
shaping stonefly fungal community composition. For instance,
several previous studies have demonstrated that diet also plays a
substantial role in microbial diversity and composition8,16–19.
Given that the diet of different stonefly species varies significantly
from pollen to leaf fragments, detritus, lichen, and animal
matter42–44,51, it could be speculated that host diet might explain
certain aspects of microbiome diversity and composition among
stonefly taxa. Further investigation is required to explore these
possibilities.
In most cases, many host-related and environmental factors

work not independently but in interaction with each other. In
particular, aquatic insects are more susceptible to geological
changes than their terrestrial counterparts due to their specialized
ecological needs and habit range52. In the present study, SEM
results suggested that a significant negative effect of environ-
mental factors on stoneflies might indirectly impact the stonefly
fungal community composition (Fig. 4a). We also found that
environmental factors were a relatively strong driver of the
stonefly fungal community compare to host condition, similar to
patterns recently reported in a broader range of arthropods9–11,
but in contrast to observations made in some small mammals13.
For instance, previous studies on the gut microbiota of beetles
and fish and on microbiota of the house fly suggested that
environmental factors, including food habit, host habitat, or
geographical location are more important than host species in
shaping microbiota composition9–11. In contrast, Knowles et al.13

suggest that species identity dominates over the environment in
shaping microbiota composition in small mammals. One possible
explanation for this might be the highly variable mechanisms of
microbial community assembly among different biological sys-
tems19,29–31. We cannot draw final conclusions from our limited
sampling of some stonefly families, and further studies are
required to assess the generality of patterns observed here across
different host taxa and microbial community types.

Mechanisms of fungal community assembly in stoneflies
Neutral and null models revealed that deterministic processes
dominate over stochastic ones in driving the fungal communities

Fig. 5 Fit of a neutral model on fungal community assembly in
stoneflies. The yellow solid and dashed lines indicate the predicted
occurrence and 95% confidence interval of the neutral model,
respectively. R2 indicates the goodness of fit to the neutral model,
and m shows the migration rate.
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in stoneflies (Figs. 5 and 6). Our findings correspond with the
studies of microbial assembly in wild Drosophila, in which
deterministic forces play a substantial role in community
structure32. Of the ecological processes assessed, the influences
of dispersal limitation, homogenizing dispersal and homogeneous
selection were relatively weak, while variable selection and drift
were the major deterministic and stochastic processes driving the
stonefly fungal community, respectively (Fig. 6). Variable selection
may result in the microbiota communities diversifying among
distinct environmental conditions, whereas drift disperses com-
munities7,36,53. Drift was the main stochastic process driving
stonefly fungal communities in our study, a similar result to
reports on bacterial communities in the honeybee33. The core
fungal genus Aspergillus found in the wild stoneflies in our work
has also been detected in other insects39,40, and some of its
members are also found in the surrounding environment to the
host, such as in the air, soil, and on plants54. Thus, we raise a
possibility that the fungal microbiota associated with stoneflies
may be acquired through stochastic drift from the surrounding
environment in which the host resides38. This calls for further

study that utilizes paired samples of stoneflies and their
environment (i.e., water, diet, or soil).
Interestingly, the relative contribution of drift varied drastically

among different families. In particular, its relative contribution was
much higher for Capniidae and Perlodidae than in Styloperlidae,
Leuctridae, and Choloroperlidae. This partly explains why the
fungal networks from Capniidae species exhibited more inter-
connection compared to other stonefly families. In congruence
with recent work that revealed the effect of geographic variables
on ecological processes33, our results also find a significant link
between fungal community assembly and environmental factors
such as altitude, latitude, longitude, AMT, and AP. Thus, the
strength of ecological processes driving fungal communities
towards either divergence or convergence is dependent on
environmental factors and associated evolutionary history. Fungal
community-specific patterns may partly reflect historical popula-
tion processes as well as ecological effects. From a long-term co-
evolution perspective, our findings correspond with previous
studies on honeybee bacterial communities, suggesting that
stochastic processes are the dominant forces driving co-evolution,

Fig. 6 Mechanisms of stonefly fungal community assembly evaluated using null model analysis. Contributions of deterministic (|βNTI | ≥ 2)
and stochastic processes (|βNTI | < 2) on fungal community assembly in all stoneflies (a) and in each of eight stonefly families (c). The relative
contribution of ecological processes (i.e., homogeneous selection, heterogeneous selection, homogenizing dispersal, dispersal limitation, and
drift) in driving the fungal assembly in all samples (b), and in each stonefly family (d).
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and deterministic processes determine the direction of co-
evolution33.
In summary, our results provide a comprehensive overview of

fungal microbiota diversity and composition in stoneflies. We
highlight that both host attributes and environmental conditions
shape the fungal community in stoneflies by altering the relative
influence of community assembly processes. The findings expand
our current understanding of the mechanisms underlying micro-
bial community assembly in aquatic insects. Further work is
needed to explore the specific function of the identified fungal
species and elucidate functional succession of the fungal
communities under evolutionary and ecological timescales.

METHODS
Stoneflies collection and environmental properties
Nymph and adult stoneflies were collected from streams, lakes, and nearby
vegetation in multiple locations across China (Fig. 1, Supplementary Table
1). All specimens were preserved in 100% ethanol and stored at −20 °C
until DNA extraction. Stonefly species were distinguished based on
morphological examination. All samples were deposited in the Institute
of Applied Entomology, Yangzhou University, Yangzhou, China. In total,
155 individuals representing 52 populations were obtained, and were
identified to 44 species representing 20 genera from eight families within
Plecoptera for subsequent microbial analyses. Climatic data (e.g., annual
mean temperature (AMT) and annual mean precipitation (AP)) for each

sampling location were obtained from the Climate Datasets (https://psl.
noaa.gov) (Supplementary Table 1).

DNA extraction, PCR amplification and sequencing
The stoneflies were surface sterilized by washing individuals with 75%
ethanol and then sterile water three times prior to DNA extraction. Total
DNA of the individual was extracted using a DNeasy blood and tissue kit
(Qiagen, Hilden, Germany) according to the manufacturer’s protocols. The
quality and concentration of DNA were evaluated with a 1% agarose gel
and a NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham,
MA, USA), and all DNA samples were diluted to the same concentration
(10 ng/μL) for subsequent analysis.
The fungal internal transcribed spacer (ITS) ITS1-ITS2 region was

amplified with the primers ITS1F (5’-CTTGGTCATTTAGAGGAAGTAA-3’)
and ITS2R (5’-GCTGCGTTCTTCATCGATGC-3’)39. PCR amplification was
carried out in 20 μL reaction mixtures containing 0.4 μL of TransStart
FastPfu DNA polymerase (TransGen, Biotech, China), 4 μL of 5× FastPfu
buffer, 2 μL of dNTPs (2.5 mM), 0.8 μL of each primer (5 μM), 1 μL of
template DNA (10 ng/μL), and 11 μL of ddH2O. The program for PCR
amplification consisted of DNA pre-denaturation for 5 min at 95 °C, then 30
cycles of 30 s at 95 °C, 30 s at 52 °C, and 45 s at 72 °C, followed by a final
extension at 72 °C for 10min. Negative controls were always performed to
ensure there was no contamination. Most samples produced single PCR
bands of ~306 bp (Supplementary Fig. 3), and only these were extracted
from 2% agarose gels and purified using the AxyPrep DNA Gel Extraction
Kit (Axygen Biosciences, Union City, CA, USA) following manufacturer’s
instructions. High throughput sequencing of fungal ITS genes was

Fig. 7 Effects of environmental factors on stonefly fungal community assembly. Mantel analysis used to evaluate the correlation between
the β-Nearest Taxon Index (βNTI) and the multiples environmental variables: (a) altitude, (b) latitude, (c) longitude, (d) annual mean
temperature (AMT) and (e) annual mean precipitation (AP).
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performed on the Illumina PE250 platform (2 × 250 paired ends) (Illumina,
CA, USA).

Bioinformatic analysis
The acquired sequences were filtered for quality control using standar-
dized procedures (Shanghai BIOZERON Co., Ltd., Shanghai, China). The
filtering and assembly of raw sequences were carried out using
Quantitative Insights Into Microbial Ecology (QIIME version 1.9.0 http://
qiime.org/scripts/assign_taxonomy.html)55. Raw FASTQ data were demul-
tiplexed and filtered to select for high quality reads from each sample
under the following criteria: (i) Reads were removed if any site had an
average quality score <20 over a 50 bp sliding window. Reads containing
Ns or with a length <50 were also removed. (ii) The remaining pair-end
reads of the individual samples were merged into a single fasta file
according to their overlaps, with a minimum overlap length of 10 bp. (iii)
The maximum mismatch ratio allowed in the overlapping area of the
merged sequences was 0.2. (iv) The directionality of reads was corrected
based on their barcodes and primer sequences, with no mismatches
allowed in the barcode and 2 mismatches allowed in the primers. The
sequences were assigned to operational taxonomic units (OTUs) at the
97% similarity threshold using UPARSE version 7.1 (http://drive5.com/
uparse/) and chimeric sequences were identified and removed using
UCHIME56. The phylogenetic affiliation of each ITS gene sequence was
identified with the UCLUST algorithm (http://www.drive5.com/usearch/
manual/uclust_algo.html) against the UNITE database (UNITE version 8.2)
with a confidence threshold of 80%. A total of 77.47% OTUs were identified
as fungal, and 22.53% OTUs were non-fungal.

Statistical analysis
Fungal diversity analysis. All analyses were carried out in R version 4.0.557.
A normalized number of sequences were randomly extracted from each
sample to calculate alpha diversity indices that were estimated with the
‘vegan’ package. Nonparametric statistical tests were used to detect
significant differences in the Shannon diversity index and richness among
different stonefly families or ontogeny stages with the ‘EasyStat’ package.
Before the calculation of beta diversity, relative abundances were used to
standardize the OTU profiles. Bray-Curtis similarity matrices were prepared
using the ‘vegan’ package. A perMANOVA58 (Adonis, transformed data by
Bray-Curtis, permutation = 999) was used to test if the beta diversity
differed among treatments. Then, principal coordinate analysis (PCoA)
plots and t-Distributed stochastic neighbor embedding (t-SNE) were
generated according to Bray-Curtis similarity matrices created using the
package “ggplot2”. t-Distributed stochastic neighbor embedding (t-SNE)
analysis was performed with the package ‘t-sne’.

Distance-decay relationships. Pairwise geographic distances between
samples were calculated from the latitude and longitude coordinates
using the ‘geosphere’ package in R. The microbial raw data was normalized
by TMM (trimmed mean of means) with the ‘edgeR’ package, and then
Mantel tests were conducted to calculate the Spearman distances using
the ‘vegan’ package. Then, the distance-decay rates of the fungal
communities were calculated as the slopes of ordinary least-squares
regressions between geographic distance and community similarity.

Network analysis. Fungal co-occurrence networks were constructed to
reveal significant relationships between the relative abundance of OTUs in
the fungal community of each stonefly family. Co-occurrence networks
were constructed using the ‘SpiecEasi’ package and plotted using
‘ggClusterNet’59. Robust correlations with Spearman’s correlation coeffi-
cients >0.6 and false discovery rate-corrected p-values < 0.05 were
considered to be statistically significant. To describe the topology of the
networks, a set of metrics, including average degree, average path length,
clustering coefficient, network diameter, and centralization degree were
calculated using the ‘vegan’ and ‘igraph’ packages60. Network complexity
is reflected in the parameter ‘average degree’, where a higher average
degree represents a greater network complexity61. To assess nonrandom
patterns in the resulting networks, we compared our network against its
randomized version generated using the ‘igraph’ package.

Evaluating the impact of the host-related and environmental variables on
fungal community. To examine the effect of host-related and environ-
mental variables on stonefly fungal communities, we first calculated the
relative contribution of host-related factors, environmental factors, and

their combined effects on stonefly fungal community compositions with a
variance partitioning analysis (VPA) using the ‘vegan’ package. The
significance of partitioned fractions was tested by performing a permuta-
tion test for distance-based redundancy analysis using the function anova.
cca from the ‘vegan’ package62. Then, a structural equation model (SEM)63

was constructed to explore the causal relationships among host attributes,
environmental variables, and fungal community composition. The SEM
tests were performed using the ‘SEM’ package in R. As non-normal
distribution of variables may compromise SEM analyses results, we also
conducted Mantel tests using the Spearman method with 1000 permuta-
tions to determine the associations between microbial community
structure variation and both host-related and environmental factors.
Finally, to estimate the degree of autocorrelation in a set of

environmental factors, Mantel tests using Pearson’s r for each environ-
mental factor were performed with the ‘vegan’ package. Canonical
correspondence analysis (CCA) was also conducted using ‘vegan’ to
determine relative contributions of each host-related or environmental
variable to the overall compositional variation in the microbiota
communities, and results were visualized with the ‘ggplot2’ package64.

Fungal community assembly analyses. Two approaches were used to infer
the stonefly fungal community assembly process. Firstly, the Sloan neutral
model65 was applied to assess the importance of the neutral processes in
the assembly of stonefly communities for all samples and separately for
each stonefly family, using the R code from Burns et al.66. Specifically, the
neutral model uses the average abundance of each OTU across all stonefly
individuals (mean relative abundance) to predict the occurrence frequency
of each OTU in the metacommunity. The neutral model was generated
using the pbeta function in the ‘stats’ package and fit to data using the
nlsLM function from ‘minpack.lm’. The 95% confidence interval was
determined using the binconf function in the ‘Hmisc’ package67. In the
model, the goodness of fit to the neutral model was assessed using R2 as
the coefficient of determination. The estimated migration rate (m)
represents the probability of random loss of an OTU in a local community
replaced by dispersal from the metacommunity, and can thus be
interpreted as a measure of dispersal limitation.
Secondly, the null model was used to evaluate phylogenetic patterns in

stonefly fungal communities through calculating the beta Nearest Taxon
Index (βNTI) between pairs of samples53. A fungal phylogenetic tree was
constructed using ghost-tree68–70 (https://github.com/JTFouquier/q2-ghost-
tree). Meanwhile, βNTI was estimated by comparing the observed β-mean
nearest taxon distance (βMNTD) with the mean of a null distribution of
βMNTD (999 randomizations), and by normalizing its standard deviation
using the ‘picante’ package in R. We subsequently incorporated βNTI and
the Raup-Crick index (RCI) to estimate the relative strength of different
ecological processes in driving the composition of fungal communities: the
relative impact of community turnover regulated by deterministic processes
— heterogeneous selection and homogeneous selection—can be indicated
by the proportion of sample pairs with βNTI values > 2 and βNTI <−2,
respectively. Conversely, stochasticity was recognized to impact community
pairs that fell within |βNTI | < 2. To discern stochastic processes, including
homogenizing dispersal (mass effect), dispersal limitation, and drift, a Bray-
Curtis based RCI was calculated with RCI > 0.95, |RCI | < 0.95 and RCI <− 0.95
being interpreted as dispersal limitation, drift, and homogenizing dispersal,
respectively. To assess the major factors that affected assembly processes, a
Mantel test based on Spearman’s correlation coefficients was conducted to
compare the βNTI values with the Euclidean distance matrices for each
variable using the ‘vegan’ package in R.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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