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Soil microbial metabolism on carbon and nitrogen
transformation links the crop-residue contribution to soil
organic carbon
Zhihuang Xie1,2,7, Zhenhua Yu1,7, Yansheng Li1, Guanghua Wang1, Xiaobing Liu1, Caixian Tang3, Tengxiang Lian4, Jonathan Adams5,
Junjie Liu1, Judong Liu1, Stephen J. Herbert6 and Jian Jin 1,3✉

The beneficial effect of crop residue amendment on soil organic carbon (SOC) stock and stability depends on the functional
response of soil microbial communities. Here we synchronized microbial metagenomic analysis, nuclear magnetic resonance and
plant-15N labeling technologies to gain understanding of how microbial metabolic processes affect SOC accumulation in responses
to differences in N supply from residues. Residue amendment brought increases in the assemblage of genes involved in
C-degradation profiles from labile to recalcitrant C compounds as well as N mineralization. The N mineralization genes were
correlated with the C and N accumulation in the particulate and mineral-associated C pools, and plant-derived aliphatic forms of
SOC. Thus, the combined C and N metabolic potential of the microbial community transforms residue into persistent organic
compounds, thereby increasing C and N sequestration in stable SOC pools. This study emphasizes potential microbially mediated
mechanisms by which residue N affects C sequestration in soils.
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INTRODUCTION
With an annual production of approximately 5 × 109 tons of crop
residues in global farming systems, residue return into soil is a
common practice to balance soil organic carbon (SOC) stock and
maintain soil productivity1–3. Crop detritus has the potential to
yield consistent suite of decomposition products and their
sequestration in SOC pools4–8. This transformation is highly
complex, being influenced by plant residue chemistry, soil
microbiological processes and soil mineralogy9,10. The focus of
research has gradually shifted from the humification processes of
residue with respect to defining the continuum of SOC composi-
tion and its spatial distribution between particulate and mineral-
associated pools, to the response of microbial communities to
residue amendment11–14. This shift in focus has occurred because
microbial community composition and functional activity have
become widely recognized to be the fundamental mechanisms of
residue-C transformation in soil15,16.
The N content of crop residues is considered as one of

dominant factors affecting their degradability when these residues
interact with soil microorganisms. An important observation has
been that N-rich legume residues have faster degradation rates in
soil compared to non-legume residues with high C/N ratio17,18.
This suggests that residue-N may play an important role in soil C
sequestration and SOC stability. Thus, an increasing assumption is
that the potential stability of residue-induced C accumulated in
soil would be attributed to the fact that residue-N and C
correspondingly alter the SOC molecular composition and
physico-spatial C distribution in SOC pools. This assumption has
been made because organic molecules in soil differ in resilience to
degradation by microorganisms. For example, plant-derived
aliphatic compounds are more recalcitrant than O-alky

compounds in soil19, and microbial accessibility to organic C
varies between SOC pools20.
Debates on the importance of crop residue-N in the SOC

sequestration and stability rest on a rather uncertain picture of
microbial community composition and functional activity linking
soil C and N dynamics. In spite of considerable progress on the
research of residue-induced temporal shift of the phylogenetic
composition of microbial communities in soils11,21, there is still
lack of integrative work on soil microbial metagenomics to
understand how C and N metabolisms link the residue-C flow into
the SOC pools. With the aid of metagenomics, the entire gene
family profile involved in the decomposition of a range of organic
C compounds from labile (starch and cellulose) to recalcitrant
sources (aromatics and lignin) and organic N mineralization
(amino acids and protein) can be explored22,23, leaving this
analytical potential to advance the knowledge of microbe-driven
turnover of crop residue in farming soils.
Here, we argue that microbial metabolisms involved in residue

C and N transformation are integrated to facilitate SOC
sequestration and stability, which is greatly dependent on
residue-N. In this study, 15N-labeled residues were amended into
a severely degraded Mollisol due to intensive cultivation, which is
the most typical fertile farming soil distributed across the world
(accounting for 916 million ha globally)24,25. We used metage-
nomic analysis to characterize microbial functional gene profile
and community composition, and subsequently assessed their
contributions to residue-induced C accumulation in SOC pools and
shifts in molecular composition of SOC. The resulting knowledge
of the effects of soil microbial metabolisms on the C and N cycling
may allow the development of mechanistic solutions to balancing
SOC stock with crop residue return in agricultural systems.
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RESULTS
Total N and C concentrations in SOC fractions
After 250 days of incubation, the residue amendment significantly
increased the C concentration in the fine-POC and MOC fractions
compared to the non-residue control. In particular, the C
concentration in fine-POC increased by 41% under the soybean-
residue treatment in comparison to 33% under the maize residue
treatment (Fig. 1a).
A similar trend was observed for N concentration in those

fractions in response to residue amendment with averaged 26.4%
and 13.6% increases in fine-POC and MOC, respectively (Fig. 1b). In
addition, residue amendment significantly decreased the available
N concentration from 30 to 250 days of incubation compared to
the control (Supplementary Fig. 1). Moreover, the available N
concentration under the amendment of soybean residue was
significantly higher than that under the amendment of maize
residue (p < 0.05).
Residue-N was transformed and incorporated into various

fractions. Soybean residue-N was mainly retained in the fine-
POC and MOC fractions with 27.4 and 34.1 mg residue-N g−1,
respectively, compared with 1.03 mg residue-N g−1 coarse-POC.
The amount of soybean residue-N retained in each fraction was
significantly higher than the amount of maize residue-N (Fig. 1c).

Chemical composition of SOC
Residue amendment not only quantitively facilitated the C
sequestration in soil, but also altered the quality of SOC. After
250 days of incubation, the residue amendment markedly altered
the chemical compositions of SOC compared to the control (Fig.
2). As revealed by the NMR spectra, residue amendment
significantly (p < 0.05) increased the relative proportion of
O-alkyl C (labile C component) with 41.1 and 41.8% in the maize
and soybean residue treatments, respectively, in comparison to
38.8% in the control. The aromatic C proportion (recalcitrant C
component) in the maize and soybean residues treatments
reached 31.1 and 32.5%, respectively, which were significantly

lower than the control (33.6%). Residue amendment increased
aliphatic/aromatic C ratio [aliphatic C (alkyl C+O-alkyl C)/aromatic
C] and decreased the alkyl C/O-alkyl C ratio compared to the
control.

Microbial biomass C and activity
Residue amendment stimulated soil respiration, microbial biomass
C and metabolic quotient over time compared to the control
(Supplementary Fig. 2). The amendment of soybean residue
resulted in a higher cumulative respiration than the maize residue
amendment in the initial 137 days of incubation (p < 0.05), while
an opposite trend was observed after 193 days of incubation
(Supplementary Fig. 2a). Soil microbial biomass C on 7, 30 and
250 days, was significantly higher in the soybean residue
treatment than in the maize residue treatment, but no difference
was observed on 60 and 100 days (Supplementary Fig. 2b). In
terms of the C use efficiency for microbial activity, the amendment
of maize residue, however led to the greater metabolic quotient of
soil microorganisms than the soybean residue treatment on 100
and 250 days (Supplementary Fig. 2c).

Microbial community diversity
Residue amendment altered the alpha diversity of microbial
community as reflected by the number of OTUs and Shannon
index. A significant decrease of the OTU number was observed in
response to residue amendment after 7 days of incubation, but no
difference among the treatments by day 250. Both maize and
soybean residue amendments significantly decreased Shannon
index in the initial 30 days of incubation compared to the control,
but this decrease only occurred in the maize residue treatment
afterwards (Supplementary Fig. 3a). In the fungal community, the
OTUs in the residue treatments were less than in the control until
the end of incubation. The maize residue amendment significantly
decreased the Shannon index at 30 days of incubation, but did not
affect it thereafter compared to the control, while the soybean
residue amendment lowered Shannon index (Supplementary
Fig. 3b).
Regarding beta diversity, the PCoA analysis indicated that the

clustering of bacterial community changed over time in the
residue treatments (Fig. 3a). By 250 days of incubation, a
significant difference in the community composition between
the two residue treatments was found, as indicated by ANOSIM
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Fig. 1 Carbon and nitrogen concentrations in various fractions of
soil organic matter. The concentrations of carbon (a) and nitrogen
(b) and residue-derived N (c) retained in the coarse particulate
organic C (coarse-POC), fine POC (fine-POC) and mineral-associated
organic C (MOC) fractions in soils amended without (control) and
with maize and soybean residues after incubated at 25 °C for
250 days. Different letters above bars indicate a significant
difference between treatments at p < 0.05 (one-way ANOVA). * and
** represent a significant difference analyzed by independent t test
between treatments at p < 0.05 and p < 0.01, respectively. Error bars
are the standard error of three replicates.
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Fig. 2 Chemical composition of soil organic C (SOC). The relative
proportions (%) of different functional groups of SOC in response to
the amendment of maize and soybean residues after incubation at
25 °C for 250 days. Different letters above bars indicate significant
differences among treatments at p < 0.05 (one-way ANOVA). Error
bars were the standard error of three replicates.
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(R= 0.64, p < 0.001) and Adonis (R2= 0.42, p < 0.001). By contrast,
there was little change in the bacterial community of the control
over time. Similarly, the fungal community composition was
altered by the residue amendment and the significant difference
between maize and soybean residue treatments occurred at the
end of incubation (Fig. 3b).
The RDA revealed a strong association between the microbial

community composition and the SOC composition and C
concentration in SOC pools at 250 days of incubation (Fig. 3c
and d). Specifically, the community composition under residue
treatments had positive relationships with C and N concentrations
in the fine POC and MOC fractions, and O-alkyl C proportion (p <
0.05), but had negative relationships with the aromatic C
proportion and Alkyl C to O-alkyl C ratio (p < 0.05).

Microbial metabolic profile
The residue amendment increased the abundance of major
N-ammonification genes at 7 and 250 days of incubation, with
higher abundances of the functional genes coding urease,
glutaminase and leucyl aminopeptidase compared to the control
(Fig. 4a). The abundances of genes coding glutamate dehydro-
genase, leucyl aminopeptidase and aminopeptidase were higher
under the soybean than maize residue treatment at 250 days of
incubation, while genes coding urease, glutamate synthase and
glutaminase had an opposite trend.
Residue addition significantly increased the normalized read

numbers of C-degradation genes compared to the control (Fig.
4b). On day 7 of incubation, the genes coding the mineralization
of hemicellulose, pectin, cellulose and chitin had greater relative

abundances under the soybean than maize residue treatment,
while the similar abundances of the mineralization genes of chitin,
aromatics and lignin were observed at day 250 (Supplementary
Table 2).

Microbial functional network associated with chemical
composition of SOC and residue-N in SOC fractions
The pattern of the network of microbial metabolic profile
regarding the SOC composition and C and N concentrations in
SOC fractions were similar between 7 and 250 days of incubation
(Fig. 5 and Supplementary Table 3). This network demonstrated
the close connection of C-decomposition and N-mineralization
genes with soil C and N status. The SOC composition was also
associated with C-decomposition genes. Specifically, based on the
correlations of microbial metabolic profile with the composition of
SOC and residue N in various SOC fractions, most of
C-decomposition and N-mineralization genes were positively
associated with the relative proportion of O-alkyl C but negatively
with the alkyl C/O-alkyl C and the relative proportion of aromatic C
(Supplementary Fig. 4a and b). The N-mineralization genes such as
glutamate dehydrogenase, leucyl aminopeptidase and aminopep-
tidase N were positively associated with residue-N in fine-POC and
MOC at 7 and 250 days of incubation (Supplementary Fig. 4c).
Interestingly, the N concentration in the SOC fractions had more
positive connections with C-decomposition genes compared to
N-mineralization genes (Supplementary Table 3), given that most
of C-decomposition genes were positively associated with
N-mineralization genes (Supplementary Table 4).
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Fig. 3 Microbial community composition. Principal coordinate analysis (PCoA) of bacterial (a) and fungal (b) communities in a Mollisol
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Keystone ecological clusters linking to C-decomposition and
N-mineralization genes
Ecological networks were used to identify the functional potential
of microbial clusters. The network of microbial community was
separated into 6 major modules (Fig. 6a, Modularity = 0.60). The
first 3 modules accounted for 65.9% of the network node
numbers. Residue amendment significantly increased the relative
abundance of modules 2 and 3 on days 7 and 250 of incubation
(Fig. 6b). Among these modules, the relative abundance of
module 2 was significantly correlated with normalized reads of
C-decomposition and N-mineralization genes (Fig. 6c), indicating
that module 2 is a keystone functional module. Moreover, the
dominant bacterial genera in this module included Massilia, Dyella,
Luteimonas and Sphingomonas affiliated to Proteobacteria, and
Granulicella affiliated to Acidobacteria; the fungal genera included
Penicillium and Ramophialophora. The details of C- and N-
mineralization-associated genera within this module were shown
in Supplementary Table 5, and most genera were significantly
enriched under the treatment of residue amendment.

DISCUSSION
Microbial community profiling relevant to residue-induced C
sequestration
During the process of residue decomposition in soil, residue-N was
pivotal to soil C sequestration in organic C pools. This is
highlighted by the fact that N and C concentrations increased in
SOC fractions in response to residue amendment. The application
of N-enriched soybean residue led to a greater increase in the C
concentration in POC compared to maize residue, and more

soybean residue-N was observed in this fraction (Fig. 1), which
further implied the fundamental contribution of residue-N to soil C
accumulation in the POC pool.
Although differences in chemical properties of residues may

influence the fate of residue-C in soil26,27, the C sequestration in
SOC pools in response to residue amendment is mainly attributed
to the nutrient stoichiometry within heterotrophic microorgan-
isms28,29. Due to the greater C/N ratio of residues (50 to 120) than
soil11, the transformation of residue C into the SOC pools is
dominantly N-limited rather than C-limited30. This was indicated
with the significant decrease of mineral N in the residue-amended
soil compared to the control (Supplementary Fig. 1), suggesting
that microorganisms may mine N from organic materials to meet
their N requirement31,32.
Residue-induced differences in microbial community composi-

tion and metabolisms had important effects on the transformation
of residue-C into SOC pools. The RDA in this study indicated the
significant association between microbial community composition
and C concentrations in POC and MOC (Fig. 3c and d). Our
previous studies also found that bacterial community composition
shifted considerably after 150 days of soybean residue amend-
ment into a Mollisol11,26, which likely contributed to the
accumulation of residue-C in SOC fractions26. Corresponding with
the change in the microbial community composition, this study
further demonstrated that residue amendments dramatically
altered the community-level functional profile from labile to
recalcitrant C mineralization (Fig. 4). Moreover, the range of
C-mineralization genes were positively correlated with the C
concentrations in SOC pools (Fig. 5 and Supplementary Table 3).
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The role of N-mineralization-associated metabolic profiles in C
transformation
Microbial community function in relation to N mineralization was
integrated with C transformation to contribute to the C
accumulation in SOC pools in response to residue amendment.
This is demonstrated by the fact that genes coding urease,
glutamate synthase, glutaminase and aminopeptidase were
significantly correlated with C-decomposition genes (Fig. 5 and
Supplementary Table 4), C concentrations in POC and MOC
fractions (Supplementary Fig. 5). Moreover, using GeoChip, He
et al.33 demonstrated that significant relationships of microbial
community functional structure with soil C and N dynamics.
Taking this together, the increases in the normalized reads of
aminopeptidase- and glutaminase-producing genes, and N con-
centration in SOC fractions in response to residue amendment,
especially soybean residue amendment, suggest that microbial
communities that metabolized residue-N were simultaneously
acting with those on the residue C transformation. Moreover, a
positive association of a number of N mineralization genes with
microbial metabolic quotient (Supplementary Fig. 5) highlights the
essential role of microbial N metabolisms in the reside-C utilized
by microbial community. Therefore, residues may escalate the
microbial community metabolic profile towards N mineralization,
of which the magnitude of this stimulation on N mineralization
genes may largely regulate the decomposition of the residue-C
and subsequent sequestration in SOC pools.
The question is which genera were active in the C and N

transformation in response to the residue amendment. In this
study, a number of genera of key-stone phylotypes were positively
associated with the abundance of C-decomposition and
N-mineralization genes (Fig. 6 and Supplementary Table 5).
Massilia and Granulicella are able to metabolize chitin for N and
C sources34–37. Dyella and Sphingomonas as microbial resource can
degrade a range of organic matters such as aromatic com-
pounds38 and phenol39. Luteimonas played an important role in
nitrate reduction in N cycle40. Penicillium was the predominant
cellulolytic fungi that secrete enzymes to hydrolyze lignocellulose
into usable sugars41. Those bacterial and fungal genera could be
dominant functional producers manipulating the residue-C and N
transformation.

The role of microbial C and N metabolisms in SOC stability
under residue amendment
The stabilization of residue-induced C sequestration in soil is
relevant to the relative change of SOC composition, which was
dominantly resulted from the microbial community function on
the transformation of residue C and N. The proportional increase
in aliphatic C group in response to reside amendment was
considered to contribute to SOC stabilization as the aliphatic
biomacromolecule is one of the major components in soil humic
material that is a complex mixture of faunal, microbial and plant
biopolymers and their degradation products42–44. The aliphatic
biomacromolecules such as cutin, cutan and buerin are normally
derived from plants and microorganisms, which may go through
biochemical processes to form these compounds. These biochem-
ical processes require microbial N metabolisms as well. The
significant correlations of urease, glutamate synthase and
glutaminase with aliphatic C and the aliphatic-to-aromatic C ratio
in this study (Fig. 5 and Supplementary Fig. 4), clearly indicate the
involvement of microbial N metabolisms in the contribution of
residue-C transformation to SOC stability.
Moreover, the increase in MOC with residue amendment

implies that those decomposed compounds may physically bind
to soil minerals by ligand exchange, polyvalent cation bridges, van
der Waals forces and H bonding45–47, which is resistant to
enzymatic attack48. Under the residue amendment, the less
increase in the abundance of genes involved in recalcitrant C

degradation than labile C mineralization supports this view (Fig. 4
and Supplementary Table 2). A number of studies further reported
that organic C bonded with clay and silt has longer turnover time
than non-protected SOC49,50. In addition, more C occluded in the
POC fraction with the amendment of N-enriched soybean residue
than maize residue further demonstrated that residue-N-mediated
C accumulation in this fraction may be isolated from decomposi-
tion due to aggregation20,51,52.
Collectively, the integrative work from microbial metagenomic

analysis to SOC molecular composition advances our knowledge
that crop residues accelerate microbial community metabolisms
involved in the N mineralization, which is corresponding with
labile and recalcitrant C transformation, and finally contribute to
the C flow into SOC pools and the accumulation of persistent
organic compounds in soil. Mechanistic understanding on the
microbial N metabolism involvement in the crop residue turnover
in soil would provide explanations for the benefits of N-enriched
residues to the SOC stock and stability in farming soils.

METHODS
Soil and residue preparation
The soil was collected from a farming paddock that was cultivated in a
soybean-maize rotation without fertilization for six years (2012–2017) at
Guangrong village in Hailun, Heilongjiang province in northeast China (47°
21’N, 126°50’E). Soil type was a typical Mollisol or Phaeozem53. Soil samples
were taken from the tillage layer (0–10 cm) at five random locations in an
area of 120m2 on the paddock before soybean was sown in 2018, and
then pooled. In order to effectively remove gravels and organic debris and
homogenize soil, the soil was partially air-dried to 32% of field water
capacity and sieved through a 2-mm sieve. The partial drying (to 30% of
field water capacity) has minimal impact on soil microbial properties54. The
soil had a pH of 6.13, SOC of 23.3 mg g−1 and total N of 2.01mg g−1.
The 15N-labeled crop residues were produced with soybean and maize

plants grown in the Mollisol, in which Ca(15NO3)2 with 20% of 15N atom
excess was homogeneously mixed at a rate of 100mgN kg−1 soil before
sowing. Six germinated seeds were sown in each pot (20 cm diameter and
40 cm high) containing 12 kg soil. The seedlings were thinned to 3 plants
for soybean and 1 plant for maize after emergence. Three pots were set for
each crop. Soil water content was maintained at 80 ± 5% of field capacity
by weighing and watering. After plants matured, stalks were harvested,
dried at 70 °C, ground through 2-mm and 0.25-mm sieves. The residues left
between 0.25 and 2mm were used for the following incubation
experiment. The residue-C and N concentrations were 477 and 9.3 mg
g−1 for the soybean residue (C/N= 51), and 431 and 4.1 mg g-1 for the
maize residue (C/N= 105).

Experimental design and sampling
An incubation experiment was carried out for 250 days with three
treatments: (1) maize residue amendment, (2) soybean residue amend-
ment and (3) no-residue control. There were 15 jars per treatment for five
sampling dates. Thirty grams of air-dried soil was watered to 50% field
water capacity and pre-incubated for 20 days at 25 °C to resume soil
microbial activity55. Then 0.6 g of residue was mixed thoroughly with soil
and put into a PVC core (5-cm height, 4-cm diameter) with a nylon mesh
bottom. After the soil bulk density was adjusted to 1.1 g cm−3, the core
was placed into a 1-L sealed Mason jar. A 50-mL vial containing 10mL of
1 M NaOH to trap CO2 and a 20-mL vial containing 10mL water were
placed in each jar to maintain a high humidity. The incubation was
conducted in the dark at 25 °C. Three blank controls without soil and
residue were set up under the same condition. The soil water content was
maintained at 60% of field water capacity through weighing and watering
during the incubation.
At each of 7, 30, 60, 100 and 250 days of incubation, three jars/replicates

from each treatment were randomly sampled. Soil from each jar was
separated into three parts: one part (5 g) was air-dried for SOC
fractionation and other chemical measurements including total C and N,
functional groups of SOC and 15N abundance; one part (approximately 2 g)
was stored at −80 °C for soil DNA extraction and Illumina sequencing; and
the remaining part was freshly used for measurements of microbial
biomass C (MBC) and available N.
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Measurements of soil respiration and biochemical properties
The NaOH vials were replaced every three days in the first two weeks,
weekly from day 19 to day 117, every 10 days from day 118 to day 168, and
every two weeks each time thereafter. Total CO2-C trapped in NaOH vials
was determined using the titration method. Briefly, NaOH solution was
precipitated using 1mL of 1.0 M strontium chloride (SrCl2) solution, then
titrated with 0.5 M HCl against a phenolphthalein indicator. The metabolic
quotient (qCO2) was calculated as soil respiration divided by MBC56.
Soil pH was measured using a Wettler Toledo 320 pH meter in water

extract (w:v= 1:5) after shaking the suspension for 30min. The SOC and
total soil N concentrations were measured with an Elementar III analyzer
(Elementar Analysensysteme, Hanau, Germany). To avoid the interference
of inorganic C in the measurement of SOC, the inorganic C in soil was
removed using the HCI-fumigation method57. Briefly, soil samples were put
into a microtiter plate and wetted to field capacity, then incubated in a
sealed desiccator for 10 h with a beaker carrying the concentrated HCl
solution (12 M). Thus, the soil carbonates were reacted to form CO2. Then,
the soil samples were dried at 55 °C before measuring SOC. Soil available N
was extracted from 2 g fresh soils in 20mL of 0.5 M K2SO4 by shaking for
1 h, then measured using a flow-injection auto-analyser (SKALAR, San++,
Netherlands). The atom% 15N in SOC fractions was determined using an
isotope ratio mass spectrometer (Deltaplus, Finnigan MAT, Bremen,
Germany).
The MBC was measured using the fumigation extraction method58. Total

organic C in extracts was determined using an automated TOC analyzer
(Shimadzu, TOC-VCPH, Japan). The MBC was calculated as the difference in
TOC concentration in extracts between fumigated and non-fumigated soils
divided by 0.38 (the extractable part of MBC after fumigation).

SOC fractions
The SOC fractions at the end of the incubation were separated into coarse
particulate organic C (>250 μm, coarse POC), fine POC (53–250 μm) and
mineral-associated organic C (<53 μm, MOC)59. Briefly, 5 g soil was
suspended in 40mL of 1.7 g cm−3 sodium iodide (NaI) solution and
centrifuged at 6500 × g for 1 h. The free light fraction (maize and soybean
residues) was recovered from the solution surface. The heavy fraction was
dispersed in 35mL of 0.5 M sodium hexametaphosphate solution and
shaken for 17 h (0.55 × g) on a reciprocal shaker (MX-RL-Pro DRAGON LAB,
USA). The soil solution was passed through 250-μm and 53-μm sieves and
then dried at 60 °C. The total C and N concentrations and atom% 15N in
each fraction were measured using the methods described as above.

Solid-state 13C NMR analysis
The chemical composition of SOC was determined by solid-state 13C
nuclear magnetic resonance (NMR). Soil samples at the end of incubation
were pre-treated with 2% hydrofluoric acid to remove paramagnetic
materials60. Solid-state 13C NMR analyses were completed on a Bruker
Avance Neo 400 NMR spectrometer (Billerica, USA). The samples were
packed into 4-mm diameter zirconia rotors and spun at the rate of 8 kHz at
the magic angle of 54.7°. Single contact times of 2 ms were applied, and a
recycle delay of 2.5 s. Approximately 10,000 transients were collected to
acquire spectra with a signal-to-noise ratio above 10.
After the baseline correction, the spectra were divided into four

chemical shift regions, representing alkyl C (0–45 ppm), O-alkyl C (45–110
ppm), aromatic C (110–160 ppm), and carboxylic/amide/ester C (160–200
ppm)61. The ratios of alkyl C to O-alkyl C (alkyl C/O-alkyl C) and aliphatic C
to aromatic C [aliphatic C (0–110 ppm)/aromatic C (110–160 ppm)], were
used as indices to assess the degrees of stability and aliphaticity of soil62.

DNA extraction and Illumina MiSeq Sequencing
Total soil DNA was extracted from 0.5 g fresh soil using a Fast DNA SPIN Kit
for Soil (Qbiogene Inc., Carlsbad, CA, USA). Illumina MiSeq sequencing was
performed by creating the amplicon libraries of bacterial 16 S rRNA gene
with primers 515 (GTGCCAGCMGCCGCGG)/907R (CCGTCAATTCMTTTR
AGTTT)63 and the internal transcribed spacer (ITS) region of fungi with
primers ITS1F (CTTGGTCATTTAGAGGAAGTAA)/ITS2R (GCTGCGTTCTTCATCG
ATGC)64, respectively. The raw sequences of bacterial and fungi were
uploaded onto the NCBI database under the accession number of
PRJNA729887 and PRJNA729909, respectively.
The Quantitative Insights Into Microbial Ecology (QIIME) pipeline (http://

qiime.org) was used for data analysis65. In brief, average quality score
below 25 and reads shorter than 200 bp were removed. Among the

remaining reads (24,250−44,588 for bacteria and 30,892−76,324 for fungi
per sample), randomly selected subsets of 24,250 and 30,892 reads for
bacteria and fungi were applied to each sample, and then clustered into
operational taxonomic units (OTUs) on a 97% similarity level with
UPARSE66. Each bacterial OTU was aligned them with the Greengenes
13_8 16 S rRNA database (http://greengenes.lbl.gov/)67. The UNITE
database was used to determine fungal taxonomic identity68.

Metagenome sequencing and bioinfomatimatic analyses
The DNA samples from days 7 and 250 were also used for microbial
metagenomics analysis. We used the Covaris M220 (Gene Company
Limited, China) to fragment DNA sample to an average size of about
400 bp for paired-end library construction. Libraries were sequenced using
Illumina Hiseq Xten systems (Illumina Inc., San Diego, CA, USA) at Majorbio,
Bio-Pharm Technology Co., Ltd. (Shanghai, China). Data were deposited in
the NCBI Sequence Read Archive under the accession number
PRJNA730191.
Clean reads were generated by removing adaptor sequences and low-

quality reads from metagenome sequencing through fastp69 (https://
github.com/OpenGene/fastp, version 0.20.0). MEGAHIT (parameters:
kmer_min= 47, kmer_max= 97, step= 10) (https://github.com/voutcn/
megahit, version 1.1.2) was used to assemble these high-quality reads to
contigs, which makes use of succinct de Bruijn graphs. Then, we selected
the contigs with the length of ≥300 bp as the final assembling result for
gene prediction and functional annotation.
MetaGene70 (http://metagene.cb.k.u-tokyo.ac.jp/) was used to perform

open reading frames (ORFs) of selected contigs. The predicted ORFs
(length ≥ 100 bp) were selected and translated into amino acid sequences
using the NCBI translation table (http://www.ncbi.nlm.nih.gov/Taxonomy/
taxonomyhome.html/index.cgi?chapter=tgencodes#SG1).
We used CD-HIT71 (http://www.bioinformatics.org/cd-hit/, version 4.6.1)

to construct a nonredundant gene catalog with 90% coverage and 90%
sequence identity. Then, we mapped the reads to the constructed
nonredundant gene catalog using SOAPaligner72 (http://soap.genomics.
org.cn/, version 2.21) and calculated gene abundance. Functional
annotation was conducted using Diamond73 (https://github.com/
bbuchfink/diamond, version 0.8.35) against the Kyoto Encyclopedia of
Genes and Genomes database (http://www.genome.jp/kegg/, version 94.2)
with a cutoff e-value of 1e-5. We deployed the normalization of relative log
expression (RLE) using the DESeq2 package (Version 1.14.1) on all genes74.
The targeted KEGG Orthologies of marker genes involved in C and N
metabolic pathways were selected as a subject database (Supplementary
Table 1)75–78.

Microbial community composition and network analyses
Principal coordinate analysis (PCoA) based on a UniFrac distance matrix
and redundancy analysis (RDA) for bacterial and fungal communities was
performed using the ‘vegan’79 and ‘GUniFrac’80 packages in R platform
(version 3.2.5)81. The use of RDA in this study was to demonstrate the
association of microbial community composition with soil chemical
properties. Moreover, the analyses of similarities (ANOSIM) and Adonis
were performed to statistically assess the difference in the microbial
community composition between treatments using ‘vegan’ package79. The
Pearson correlations of the read number of C- and N-mineralization genes
with relative proportion of chemical functional group in SOC composition
and C concentration in SOC pools were visualized on heatmaps.
Co-occurrence networks for bacterial and fungal communities were

constructed using the R package “WGCNA”82. To reduce the complexity of
the data sets, we removed OTUs with the relative abundance of less than
0.01% for all samples, leaving 821 bacterial and 144 fungal OTUs for further
analyses. Pairwise Spearman correlations between nodes were obtained,
and correlations with r > 0.8 and p < 0.05 were included in the network.
Network modules were visualized using Gephi platform (version 0.9.2).
Modules (ecological clusters) represent important ecological units with
identifiable and highly connected taxa in each module83,84. The relative
abundance of each module was computed using the standardized relative
abundances (z-score) of the OTUs that belong to each module. Dominant
functional genera that were associated with N mineralization and C
decomposition were chosen from those ecological clusters with strong
Spearman’s R2 > 0.7 at the significance of p < 0.05. In order to overcome
the false positive problem in the multiple significance tests, the p values
were adjusted to q values using False Discovery Rate (FDR) of 0.05 in the
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relevant analyses on C-decomposition genes and the C- and N-
mineralization-associated genera.

Calculations and data analysis
The δ15N (‰) in plant residues and SOC fractions was calculated according
to the natural 15N abundance in the air85.

δ15N ¼ 1000 ´ Rsample � Rstandard
� �

=Rstandard

where Rstandard is the natural 15N abundance in the air (Rstandard= 0.36647
atom%)86. Rsample is the 15N abundance in the SOC fractions.
The percentage of 15N-labeled residue-N (%Ndfr) in the SOC fractions

was calculated as follows87,88:

%Ndfr ¼ δ15Nsample � δ15Nsoil
� �

= δ15Nresidue � δ15Nsoil
� �

where δ15Nsample is the δ15N value of SOC fractions with residue addition;
δ15Nsoil is the δ15N value without residue addition; and δ15Nresidue is the
δ15N value of the applied maize or soybean residue.
N residual proportion of 15N-labeled residue (RPNr) in SOC fractions:

RPNr ¼ 100 ´ Nsoc ´%Ndfrð Þ=Nr

where Nsoc is the total soil N content in SOC fractions; and Nr is the N
content of 15N-labeled maize or soybean residue.
The amount of residue-N (in grams of residue-N per kilogram of soil)

incorporated into the SOC fractions was calculated as follows:

Residue� N ¼ RPNr ´Nsoc

where Nsoc indicates the concentration of total N in each SOC fraction.
Data in this study were expressed as the mean ± standard error.

Statistical significance was analyzed by one-way analysis of variance for
three treatments and independent t test for two treatments after normal
distribution test using SPSS software (version 19.0).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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