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Microbial co-occurrence network topological properties link
with reactor parameters and reveal importance of low-
abundance genera
Bing Guo1,2, Lei Zhang1, Huijuan Sun1, Mengjiao Gao1, Najiaowa Yu1, Qianyi Zhang1, Anqi Mou1 and Yang Liu 1✉

Operational factors and microbial interactions affect the ecology in anaerobic digestion systems. From 12 lab-scale reactors
operated under distinct engineering conditions, bacterial communities were found driven by temperature, while archaeal
communities by both temperature and substrate properties. Combining the bacterial and archaeal community clustering patterns
led to five sample groups (ambient, mesophilic low-solid-substrate, mesophilic, mesophilic co-digestion and thermophilic) for co-
occurrence network analysis. Network topological properties were associated with substrate characteristics and hydrolysis-
methanogenesis balance. The hydrolysis efficiency correlated (p < 0.05) with clustering coefficient positively and with normalized
betweenness negatively. The influent particulate COD ratio and the relative differential hydrolysis-methanogenesis efficiency
(Defficiency) correlated negatively with the average path length (p < 0.05). Individual genera’s topological properties showed more
connector genera in thermophilic network, representing stronger inter-module communication. Individual genera’s normalized
degree and betweenness revealed that lower-abundance genera (as low as 0.1%) could perform central hub roles and
communication roles, maintaining the stability and functionality of the microbial community.
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INTRODUCTION
Anaerobic digestion (AD) is a promising technology for organic
waste/wastewater treatment to recover biogas as energy and
reduce the risk to environmental and human health1–3. The
successful AD system depends on robust microbial community,
effective microbial symbiosis and balanced hydrolysis, acidogen-
esis, acetogenesis and methanogenesis, which involve different
functional groups. To uncover the AD microbiome “blackbox” and
to manage the AD systems, the first task has been deciphering the
links between operational factors and microbial community
assembly and functionality4,5. Previous studies have used the
strategy of identifying the most abundant or core microorganisms
and correlating them with operational factors and performance to
illustrate the key factors and functional microorganisms1,2,4,6,7. This
approach reflects the selection force on the dominant micro-
organisms (e.g., top 10, top 20, or >1%) and narrows down the
target microorganisms for in-depth genomic and functional
analysis. Whereas, the importance and functions of lower-
abundance (e.g., 0.1%) members are not fully revealed, and the
microbial interactions and ecological roles in the communities
remain unclear. Due to the complexity nature of microbiome
structure and function, unraveling the microbial interactions
within a functional group and between different groups and
revealing the microorganisms’ ecological roles and importance in
predicting system performances are challenging8.
Based on network theory, the co-occurrence of microorganisms

can be modeled using network analysis to illustrate microbial
relationships and responses to variations of operational factors
and suggest clustering of sub-communities. Meanwhile, the
network’s topological properties, e.g., modularity and connectivity,
may associate with operational and performance parameters and
imply the general ecological interaction of the system9–14. The

topological characteristics of individual microorganisms can be
used to infer their ecological roles in the network. Previous studies
used microbial communities from different AD systems to
construct one global network and link the operational factors to
demonstrate their impacts on the microbial eco-system10,13.
Different feedstock substrates (e.g., waste activated sludge, food
waste, manure) have been studied as one important factor
affecting the microbial co-occurrence networks for full-scale AD
systems15. However, operational factors for full-scale systems may
vary within and between systems, and pooling all microbial
communities fed with different substrates to perform one network
analysis may not reveal the correlations between microorganisms
properly. Rather, it is rational to build separate networks for each
substrate type or each reactor, instead of one network9,12,13,16.
Very few studies have investigated separated networks to
compare different systems. In one study, four separate networks
were built for AD reactors treating dairy manure or co-digestion of
poultry waste at different organic loading rates and demonstrated
that the network topological features and substrate availability
were associated9. Another study compared four AD networks at
different temperatures and found that the topological features
were correlated with methane production rate but not
temperature12.
Multi-network topological characteristic comparison was con-

ducted in other wastewater treatment systems. For example, in
activated sludge, the network topological features were mainly
associated with substrate characteristics, i.e., the ratio of biological
oxygen demand and chemical oxygen demand17. In activated
carbon biofilter, the seasonal variation and ozonation treatment
affected the network properties18. While the number of studies on
multi-network comparison is limited, there is a need to explore the
AD microbial network with appropriate operational parameter
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constrains to better understand the links between operation,
microbial community and system performance9,18.
This study aims at investigating the impacts of operational

parameters on AD performances and microbial community
ecology using blackwater as a feedstock under various conditions.
Temperature, reactor design, organic loading rate and substrate
characteristics were control variables. In total, 52 microbial
samples from 12 reactors were used to analyze microbial
community diversity and composition and to construct co-
occurrence networks. Separate networks were built for different
groups based on the community similarity and the network
topological properties were associated with reactor operational
and performance variables.

RESULTS
Reactor performances
The reactor performances varied at different operational condi-
tions (Table 1). The mesophilic co-digestion, thermophilic co-
digestion, and thermophilic reactors showed higher hydrolysis
efficiencies (80.5%, 69.1%, 51.8% respectively) than mesophilic
(low-solid-substrate, regular-substrate and concentrated-sub-
strate) and ambient conditions (16.0–35.7%). The methanogenesis
efficiency also showed higher values in the mesophilic co-
digestion (77.1%), thermophilic co-digestion (68.4%), and thermo-
philic blackwater (51.6%) than the rest (30.8–43.6%). It should be
noted that the mesophilic low-solid-substrate condition showed
higher methanogenesis efficiency than its hydrolysis efficiencies
because that the substrate contained high soluble COD ratio (62%
of the total COD), lowering the requirement for substrate
hydrolysis.
The specific methanogenic activity (SMA) was measured for

hydrogenotrophic (SMA_H2) and acetoclastic methanogenesis
(SMA_Acetate). All reactors showed higher SMA_H2 than SMA_A-
cetate, suggesting that blackwater AD is dominated by hydro-
genotrophic methanogenesis rather than acetoclastic
methanogenesis, which agrees with the archaeal community
composition that hydrogenotrophic methanogens dominated the
blackwater AD (Fig. 2B). It can be due to the high content of
nitrogen in blackwater and the resulted high total and free
ammonia concentrations (93–1410mg-N/L, free ammonia
4–259 mg-N/L), which leads to inhibition to acetoclastic metha-
nogenesis1. The ambient temperature condition resulted in the
lowest SMA and the smallest difference between SMA_H2 and
SMA_Acetate among all reactors due to the lowest temperature
and microbial activities.
The effluent total COD concentrations were highest in the

thermophilic and mesophilic co-digestion reactors (11.4 g/L and
8.4 g/L, respectively) since their influent COD concentrations were
the highest. The thermophilic reactors showed the third highest
effluent COD at 4.9 g/L, also due to the high influent COD. The
soluble COD and total volatile fatty acids (VFAs) had similar trends
with effluent COD. Effluent TAN and free ammonia concentrations
were below the inhibitory level19.

Microbial community diversity and composition
To compare the microbial community beta-diversity, the Bray-
Curtis distance was calculated and ordinated with the Principal
Coordinate Analysis (PCoA) for bacterial and archaeal communities
separately (Fig. 1) because that archaeal community has been
reported to be influenced differently with bacterial commu-
nity15,20. The bacterial communities were clustered into three
groups that associated with reactor temperature (ambient,
mesophilic and thermophilic, Fig. 1A). This trend reveals that
temperature is the key factor that determines the bacterial
community composition. ANOSIM analysis showed that both
temperature and substrate conditions had a significant effect Ta
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(p < 0.001) on bacterial communities. The PERMANOVA results
showed that temperature can explain 43% and substrate can
explain 22% of the variance for bacterial community (Table S1).
The archaeal communities showed different clustering patterns

with the bacterial communities (Fig. 1B). The ambient and
thermophilic reactors still formed their own clusters with a far
distance, whereas the mesophilic communities divided into three
sub-clusters. The first sub-cluster, consisting of mesophilic co-
digestion archaeal communities, was adjacent to the thermophilic
archaeal communities. The second sub-cluster, mesophilic low-
solid-substrate communities, was closer to the ambient reactor
communities. The third sub-cluster includes the regular-substrate
and concentrated-substrate reactor samples. Although tempera-
ture was an important factor affecting the archaeal community,
there were other factors impacting the archaeal community,
especially under the mesophilic condition. Temperature and
substrate conditions showed significant effects (p < 0.001) on
archaeal communities (using ANOSIM and PERMANOVA analyses)
and can explain 44% and 35% of the archaeal community variance
respectively (Table S1).
The reactor operational parameters and feeding substrate

characteristics (independent of temperature) were used to
conduct Canonical Correspondence Analysis (CCA) to explain the
variation in communities (Supplementary Fig. S1). It showed that
temperature, influent substrate concentration (total COD, soluble
COD, pCOD/tCOD), organic loading rate, and hydrolysis rate

constant (KH) had significant correlations (p < 0.05, Supplementary
Table S2) with bacterial community variation but not Drate (relative
difference between KH and total SMA). The hydrolysis potential of
the substrate (KH) is determined by both the substrate type and
reactor temperature, showing significant correlation with the
bacterial community variance (p < 0.05, Supplementary Table S2).
The Drate showed a significant association with archaeal commu-
nity variance (p < 0.05, Supplementary Table S2), indicating that
archaeal community may be affected more by the unbalanced
substrate hydrolysis potential and methanogenic potential.
The alpha diversity indexes (Shannon diversity, Number of

genera and Evenness) showed general decreasing trends with
deceasing temperature (p < 0.05, Supplementary Table S3).
Different substrate conditions also showed significant differences
in all alpha diversity indexes (p < 0.05, Supplementary Table S3).
Thermophilic co-digestion showed the lowest Shannon diversity
and Evenness in both bacterial communities (1.42 ± 0.35, Fig. 1C)
and archaeal communities (0.46 ± 0.06, Fig. 1D), and the lowest
number of archaeal genera (3.25 ± 0.50). Less diverse community
predominated the thermophilic co-digestion reactor with lower
alpha-diversity indexes, indicating stronger selective effect and
microbial competition.
Under the mesophilic conditions, the bacterial community of

the low-solid-substrate reactor showed the highest Shannon
diversity (3.98 ± 0.38) and number of genera (257 ± 37) (Fig. 1C).
The mesophilic regular-substrate reactor showed the highest
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Fig. 2 Microbial community composition. A Assemblage of the top 10 bacterial genera from each sample. B All archaeal genera. Reactor
abbreviation A: Ambient; M.LS: Mesophilic Low-solid-substrate; M.reg: Mesophilic regular-substrate; M.conc: Mesophilic concentrated-
substrate; M.Co: Mesophilic Co-digestion; T: Thermophilic; T.Co: Thermophilic Co-digestion. Number in sample name indicates replicates from
the same group.
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evenness (0.80 ± 0.04). For the archaeal community, the meso-
philic low-solid-substrate reactor showed the highest Shannon
diversity, number of genera and evenness (1.85 ± 0.33, 14 ± 1,
0.69 ± 0.12, respectively) (Fig. 1D). The differences within the
mesophilic condition indicate that other factors besides tempera-
ture acted as driving forces for community diversity. The ambient
reactor showed similar alpha-diversity indexes with the mesophilic
low-solid-substrate reactors except for a lower number of archaeal
genera (10 ± 2).
The top 10 most abundant bacterial genera from each sample

were compared, as shown in Fig. 2A. A clear clustering pattern
associated with temperature was observed at the genus level and
also at the phylum level (Supplementary Fig. S2). At ambient
temperature, the predominant bacteria included unidentified
genera from the order Bacteroidales (5–36%), the family SB-1
(phylum Bacteroidetes) (1–25%), the family Helicobacteraceae
(phylum Proteobacteria) (1–27%), the family Christensenellaceae
(phylum Firmicutes) (1–4%), and Desulfomicrobium (phylum
Proteobacteria) (1–17%). These bacteria were observed in the
mesophilic reactors at lower relative abundances, while they
disappeared or had very low abundances in the thermophilic
reactors. At thermophilic conditions, the genus S1 (phylum
Thermotogae) showed significant abundances (20–80%) in both
blackwater and co-digestion reactors.
The archaeal communities formed five clusters (Fig. 2B). The

thermophilic reactors and mesophilic co-digestion reactors were
clustered in one group, sharing the high-abundance archaeal
genus Methanosarcina (10–62%). The second most abundant
genus differed, Methanothermobacter in the thermophilic reactors
(19–89%), and Methanoculleus in the mesophilic co-digestion
reactor (17–30%). The mesophilic concentrated-substrate and
regular-substrate reactors shared common predominant genera,
Methanospirillum and an unclassified genus in the order Metha-
nospirillaceae. Even though all at mesophilic temperature, the low-

solid-substrate reactors differed from concentrated-substrate and
regular-substrate reactors. The most abundant genus was
vadinCA11 (family Methanomassiliicoccaceae, 14–62%) for meso-
philic low-solid-substrate reactor. The obligate acetoclastic metha-
nogen Methanosaeta was also enriched (3–18%), but not in the
other mesophilic reactors. At the ambient temperature, an
unclassified genus in the family Methanomassiliicoccaceae
(18–73%) was predominant, followed by Methanosaeta (1–50%),
Methanospirillum (0–26%), Methanobacterium (0–17%), and an
unclassified genus in the family WSA2 (0–16%). Compared to the
thermophilic and mesophilic conditions, the ambient temperature
reactors had higher microbial evenness (Fig. 1D), dominated by
multiple genera.
Comparing the clustering patterns of bacterial and archaeal

communities by PCoA (Fig. 1A, B) and by the dominant genera
(Fig. 2), it is suggested that five community groups can be
classified: ambient, mesophilic low-solid-substrate, mesophilic
(concentrated-substrate and regular-substrate), mesophilic co-
digestion, and thermophilic. These five groups were used for co-
occurrence network analysis in the following sections.

Co-occurrence network analysis
The clustering pattern of the five groups led to construction of five
co-occurrence networks using the significant correlations among
genera (Spearman’s correlation coefficient r > 0.6, p < 0.01). As
shown in Fig. 3 and Table 2, the network characteristics varied for
each group. The clustering coefficient represents the complexity
of the network and strong interactions among microorganisms.
The mesophilic co-digestion network showed the highest cluster-
ing coefficient (0.85), followed by the thermophilic network (0.70),
indicating that microbial interactions are strongest in these two
groups. A previous study showed that higher clustering coefficient
corresponds to more dynamic and active community21. The
average path length values were the lowest in these two groups

A B C

D E

Fig. 3 The co-occurrence network of five groups. (A) Ambient. (B) Mesophilic Low-solid-substrate. (C) Mesophilic (regular-substrate and
concentrated-substrate). (D) Mesophilic Co-digestion. (E) Thermophilic (sole-blackwater and co-digestion). Color of nodes indicates OTUs from
the same module in each network. Line color indicates positive (pink) and negative (blue) correlation coefficient. Spearman’s correlation
coefficient r > 0.6 and p < 0.01 were used for network construction.
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(3.04 and 2.63 for mesophilic co-digestion and thermophilic
condition, respectively), indicating compact network property and
strong microbial interactions. These network properties can be
associated to the high-hydrolysis efficiency (51.8–80.5%) and
methanogenesis efficiency (51.6–77.1%) (Table 1), which were
remarkably higher than at other conditions.
The mesophilic low-solid-substrate network presented the

lowest clustering coefficient (0.56) and highest average path
length (7.52). Meanwhile, it showed the highest modularity (0.81)
and lowest average normalized degree (0.02), indicating less inter-
dependence among the microorganisms and more divergent
functional groups. This observation correlates to the substrate
property with lower solids content and reduced requirement for
hydrolysis (16%), leading to weaker dependence on hydrolytic
bacteria by the acidogens, acetogens and methanogens com-
pared to the other networks.
Three of the co-occurrence networks showed high ratios of

positive correlations, the ambient (97%), mesophilic (98%) and
thermophilic (99%) networks. Whereas the mesophilic low-solid-
substrate network and the mesophilic co-digestion network
showed fewer positive correlations (88% and 64%, respectively).

Linking network characteristics and reactor parameters
Comparison of the co-occurrence network characteristics inferred
relationships with reactor hydrolysis and methanogenesis perfor-
mances and activities. Therefore, the variables related to hydro-
lysis and methanogenesis were tested for correlation with network
characteristics among all variables (Fig. 4).
The clustering coefficient was significantly (p < 0.05) positively

correlated with hydrolysis efficiency, while the average normalized
betweenness was significantly (p < 0.05) negatively correlated with
hydrolysis efficiency, indicating that higher hydrolysis may
depend on stronger microbial interactions. The average path
length was significantly (p < 0.05) negatively correlated with two
variables, the pCOD percentage, and the Defficiency. When the
pCOD percentage is high, it is required for higher hydrolytic
activity and fast consumption of the hydrolyzed products, which
may lead to the short network path length. The relative differential
efficiency between hydrolysis and methanogenesis (Defficiency) may
indicate the dependence on transportation or syntrophic produc-
tion and consumption of intermediates between different
functional microorganisms. Higher Defficiency resulted in more
complex network (higher clustering coefficient) and shorter
average path length. Modularity showed similar patterns with
average path length, but not significant for any correlation. The
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network positive correlation ratio showed significantly (p < 0.05)
negative correlation with the observed SMA, a feature of the in-
situ activity in the reactors.

Keystone OTUs
Besides the general co-occurrence network characteristics, the
topological features of the individual OTUs are informative to
indicate their ecological roles. As shown in Fig. 5, OTUs were
classified into four groups based on the within-module con-
nectivity (Zi) and among-module connectivity (Pi)22. The periph-
erals (low Zi, low Pi) are OTUs that have a few links to other OTUs
within their modules, which included the majority of OTUs in all
groups. The module hubs (high Zi, low Pi) present OTUs with high
number of links in their own modules. Only the mesophilic low-
solid-substrate network had one module hub, Roseburia (order
Clostridiales).
The connectors (low Zi, high Pi) describe OTUs with links to

several modules, inferring important roles for inter-module
communication. The mesophilic and thermophilic networks
showed a few connectors. In the mesophilic network, Streptococ-
cus (order Lactobacillales) and an unclassified genus in the family
Methanospirillaceae were classified as connectors. In the thermo-
philic network, five genera were classified as connectors,
Ruminofilibacter (order Bacteroidales), Paludibacter (order Bacteroi-
dales), Fibrobacter (order Fibrobacterales), Lachnospira (order
Clostridiales), and an unclassified genus in the family Anaeroba-
culaceae (order Synergistales).
The normalized betweenness and degree for individual OTUs are

shown in Fig. 6. The degree of an individual OTU indicates its level of
interaction with other OTUs. High degree suggests a central hub role
in the network. The high betweenness reveals the role for
connecting other OTUs, referred as gatekeepers, suggesting the
importance of maintaining communication, integrity and function of
microbial communities23. Generally, the distribution of normalized
betweenness and normalized degree showed positive relationships
in all networks21. The mesophilic low-solid-substrate network
showed lower normalized degree distribution than other networks,
which is also reflected in the lowest average normalized degree (Fig.
3). The thermophilic network showed a trend of high normalized
degree distribution but lower normalized betweenness than other
networks, suggesting high interaction levels but lower dependence

on connector OTUs, which can be reflected by the shortest average
path length (Fig. 3). The relative abundances of OTUs are
represented by the symbol size and showed no correlation with
the distribution of normalized betweenness or degree.
The 10 highest normalized betweenness and normalized

degree OTUs in each network are shown in Table 3. It can be
seen that among different networks, the OTUs functioning as
central hubs (highest normalized degree) were different, so were
the connecting OTUs (highest normalized betweenness). Only a
few OTUs appeared concurrently in different networks. The genus
T78 (phylum Chloroflexi) had high normalized degree in both
ambient and mesophilic co-digestion networks. An unidentified
genus in the order GCA004 (phylum Chloroflexi) was shown in
both mesophilic and mesophilic co-digestion networks. Fibrobac-
ter (phylum Fibrobacteres) was in mesophilic, mesophilic co-
digestion and thermophilic networks as high normalized
betweenness genus. Desulfobulbus (phylum Proteobacteria) was
common in mesophilic low-solid-substrate and mesophilic net-
works to have high normalized betweenness.
Some methanogens exhibited important roles in the networks

(Table 3), i.e., f_Methanoregulaceae, and Methanobacterium
showed high normalized degree while Methanosaeta and
f_Methanomassiliicoccaceae showed high normalized between-
ness. Methanosaeta is an obligate acetoclastic methanogen while
the others are hydrogenotrophic. They are syntrophic partners of
many acetogens and acidogenic (H2-producing) bacteria5, exhibit-
ing many links in the network.
Within each network, the central hubs and the connectors only

shared 1–2 same OTUs. Fusibacter in the ambient network,
Macellibacteroides in the mesophilic low-solid-substrate network,
Acidovorax and Anaerovorax in the mesophilic network, Petrimo-
nas in the meso co-digestion network, and Sedimentibacter in the
thermophilic network had dual network functions.

DISCUSSION
Operational conditions have been demonstrated to affect micro-
bial communities in AD systems but whether the dynamics of
bacterial and archaeal communities synchronize or differ is not
clear. Previous full-scale AD survey studies have included multiple
factors and demonstrated that substrate type (e.g., sewage sludge,
manure, agricultural wastes) and temperature drove microbial
community diversity, and demonstrated covariation of bacteria
and archaeal communities15,20,24. Given the complexity of the
substrate composition and large differences between substrates,
pooling different types of substrates in one analysis may
underestimate other factors, and conceal the variation between
bacterial and archaeal responses to operational factors. Our
analysis focused mainly on blackwater, while covered a wide
range of factors for inter-reactor comparison. Even though it has
been recognized that bacterial and archaeal communities are
linked through syntrophic partnerships, we observed that their
composition and diversity rely on different factors based on the
Variation Partition Analysis (VPA, Supplementary Fig. S3).
Temperature is the most significant factor affecting the bacterial

community based on VPA (27% of total variance, Supplementary
Fig. S3), which has been reported in other studies15,20. Other
factors such as substrate type15,20, organic loading rate, solids
content5,11, and free ammonia1,20 can affect the bacterial
community. While it may be simple and reliable to focus on one
operational factor at a time, the practical application of AD often
faces multiple influencing factors. For single-factor analysis, the
bacterial and archaeal communities may exhibit synchronized
changes along the axis of the factor, and the enriched bacteria
and archaea can indicate their selection advantages and covariant
dynamics. Whereas under multiple factor variations, the selection
mechanism and bacteria-archaea interaction are more complex.
Our study evaluated multiple factors and underlined the
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remarkable influence of temperature compared to all other
factors. It was interesting that with the same type of substrate
feed (i.e., blackwater), other factors other than temperature
exhibited higher influence on archaeal communities compared
to on bacterial communities as shown in Figs. 1 and 2, and VPA
analysis (Supplementary Fig. S3). Influent total COD contributed to
slightly higher level of variance than temperature (27.2% and
26.6% respectively in VPA). Especially, the Drate could explain 21%
of archaeal community variance and only 10% of bacterial
community variance. This phenomenon has not been emphasized
or investigated although some hints have been observed in a full-
scale study with complex substrates15. Another full-scale AD study
on primary and secondary sludge showed contrary conclusion25,
where the archaeal community was more affected by temperature
than the bacterial community; however, it should be noticed that
the substrate feed was mainly mixed primary sludge and waste
activated sludge which can vary considerably among different
reactors. Our results showed that different temperatures (thermo-
philic and mesophilic co-digestion) may enrich the same
methanogen (Methanosarcina), which probably relates to the
easy-to-hydrolyze conditions for the substrate.
Using co-occurrence network analysis on groups divided based

on the community clustering pattern, different topological
characteristics can be observed which may imply links to
bioreactor performances and microbial ecological features.
Especially, some characteristics of the separated networks (i.e.,
clustering coefficient, average path length, normalized between-
ness) were correlated with rector performances (Fig. 4) and have
the potential to link and predict system function or efficiency. In
our study, higher clustering coefficients and shorter average path
lengths were features of the high-hydrolysis-rate and high-
methanogenesis-rate groups, i.e., thermophilic and mesophilic
co-digestion (Table 2). Although the number of separated network

studies is limited, this approach is promising to show that the
topological characteristics of co-occurrence networks are indica-
tive of the ecological features of microbiomes inferred by our
results and other microbiome network studies. In comparison to
soil microbiome networks, the clustering coefficient and con-
nectedness showed increases in early recovery and decreases in
late recovery after disturbance21, indicating that weaker interac-
tion (smaller clustering coefficient) predicts higher community
stability26. In a co-occurrence network study of steady-state
activated sludge17, small clustering coefficient and short average
geodesic distance (average path length) were linked with the
optimal substrate biodegradability condition and the BOD
removal load, indicating generally higher microbial activity. It
should be noted that AD systems contain more microbial
interactions for cooperation and syntrophic partnership compared
with aerobic systems; and the average clustering coefficient
(0.59–0.85) in our study was much higher than the activated
sludge networks (0.059–0.402)17 and soil bacterial networks
(0.08–0.24)21. Comparison of the AD networks in our study
demonstrated that stronger interaction (higher clustering coeffi-
cient and shorter average path) is linked to higher rates and
activities of microbial communities under steady-state conditions.
It should be noted that the implication to stability is not included
in the present study, which can be tested using non-steady-state
bioreactors in future studies.
The high modularity indicates the formation of sub-communities,

representing high niche differentiation in other ecosystems17. In
activated sludge networks, the modularity was indicated to reflect
parallel functional groups formed under desirable (non-stressful, less
limitation) and less-disturbance conditions, while interaction and
dependency between microbes are less required compared to high-
disturbance conditions17. Cooperative niches are essential for AD
system performance rather than parallel niches. In reported AD
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Table 3. The 10 highest normalized betweenness and normalized degree OTUs in each network.

Highest Normalized Degree Highest Normalized Betweenness

Phylum Identified level Phylum Identified level

Ambient Bacteroidetes f__Cytophagaceae OP3 c__koll11

Bacteroidetes f__Chitinophagaceae OD1 c__ZB2

Bacteroidetes Niabella TM6 c__SJA-4

Chloroflexi SHD-231 Firmicutes Fusibacter

Chloroflexi T78 Spirochaetes SJA-88

Proteobacteria f__Comamonadaceae Proteobacteria o__Burkholderiales

Bacteroidetes f__Saprospiraceae Firmicutes f__Clostridiaceae

Proteobacteria c__Betaproteobacteria Bacteroidetes f__Bacteroidaceae

Firmicutes Fusibacter Crenarchaeota o__pGrfC26

Proteobacteria Simplicispira FCPU426 FCPU426

Meso Low solids Bacteroidetes Macellibacteroides Proteobacteria f__Desulfobacteraceae

Bacteroidetes Paludibacter Firmicutes Faecalibacterium

Bacteroidetes Parabacteroides Spirochaetes f__Spirochaetaceae

Lentisphaerae Victivallis Bacteroidetes f__Cryomorphaceae

Lentisphaerae f__R4-45B Planctomycetes c__Phycisphaerae

Verrucomicrobia f__R4-41B Firmicutes Roseburia

Bacteroidetes f__Rikenellaceae Proteobacteria Desulfobulbus

Bacteroidetes f__p-2534-18B5 Proteobacteria Desulfomicrobium

Chloroflexi o__GCA004 Bacteroidetes Macellibacteroides

Firmicutes RFN20 Euryarchaeota Methanosaeta

Meso Proteobacteria Acidovorax Tenericutes o__ML615J-28

Synergistetes PD-UASB-13 Proteobacteria Acidovorax

Euryarchaeota f__Methanoregulaceae Firmicutes Anaerovorax

Chloroflexi o__GCA004 Proteobacteria Desulfobulbus

Firmicutes Carnobacterium Firmicutes f__Tissierellaceae

Firmicutes f__Peptostreptococcaceae Proteobacteria Wohlfahrtiimonas

Chlorobi c__SJA-28 Proteobacteria Sulfuricurvum

Proteobacteria Shinella Proteobacteria o__Myxococcales

Proteobacteria f__Sphingomonadaceae Fibrobacteres Fibrobacter

Firmicutes Anaerovorax Cyanobacteria o__YS2

Meso Co-digestion Bacteroidetes Petrimonas Fibrobacteres Fibrobacter

Chloroflexi T78 Euryarchaeota f__Methanomassiliicoccaceae

Proteobacteria Geobacter Firmicutes Tissierella Soehngenia

Proteobacteria Aeromonas Bacteroidetes Proteiniphilum

Proteobacteria f__Pseudomonadaceae Firmicutes Pseudobutyrivibrio

Spirochaetes Treponema Firmicutes vadinHB04

Euryarchaeota Methanobacterium Synergistetes vadinCA02

Euryarchaeota vadinCA11 WWE1 W22

Bacteroidetes f__Marinilabiaceae WWE1 W5

Bacteroidetes f__Porphyromonadaceae Bacteroidetes Petrimonas

Thermo Firmicutes Proteiniclasticum Firmicutes f__Planococcaceae

Planctomycetes o__MSBL9 Firmicutes Defluviitalea

Proteobacteria o__Campylobacterales Firmicutes Symbiobacterium

Firmicutes Butyrivibrio Tenericutes o__ML615J-28

Firmicutes Sedimentibacter Firmicutes c__OPB54

Firmicutes SMB53 Bacteroidetes Paludibacter

Proteobacteria Agrobacterium Firmicutes Caldicoprobacter

Actinobacteria Actinomyces Proteobacteria Pusillimonas

Bacteroidetes Bacteroidetes Firmicutes Sedimentibacter

Bacteroidetes o__Bacteroidales Fibrobacteres Fibrobacter
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systems, the modularity was positively correlated with methane
production12, while the clustering coefficient was not reported, thus
not able for comparison with our study. Another AD study
demonstrated multiple networks for sewage sludge and food waste
co-digestion without comparing the network topological character-
istics16. Nevertheless, it showed network differences from non-stable
to stable status, inferring that the network characteristics may
indicate system stability.
Even though the clustering coefficient and the modularity

showed different meanings for different types of microbiomes (soil,
activated sludge and AD), the average path length seems to have a
global meaning. Shorter path length is correlated with higher
efficiencies of BOD and nutrient removal in activated sludge17, and
negatively with particulate COD percentage and relative differential
efficiency between hydrolysis and methanogenesis (Defficiency) in AD
in our study. The ecological implication of shorter path length can
link to better microbial cooperation, more communication and
intermediate transport, which are crucial for AD microbiome.
The topological characteristics of individual nodes (OTUs) are

indicative of the ecological roles of the OTUs. For example,
Roseburia, the module hub in mesophilic low-solid-substrate
network, is a butyrate-producing anaerobic bacterial genus27

and may perform acidogenesis that connects hydrolysis and
downstream acetogenesis and methanogenesis. The approach of
identifying keystone OTUs from network analysis is therefore
useful to bring insights to understand the biochemical functions
and microbial interactions. Identifying keystone OTUs using Zi-Pi
(within-module connectivity and among-module connectivity)
plot has been used in many studies17,22,28, although it is also
recognized that the majority of OTUs were peripherals17 and
lacked ecological implication. The betweenness and degree of
nodes are informative features to indicate OTUs’ ecological roles
as communication connectors and central hubs21. Noticeably,
these important roles are not correlated with the relative
abundance of the OTUs (Fig. 6). The high-abundance OTUs are
functionally important for reactors’ performances but not always
perform central roles in the network17,22,28.
Lower-abundance OTUs (as low as 0.1%) can be found to have

high normalized betweenness and degree, indicating their impor-
tant roles in maintain the system’s ecological stability and
functionality. These OTUs differed in the five AD networks
(Table 3), underlining the ecological importance of OTUs with low
abundance and high betweenness and degree in different systems
and potential to use them as ecological indicators. T78 (ambient and
mesophilic co-digestion networks) was reported in anaerobic
digesters and suggested to produce acetic acid (acetogenesis) from
long-chain fatty acids29, which explains its central hub role linking
with many bacteria and archaea since acetic acid can be utilized
widely. Fibrobacter (mesophilic, mesophilic co-digestion and ther-
mophilic networks) is a common cellulose-degrading genus in AD30,
which is likely to perform cellulose hydrolyzation from the feedstock
and supply metabolites to acidogenetic and acetogenetic bacteria
with high efficiency. Desulfobulbus (mesophilic low-solid-substrate
and mesophilic networks) can oxidize propionate with sulfate to
produce acetate31, linking the propionate-producing bacteria and
acetate-consuming bacteria in mild conditions.
Among the operational factors, influent substrate characteristics

influenced archaeal communities in addition to temperature which
affected both bacterial and archaeal communities. Moreover, the
network topological properties were correlated with influent substrate
characteristics. Higher hydrolysis efficiency of the substrate associated
with higher clustering coefficient and lower normalized betweenness
of the network, indicating higher complexity and microbial interac-
tions. One of the network’s topological characteristics, average path
length, can be an indicator of system performance, linking the
network model to engineering operations. Individual OTUs’ topolo-
gical characteristics showed that (i) high-rate thermophilic reactor
group had more connector OTUs (e.g., Ruminofilibacter, Paludibacter),

inferring stronger inter-module communication, and (ii) many lower-
abundance OTUs (as low as 0.1%) may be important members to
maintain the stability and functionality of the microbial community.
This study differentiates bacterial and archaeal communities’ driving
factors, reveals the links between system performance and network
features, and raises our attention on ecological importance of lower-
abundance OTUs (as low as 0.1%) besides the top ranked OTUs.
Future work is required to expand the sampling size of full-scale
systems if to apply this approach to engineering systems, e.g., real-
time data acquisition and analysis could be implemented to predict,
monitor and troubleshoot the system performance. Low-abundance
taxa’s ecological roles should be investigated using integrated
approaches on top of network topology.

METHODS
Reactors
Anaerobic digestion of blackwater was conducted under temperature
ranging from 22 to 55 °C, including ambient (22 °C, 5 reactors), mesophilic
(35 °C, 5 reactors) and thermophilic (52–55 °C, 2 reactors) conditions. Details
of the feedstock preparation are provided in Supplementary information.
Table 4 shows the reactor processes and operational parameters of 12
reactors all fed with blackwater at different concentrations (influent total
chemical oxygen demand [COD]). The ambient reactors (A) used regular-
substrate condition. The mesophilic reactors include different substrate
conditions (low-solid-substrate [M.LS], regular-substrate [M.reg],
concentrated-substrate [M.conc], and co-digestions with food waste [M.
Co]). The thermophilic reactors include blackwater only [T] and co-digestions
with food waste [T.Co]. Reactors were operated with increasing organic
loading rate (OLR) from the initial stage to the final stage. At the end of each
stage, sludge sample was completely mixed to ensure homogeneity and
then collected for DNA analysis, resulting in a collection of 52 samples.

Chemical analysis
The COD, total solids, and volatile suspended solid (VSS) were measured
using the Standard Methods 5220C, 2540B, 2540E (APHA/AWWA/WEF, 2012).
pH was measured using B40PCID pH meter (VWR, SympHony). Samples were
filtered through 0.45 um membrane filters (Fisher Scientific, CA) to test
soluble COD, volatile fatty acids (VFAs), and total ammonia nitrogen (TAN).
The VFA acetate, propionate and butyrate were measured using ionic
chromatography (DIONEX ICS-2100, ThermoFisher, USA). TAN was measured
using the Nessler method (HACH, Loveland, CO). Biogas samples were
analyzed using 7890B gas chromatograph (Agilent Technologies, Santa Clara,
USA) equipped with a thermal conductivity detector (TCD).
The specific methanogenic activity (SMA) of the reactor sludge at the

end of each operation stage was measured in batch bottles fed with
H2&CO2 (80%/20%) or sodium acetate, to evaluate the maximum activity
according to the methods described previously2,4. The observed specific
methanogenic activity was calculated based on the real CH4 production in
the reactor.

Derived parameter calculations
Free ammonia (FA) was calculated using TAN, pH and temperature (unit K).

NH3ðFAÞ ¼ 1:214 ´ TAN´ 1þ 10�pH

10�ð0:09018þ2729:92
T Þ

� ��1

(1)

Hydrolysis efficiency, methanogenesis efficiency and hydrolysis rate
constant (KH) were calculated using the following equations:

Hydrolysis efficiency %ð Þ ¼ sCODeff � sCODinf þ CODCH4

tCODinf � tCODeff
(2)

Methanogenesis efficiency %ð Þ ¼ CODCH4

tCODinf � tCODeff
(3)

KH ¼ 1
Δt

lnð CODCH4 end þ sCODend � sCOD0

ðCODCH4 end þ sCODendÞ � ðCODCH4t þ sCODtÞÞ (4)

To describe the difference between hydrolysis and methanogenesis, two
variables were derived. The relative differential efficiency (Defficiency)
calculates the relative difference between hydrolysis and methanogenesis
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efficiency. The relative differential rate (Drate) calculates the relative
difference between hydrolysis rate constant (which reflects the easiness
of the substrate to be hydrolyzed) and total SMA.

Defficiency ¼ Hydrolysis efficiency %ð Þ �Methnogenesis efficiency ð%Þ
Hydrolysis efficiency %ð Þ

(5)

Drate ¼ KH � SMA
KH

(6)

DNA extraction and 16S rRNA gene sequencing
Genomic DNA was extracted from each sludge sample using DNeasy
PowerSoil Kit (QIAGEN, Canada) following the manufacturer’s protocol. The
quality and concentration of the extracted DNA were examined using gel
electrophoresis and NanoDrop One (ThermoFisher, USA). PCR was
performed to amplify the 16S rRNA genes using the universal primer-
pair 515 F(5′-GTG CCA GCM GCC GCG GTA A-3′) and 806R(5′-GGA CTA CHV
GGG TWT CTA AT-3′). The M.reg and M.conc DNA samples were amplified
using bacterial primer set 357wF (5′-CCT ACG GGN GGC WGC AG-3′) and
785R (5′-GAC TAC HVG GGT ATC TAA TCC-3′) and archaeal primer set 517F
(5′-GCY TAA AGS RNC CGT AGC-3′) and 909R (5′-TTT CAG YCT TGC GRC
CGT AC-3′). The amplicons were sequenced on Illumina Miseq platform.
The 16S rRNA amplicon sequence files are deposited in NCBI GenBank
(BioProject: PRJNA730222, PRJNA701935, PRJNA639651).

Data analysis
The demultiplexed paired raw sequences were quality-filtered and aligned
using the Qiime2 pipelines32 “DADA2” algorithm33 with 99 % similarity in
reference to the Greengenes (13_8). Microbial community Alpha and Beta
diversities, Principal Coordinates Analysis (PCoA), Canonical Correspon-
dence Analysis (CCA), environmental factor fitting to ordination (envfit),
Variation Partition Analysis (VPA), ANOSIM and PERMANOVA were analyzed
using the “vegan” package34 in RStudio version 3.4.135. The PCoA was
performed using Bray-Curtis distance. The top 10 highest relative
abundance bacterial genera and all archaeal genera were plotted to
heatmap using “heatmap.2” function in “gplots”.

Co-occurrence network analysis
Co-occurrence network analysis was conducted using R “igraph”36 and
“psych” packages37. Grouping of the samples into five groups resulted in
different number of samples (Table S5) and the highest sample number
was 20 in the Ambient group which was reduced to 8 selecting those at AD
steady state at the Ambient condition for network analysis to reduce bias
of large sample number. Only OTUs with relative abundance higher than
0.1% and occurred in more than two samples were included for analysis.
The Spearman’s correlations at r > 0.6 and p < 0.01 were used for network
construction. Although the sample number varied, it did not show
significant correlation with network properties except for the size of
network (Fig. S4). The size of network was not significantly correlated with
other properties of the networks or reactor parameters (Figs. 4 and S4). We
used the same cut-off value of correlation coefficient for all networks
(r > 0.6) instead of varied cut-off values38 to be consistent among networks
and to be comparable with literature21. The power-law fit of degree
showed significance level of p < 0.05 for all networks except for the
thermophilic network (Supplementary Table S4). Random Networks
showed much lower clustering coefficients than the constructed networks
(Table 2), including the thermophilic network (0.13 vs. 0.70).
The network properties, clustering coefficient, modularity, average path

length, average normalized degree, and positive ratio, were analyzed using the
“igraph” package. The key characteristics are shown in Table 2 and additional
information in Table S5. Although the node numbers (Order, Table S5) varied,
the correlation matrix did not show any significant correlations between the
network properties and the node number (Fig. S4).
The reactor variables include influent substrate characteristics (tCOD and

sCOD concentrations), the ratio of particulate COD in total influent COD
(pCOD %, which reflects the demand for substrate hydrolysis), the hydrolysis
potential of the substrate (hydrolysis rate constant, KH), SMA, observed SMA
(methanogenesis activity), hydrolysis efficiency, methanogenesis efficiency,
and the derived variables relative differential efficiency (Defficiency) and relative
differential rate (Drate). Two connectivity types were calculated and compared,
within-module connectivity (Zi), and among-module connectivity (Pi)22. The Pi
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and Zi were calculated following the previously reported method28. R code is
available at https://github.com/bing-g/AD-BW-network.git.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The 16S rRNA amplicon sequence files are deposited in NCBI GenBank (BioProject:
PRJNA730222, PRJNA701935, PRJNA639651). R code is available at https://github.
com/bing-g/AD-BW-network.git.
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