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Host transcriptome and microbiome interaction modulates
physiology of full-sibs broilers with divergent feed conversion
ratio
Tejas M. Shah1, Jignasha G. Patel1, Tejas P. Gohil1, Damer P. Blake2 and Chaitanya G. Joshi 1,3

Efficient livestock production relies on effective conversion of feed into body weight gain (BWG). High levels of feed conversion are
especially important in production of broiler chickens, birds reared for meat, where economic margins are tight. Traits associated
with improved broiler growth and feed efficiency have been subjected to intense genetic selection, but measures such as feed
conversion ratio (FCR) remain variable, even between full siblings (sibs). Non-genetic factors such as the composition and function
of microbial populations within different enteric compartments have been recognized to influence FCR, although the extent of
interplay between hosts and their microbiomes is unclear. To examine host–microbiome interactions we investigated variation in
the composition and functions of host intestinal-hepatic transcriptomes and the intestinal microbiota of full-sib broilers with
divergent FCR. Progeny from 300 broiler families were assessed for divergent FCR set against shared genetic backgrounds and
exposure to the same environmental factors. The seven most divergent full-sib pairs were chosen for analysis, exhibiting marked
variation in transcription of genes as well as gut microbial diversity. Examination of enteric microbiota in low FCR sibs revealed
variation in microbial community structure and function with no difference in feed intake compared to high FCR sibs. Gene
transcription in low and high FCR sibs was significantly associated with the abundance of specific microbial taxa. Highly intertwined
interactions between host transcriptomes and enteric microbiota are likely to modulate complex traits like FCR and may be
amenable to selective modification with relevance to improving intestinal homeostasis and health.
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INTRODUCTION
The global human population has been predicted to exceed 9
billion by the year 2050,1 prompting the challenge to produce
sufficient quantities of safe food for all. The challenge is especially
relevant in low and middle income countries (LMICs) where it is
being met, in part, by a dramatic expansion in the production of
poultry eggs and meat.2 More than 1.1 trillion eggs are currently
produced every year and the chicken population is predicted to
continue expanding from the record ~64 billion currently
produced per annum.3 To meet demand, improving the scale
and efficiency of poultry production will be essential.
The efficiency of food use makes a major contribution to the

economic sustainability of broiler production (chickens reared for
meat), where feed represents the greatest variable cost.4 Feed
efficiency can be measured using the feed conversion ratio (FCR),
which is a composite trait defined as feed intake per unit of body
weight gain (BWG) during a specified period of time.5 Genetic
selection of livestock based on low FCR can improve efficiency of
energy utilization without reducing the capacity for feed intake,6

indicating its importance for commercial and ecological aspects of
production. As a complex feed efficiency trait, FCR is influenced by
livestock genetics and the environment. FCR has shown a
moderate heritability in poultry (0.21–0.49), but it has been used
as a selection criterion in selective breeding strategies.7–9 Several

quantitative trait loci (QTL) have been shown by genome wide
association and linkage analyses to contribute to FCR,10–12 but the
genetic evidence has been insufficient to explain the physiology of
individuals with extreme differences in trait performance. Tran-
scriptome profiling multiple tissues from divergently selected
individuals has revealed important biological and metabolic
processes that associate with feed efficiency traits.13–15 However,
it has also been proposed that the intestinal microbiota should be
considered as an important “metabolic organ” with major relevance
to feed efficiency.16 Thus, monitoring transcriptome and microbiota
profile variation between broilers with extreme FCRs offers a new
opportunity to define novel contributory mechanisms.
In recent years, transcriptome profiling by RNA sequencing

(RNASeq) and microbiota profiling by 16S rDNA amplicon or
metagenomics whole genome shotgun (WGS) sequencing have
emerged as powerful high-throughput approaches to quantify
host gene expression and survey microbiota composition.17,18 To
gain new insight into the complex traits and underlying functional
mechanisms that govern feed efficiency, we have used a
combined approach to profile global intestinal and liver tissue
transcriptomes and define the associated intestinal luminal
microbiota, including differential analysis from full-sib broilers
with divergent FCR. This approach has enabled us to identify
functional and metabolic processes as well as microbes that might
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contribute to good feed conversion efficiency in broilers. Outputs
include associations between specific gene expression levels and
FCR, as well as identification of putatively beneficial bacteria that
may be suitable for use as probiotics against specific host genetic
backgrounds. Following this approach, we were able to identify
the molecular signatures of the host-microbiota “meta-organism”
that are likely to contribute to the host system physiology of
chickens with low FCR.

RESULTS
Growth and feed efficiency parameters from full sibling chickens
selected for variation in FCR
In total 300 batches of ten × full-sib Pure-Line Marshall Breed
chickens were assessed for variation in food conversion ratio (FCR)
and BWG/body weight at 49 days of age (BW49), identifying seven
full-sib pairs with the greatest level of variation by 49 days
(Supplementary Fig. 1). We observed growth performance and
feed efficiency in Full-sib chickens that possessed different FCR
values and defined two groups of individuals with low and the
high FCR values. At the beginning of the experimental trial, the
average BWs of individuals at 35 d of age that were ultimately
found to have low and high FCR were 888.71 ± 64.65 and 942.57 ±
80.65 g, respectively. The average BWs at 49 d of age were
1929.14 ± 96.08 g for low and 1615 ± 169.19 g for high FCR
individuals (Table 1). During the study period, the food intake
(FI) of low and high FCR individuals were 1794.29 ± 228.25 and
2029 ± 269.64 g, respectively. We found that FI and BW35
differences between the two groups were not significant.
However, FCR and BWG were significantly different between the
lower and higher FCR groups with a difference of 1.4 for FCR and
368 g for BWG. Chickens with low FCR exhibited higher growth
rates than their high FCR full-sibs (BWG; P < 0.01) with no
significant variation in feed intake (P > 0.05) (Table 1). This
indicated that the energy utilization rate of the low FCR group
exceeded the high FCR group.

Transcriptome sequencing and identification of differentially
expressed genes (DEGs)
A total of 71.8 × 106 150 bp paired-end RNAseq reads were
produced from 14 liver samples, including between 2.9 × 106 and

10.8 × 106 reads per sample. For the intestinal tissues 221.0 × 106

reads were produced in total from the duodenal, jejunal, ileal, and
cecal samples, including between 2.4 × 106 and 9.0 × 106 per
sample. Between 86.5% and 95.0% of sequences from the
individual liver samples mapped uniquely to the reference chicken
genome Galgal4 (average 90%). For the intestine, 81.7–92.7%
(duodenum), 79.8–85.5% (jejunum), 87.3–94.7% (ileum), and
67.4–94.1% (ceca) of reads mapped uniquely (Supplementary
Tables 1–5).
By employing the same cut-off (fold-change (FC) > 1.5 and p-

value ≤ 0.05) for all tissues examined, the global effect of FCR
variation on the total number of DEGs per tissue was found to be
greatest in the jejunum with a total of 836 genes being
differentially expressed (Supplementary Tables 6–10). Approxi-
mately 6-fold and 11-fold fewer DEGs were detected in the ceca,
duodenum, and liver (142, 77, and 73, respectively), with 15-fold
fewer in the ileum (54). Increasing the stringency (FC > 1.5 and
corrected p-value ≤ 0.05) identified 193 and 14 DEGs in the
jejunum and ceca tissues, respectively (Supplementary Tables 6–10).
The majority of the jejunum and cecal DEGs (183 and 90,
respectively) were up-regulated in the low FCR group. No DEGs
were detected in the liver, duodenum, or ileum under the more
stringent criteria (Supplementary Tables 6–10). We chose genes
for further downstream analysis using a FC > 1.5 and p-value ≤
0.05 as the cut-off.

Intestinal tissue DEGs associated with FCR variation
In the duodenum, the genes most up-regulated in low FCR
chickens were predominantly associated with physiological
processes concerned with circadian feeding behavior and body
composition. Notably, inhibitor of DNA binding 2 (ID2), a
dominant negative regulator of basic helix-loop-helix (bHLH)
transcription factors, was up-regulated in low FCR chickens when
compared with their high FCR full-sibs (Fig. 1a). ID2 also acts on
circadian clock genes (i.e. CLOCK and BMAL1), participating in
several physiological processes through the generation of ~24 h
circadian rhythms in gene expression and translating them into
rhythms in metabolism and behavior. The gamma-
glutamylcyclotransferase (GGCT), which degrades glutathione,
the primary intracellular antioxidant, and decreases Notch
signaling pathway-mediated processes, acts as an important

Table 1. Summary of body weight (BW), body weight gain (BWG), food intake (FI), and food conversion ratio (FCR) data collected between 35 and
49 days of age for seven full-sib broiler pairs analyzed in this study

Bird no. BW35 (g) BW49 (g) BWG (g) FI (g) FCR Low/high Difference Sire no. Dam no.

828 860 1976 1110 1910 1.72 Low 1.81 2 1451

1069 870 1415 545 1925 3.53 High

1001 882 2036 1154 1720 1.49 Low 1.14 7 1502

995 877 1546 669 1790 2.63 High

999 833 1917 1084 1930 1.78 Low 2.10 8 1512

1003 991 1494 503 1950 3.87 High

7475 840 1845 1005 2020 2.01 Low 1.73 1 721

7473 940 1500 560 2096 3.74 High

7549 860 1770 910 1706 1.88 Low 1.27 3 744

7550 1100 1710 610 1916 3.14 High

7844 1020 2025 1005 1926 1.92 Low 0.81 12 833

7843 920 1875 955 2606 2.73 High

5154 920 1935 1015 1348 1.33 Low 0.89 20 919

5153 900 1765 865 1920 2.22 High

Birds are identified by bird cage no., low/high indicates low FCR or high FCR within a pair of birds of the same family. Difference is the difference between high
and low FCR of the same family
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regulator of body composition and was transcribed at a higher
level in low FCR chickens. Conversely, poly(ADP-ribose) polymer-
ase 1 (PARP-1), which has historically been described as a key DNA
damage repair enzyme but is also involved in regulation of
metabolism and energy expenditure processes and might
influence FI behavior, was transcribed at a lower level in low
FCR chickens.

Specific to the jejunum, genes up-regulated in low FCR chickens
participate in translation processes (including members of the
L Ribosomal protein family (44 genes), eukaryotic translation
initiation factor 5B (EIF5B), and eukaryotic translation elongation
factor 2 (EEF2)), fatty acid transport and metabolism via the PPAR
signaling pathway (23 genes including fatty acid binding and
transport proteins APOA1, FABP1, FABP2, FABP5, and ACBP),

Fig. 1 Comparison of gene expression levels and differentially expressed gene distributions between intestinal tissue samples from broilers
with extremely low and high feed conversion ratios (FCR). Green represents down-regulated genes with a log2 (fold change) > 1.5 and p-value
< 0.05. Orange represents up-regulated genes with a log2 (fold change) <−1.5 and p-value < 0.05. Data presented derived from a duodenum,
b jejunum, c ileum, d ceca, and e liver samples
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glycolysis and gluconeogenesis (10 genes including FBP1, ALDOB,
ALDOC, PKM, and ENO1), and the tricarboxylic acid cycle/citrate
cycle (six genes including ACO2, IDH2, MDH1, MDH2, OGDH, and
SDHA) (Supplementary Table 11 and Fig. 1b). Genes that were
down-regulated in low FCR chickens participate in
oxidation–reduction processes, regulation of DNA methylation
and the adenylate cyclase-modulating G-protein-coupled receptor
signaling pathway (Supplementary Table 11 and Fig. 1b).
Transcription of genes involved in autophagy and protein

catabolic processes, which included ubiquitin-specific peptidases
(ATG4B, autophagy-related 4B, cysteine peptidase) and ubiquitin-
binding proteins (C6orf106, chromosome 6 open-reading frame
106), was up-regulated in the ileum of low FCR chickens. Similarly,
genes that were up-regulated in ileal tissue from low FCR
chickens also associated with cell proliferation (BRAT1, RBL1, and
TRIM59), mRNA export (FYTTD1) and translation (RPL24 and
XRN2) processes. A smaller number of genes were down-
regulated in ileal tissue from low FCR chickens, including
examples involved in mRNA binding (EP300, G3BP1 and CYFIP1),
centromere complex formation (CENPO, RAB11A, and CAMSAP2),
cell differentiation (C12orf29, EBF2, PLEKHB2, and TMEM120B),
and gluconeogenesis (ATF4, ALDH2, FBP1, and PTPN2) (Supple-
mentary Table 12 and Fig. 1c).
The highest number of genes found to be up-regulated in the

ceca from low FCR chickens (9 DEGs) were associated with
translation processes (Supplementary Table 13 and Fig. 1d).
Genes were involved in translation initiation (EIF2S3L, EIF4A2,
EIF3J, EIF2AK4, DDX3×), and elongation (EEF1AKMT1), while
genes coding for ribosomal subunits (RPL21, RPL5) and involved
in their biogenesis (NOC3L) were also highlighted (Supplemen-
tary Table 13). Cholesterol homeostasis and fatty acid catabolic
processes, which included genes, such as the cholesterol
transporter ABCG5 and PHYHIPL, involved in the alpha-
oxidation of 3-methyl branched fatty acids, were also up-
regulated in low FCR chickens. Several genes from the apoptotic
signaling pathway were up-regulated, including those coding for
proteins involved in regulation (RASSF3, ANP32E, BAG3, CDC2L1,
C2orf49, HSPD1, and NPM1). Finally, genes associated with
posttranslational modification, protein folding and sulfur com-
pound metabolic processes were found to be up-regulated.
Processes highlighted include O-linked glycosylation (OGT, O-
linked N-acetylglucosamine (GlcNAc) transferase and GALNT1, N-
acetylgalactosaminyltransferase 1), protein folding (PDIA6, pro-
tein disulfide isomerase family A member 6) and sulfur metabolic
processes, such as transfer of a sulfonate group (SO3

−) from 3′-
phosphoadenosine 5′-phosphosulfate to numerous alcohol,
phenol, amine, N-oxide, and N-hydroxy substrates (SULT1C3,
sulfotransferase family, cytosolic, 1C, member 3) (Supplementary
Table 13). Conversely, several genes that were down-regulated in
low FCR chickens were associated with immune responses,
including genes which mediate inflammatory responses via the
Integrin (ITGA4, FCHSD2, LMO7, and AFAP1), Phopholipase-C
(PLCD1, TRPM1, and TRIM8), cytokine–cytokine receptor interac-
tions in Jak-STAT signaling (IL13RA1) and TGF-beta signaling
(BMPR2) pathways (Supplementary Table 13). Down-regulated
genes were also associated with lipid catabolic process
(LOC428958, lysosomal acid lipase/cholesteryl ester hydrolase-
like) and lipid transport (OSBPL1A). Transcription regulation
processes which includes genes EBF2, LOXL2, ZBED4, SATB2,
SNW1, and TERF2IP (Supplementary Table 13), was also identified
as down-regulated in low FCR chickens.

Identification of intestinal epithelial eQTLs associated with FCR
A total of 1656 expression quantitative trait loci (eQTLs) with
gene–SNP relationships were identified from the intestinal
samples, including 310 eQTLs from the duodenum, 502 from the
ileum and 1190 from the ceca (Supplementary Tables 14–16).

Jejunum samples were excluded from this analysis since insuffi-
cient data coverage to call eQTLs were identified. Association
analysis highlighted 66 intestinal eQTLs with 12, 15, and 39 from
the duodenum, ileum, and ceca, respectively, showing significant
association (p < 0.05) to FCR. These eQTLs were defined as the
“filtered eQTLs” from the intestinal tissues and were selected for
functional analysis and QTL trait enrichment analysis. These filtered
eQTLs were associated with eight genes differentially expressed
within the duodenum (EIF2AK2 and CDKL2), ileum (G3BP1 and
ENSGALG00000008738), and ceca (PPM1B, IGA4, ABHD17C, and
ENSGALG00000001359) (Supplementary Tables 17–19).

Liver DEGs associated with FCR variation
In the liver, the majority of the transcripts that were up-regulated
in low FCR chickens were associated with transcription regulation
(HDAC2, SUV39H2, HELLS, and PRR14L) and mRNA processing
(AQR) (Fig. 1e). Two others were involved in the aromatic amino
acid metabolic process phenylalanine hydroxylase (PAH), coding
for an enzyme involved in production of tyrosine from phenyla-
lanine, and tyrosine hydroxylase-like (THL), which is responsible
for the formation of L-dopamine from tyrosine (Supplementary
Table 20). Down-regulated transcripts in liver of low FCR chickens
were linked to lipid transport, mRNA processing, and protein
ubiquitination (Supplementary Table 20). The genes included
OSBPL1A (Oxysterol Binding Protein Like 1A) and SFXN4 (Side-
roflexin 4), which are involved in lipid and cholesterol homeostasis
and their transport, respectively. Down-regulated hepatic genes
were also linked to mRNA splice site selection (LUC7L3) and
KLHL17, a member of BTB-domain containing proteins family
(KLHL17), which has diverse cellular mechanisms, such as control
of cytoskeletal organization, ion channel gating, transcription
suppression, and protein targeting for ubiquitination through
cullin E3 ligases.

Identification of hepatic eQTLs associated with FCR
A total of 109 eQTLs with gene–SNP relationships were identified
from the liver (Supplementary Table 21). Association analysis
revealed two eQTLs with significant association (p < 0.05) to FCR.
These eQTLs were defined as the “filtered eQTLs” from the liver
and were selected for functional analysis and QTL trait enrichment
analysis. These filtered eQTLs were associated with two genes
SUV39H2 and EPB41L2 (Supplementary Table 22).

Genomic location analysis and QTL trait enrichment
Enrichment of the eQTLs for selection effects found 89 QTL traits
from Animal Genome Chicken QTLdb to be enriched with
genomic overlaps from a total of 57 filtered eQTLs. The top five
enriched traits were “Body weight”, “Growth”, “Abdominal fat
weight and percentage”, “Carcass weight”, and “Intestine length”
(Supplementary Tables 23–26). Grouped by their corresponding
QTL categories, the enriched traits contained 73 production traits,
8 health traits, 4 physiology traits, and 2 exterior traits. However,
the FCR relevant QTL traits were not enriched. The traits
demonstrated significant overlap for 57 filtered eQTLs, associating
with the genes SUV39H2, EPB41L2, EIF2AK2, CDKL2, G3BP1,
ENSGALG00000008738, PPM1B, ENSSSCG00000024047, IGA4,
ABHD17C, and ENSGALG00000001359.

Microbiota differed significantly among intestinal locations and
between chickens with high or low FCR
A total of 6.44 × 106 sequencing reads (0.032 × 106–0.8 × 106, and
0.14 × 106–4.4 × 106 per sample for 16S rDNA and Metagenomic
WGS, respectively) were generated and clustered into tags
(Supplementary Table 27). Following OTU selection and chimera
checking, all non-unique tags were assigned to 30,048 OTUs, with
an average of 884 OTUs per sample (Supplementary Table 28). To
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evaluate the diversity of bacterial communities in three different
intestinal locations, we first performed OTU analysis and
compared alpha diversity for the microbiota. The average number
of OTUs differed significantly among the three gut locations, with
incremental increases in each subsequent gut section: jejunum
< ileum (233 vs. 643), ileum < cecum (643 vs. 1462). The Shannon
index, which measures species richness and evenness was
calculated to evaluate alpha diversity. The jejunum was associated
with a significantly lower Shannon index than the ileum and ceca.
Furthermore, we explored the taxonomic distribution of the

more abundant bacteria at each intestinal location. Based on the
bacterial relative abundance of the top classified phyla, Firmicutes
constituted the most prevalent phylotype, comprising 57.0% of
the ileum microbial population, followed by Proteobacteria, which
represented 3.2%. Proteobacteria accounted for 4.5% and 2.7% of
the relative abundances in the jejunum and ceca, respectively. The
relative abundance of Bacteroidetes was 0.29%, 1.03%, and
36.12% in the jejunum, ileum, and cecum, respectively. In addition,
we also observed Spirochaetes (1.25%) and Tenericutes (1.0%) in
the cecum, and Verrucomicrobia (0.01%) in the jejunum (Table 2).
At the phylum level, the jejunum and ileum microbiota of both

groups was dominated by Firmicutes and Unclassified bacteria,
with smaller contributions of Proteobacteria, Bacteroidetes,
Actinobacteria, and Verrucomicrobia (Table 2). The cecal micro-
biota of both groups was dominated by Firmicutes and
Bacteroidetes, with smaller contribution of Proteobacteria, Spir-
ochaetes, and Tenericutes (Table 1). The relative abundances of
microbiota at the phylum level were compared between high and
low FCR birds. The jejunum and ileum microbiome of low FCR
chickens had a significantly increased relative abundance of the
phyla Proteobacteria and Bacteriodetes, but decreased relative
abundance of the phyla Firmicutes compared to high FCR.
Whereas, the cecal microbiome of low FCR chickens had increased
relative abundance of phyla Bacteriodetes, but decreased relative
abundance of the phyla Firmicutes compared to high FCR.
We subsequently explored the variations in microbial commu-

nity composition and the degree of similarity between the
samples from the three gut locations at the OTU level. A principal
coordinate analysis (PCoA) plot, based on the unweighted Unifrac
distance matrices, showed that the gut bacteria composition
differed significantly at the different gut locations (Fig. 2c). The
microbiota composition in the jejunum samples was significantly
different from that of the ileum and ceca (Fig. 2). Gut luminal
samples for 16S rRNA gene sequencing were collected from
chickens with high and low FCRs. The alpha diversities between
the chickens with diverse FCRs in each gut location (jejunum,
ileum, and ceca) were then compared. However, the Shannon
indices in each gut location were not significantly different
between the high and low FCR chickens. A PCoA plot, based on
unweighted Unifrac, showed distinct differences in microbial
composition in jejunum (Fig. 2d), ileum (Fig. 2e), and cecum
(Fig. 2f), when between high and low FCR chickens, however these
difference was significant only in ileum of high and low FCR
chickens (Adonis, p < 0.05; Supplementary Table 29).
To identify specific bacterial species that were characteristic of

the high and low FCR chickens, we performed LEfSe on the taxa
with LDA scores greater than three (Fig. 3). The results revealed
that 10 bacterial taxa differed significantly in the jejunum, three
associated with high FCR, and seven with low FCR (Fig. 3a). In the
ileum, 12 bacterial taxa differed significantly, 11 from the high FCR
chickens and one from the low FCR (Fig. 3b). In the ceca, 34
bacterial taxa were significantly different, 18 from the high FCR
chickens, and 16 from the low FCR (Fig. 3c). In the jejunum,
Lactobacillus, Fructobacillus, and Paralactobacillus dominated the
LEfSe in the high FCR chickens, while Leptotrichia, Pediococcus,
Rohdococcus, and Escherichia were dominant in the low FCR
chickens (Fig. 3a). In the ileum, Enterococcus, Clostridium,
Pseudanabaena, Bacillus, Mannheimia, and Granulicatella wereTa
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more abundant in the high FCR chickens, while Halochromatium
was the sole enriched taxa in the low FCR group. In the ceca,
Faecalibacterium, belonging to the phylum Firmicutes, and
Alistipes, which belongs to the phylum Bacteriodetes, were more
abundant in high FCR chickens, whereas Bacteroides and
Megamonas, belonging to the phyla Bacteriodetes and Firmicutes,
respectively, were more abundant in low FCR chickens.

Microbiota functional capacity differed among three intestinal
regions of chickens with different FCR
Functional annotation was used to further compare the functional
capacity of the intestinal microbiome between high and low FCR
chickens. In the jejunum, genes related to membrane transport,
metabolism of cofactor and vitamins, carbohydrate metabolism,
and amino acid metabolism were enriched in the metagenome of
high FCR chickens (Supplementary Fig. 2). However, genes
associated with lipid metabolism, glycan biosynthesis and meta-
bolism, transcription, nucleotide metabolism, signal transduction
and energy metabolism were more abundant in the low FCR
chickens. In the ileum, genes related to metabolism of cofactors
and vitamins, transport and catabolism, glycan biosynthesis and
metabolism, signal transduction (Fig. 4) and glycine, serine and
threonine metabolism (Supplementary Fig. 3) had a higher
abundance in the low FCR chickens, while genes associated with
the cancer category were significantly enriched in the high FCR
chickens. The higher abundance of these pathways with a low FCR
indicated that the positive activities of some nutrient metabolism
pathways may be a contributing factor for high growth. In the
ceca, metabolism of terpenoids and polyketides, biosynthesis of
other secondary metabolites, phenylpropanoid biosynthesis and,
pantothenate and CoA biosynthesis were more highly enriched in
the low FCR genes. However, the phosphotransferase system was

significantly enriched in the metagenomes of high FCR chickens
(Fig. 5).

Transcriptomic profiling identified transcripts associated with gut
microbiota of high and low FCR broilers
A Pearson’s correlation analysis was carried out to evaluate the
potential link between bacterial abundance and DEGs common to
the jejunum, ileum, and ceca of high and low FCR chickens. The
abundance of Shigella, Enterobacter, and Enterococus were
positively correlated (adjusted p-value < 0.0001) with transcription
of ANO5, USO1, and RPS15A in the jejunum (Fig. 6a and
Supplementary Table 30). Bacillus was the only genus positively
correlated with transcription of CENPO in the ileum, but did not
show significance (adjusted p-value= 0.6438) after multiple test
corrections (Fig. 6b and Supplementary Table 31). Clostridium,
Weissella, Rothia, Bacillus, and Sarcina were positively correlated
but only the abundance of Clostridium (adjusted p-value= 0.0002)
and Sarcina (adjusted p-value < 0.0001) was found to be
significantly correlated, while Veillonella (adjusted p-value=
0.676) and Gallibacterium (adjusted p-value= 0.1039) were nega-
tively correlated with transcription of HSP90AA1 in the ileum (Fig.
6b and Supplementary Table 31). Interestingly, Veillonella
(adjusted p-value= 0.5329), Gallibacterium (adjusted p-value=
0.4211), and Faecalibacterium (adjusted p-value= 0.013) were also
negatively correlated with transcription of G3BP1 (Fig. 6b and
Supplementary Table 31). Furthermore, Alistipes was positively
correlated with PLCD1 (adjusted p-value= 0.0117) and ITGA4
(adjusted p-value= 0.005) transcription in the ceca (Fig. 6c and
Supplementary Table 32). The differences in chicken gene
transcription could also be associated with specific microbiota
functional features. Purine metabolism was negatively correlated
with the transcription of GABARAPL2 (adjusted p-value= 0.0002)

Fig. 2 Alpha-diversity and beta-diversity comparisons for the jejunum, ileum, and ceca microbiota from low and high FCR broilers. a The
number of observed OTUs at the sampling site (mean ± SD). b The Chao1 index at the sampling site (mean ± SD). c Unweighted UniFrac PCoA
of the microbiota across three different intestinal locations. Each color represents a distinct gut location microbiota and low or high FCR. PCoA
plots based on unweighted UniFrac distances of the jejunum d, ileum e, and cecum f microbiota of low and high FCR chickens were plotted
separately for comparison
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Fig. 3 Differential taxonomic profiles of the microbial communities from low and high FCR broilers in three intestinal location. LEfSe identified
significantly different bacterial taxa between high and how FCR broilers in the jejunum a, ileum b, and ceca c. The bacterial taxa in this graph
were statistically significant based on Kruskal–Wallis test (p < 0.05) and had an LDA score ≥ 3

Fig. 4 Mean proportion and their differences in functional metagenomics profiles of the ileum microbiome from low and high FCR broilers
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and PQLC2 (adjusted p-value= 0.0003), while pyruvate metabo-
lism was positively correlated with the transcription of GABAR-
APL2 (adjusted p-value < 0.0001) in the jejunum (Fig. 7a and
Supplementary Table 33). Only G3BP1 (adjusted p-value < 0.0001)
transcription in the ileum was positively (“Translation”, “Cell
growth and death”, “Replication and repair”, and “Cancers”) and
negatively (“Metabolism of cofactors and vitamins”, “Transport

and catabolism”, “Xenobiotics biodegradation and metabolism”,
“Glycan biosynthesis and metabolism”, and “Signal transduction”)
correlated with the various categories of microbiota functional
features (Fig. 7b and Supplementary Table 34). The “Metabolism of
terpenoids and polyketides” functional feature was positively
correlated with the transcription of INVS (adjusted p-value <
0.0001), EIF2S3L (adjusted p-value < 0.0001), and SH3BGRL

Fig. 5 Mean proportion and their differences in functional metagenomics profiles at Level 2 a and Level 3 b of the ceca microbiome from low
and high FCR broilers

Fig. 6 Correlation between bacterial abundance and differentially expressed host genes in specific intestinal compartments. The intensity of
the colors and circle size represent the degree of correlation; ‘red’ indicates a negative correlation, ‘blue’ indicates a positive correlation;
*p-value ≤ 0.05. a Jejunum, b ileum, and c ceca

Fig. 7 Correlation between functional features of the enteric microbiota and differentially expressed host genes in specific intestinal
compartments. The intensity of the colors and circle size represent the degree of correlation; ‘red’ indicates a negative correlation, ‘blue’
indicates a positive correlation; *p-value ≤ 0.05. a Jejunum, b ileum, and c ceca
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(adjusted p-value= 0.0037), and negatively correlated with
COL18A1 (adjusted p-value < 0.0001), EML6, PLCD1 (adjusted p-
value < 0.0001), ITGA4 (adjusted p-value < 0.0001), and DNAJA3
(adjusted p-value < 0.0001) in the ceca (Fig. 7c and Supplementary
Table 35).

DISCUSSION
In recent years a major emphasis has been placed on improving
feed efficiency in farm animals. FCR and residual feed intake (RFI)
are common indices used to access feed efficiency in farm
animals. However, most previous studies have focused on single
components of these complex traits, defining associations
between one or more tissue-specific transcriptomes or gut niche
microbiomes on feed efficiency of farm animals.10,14,19–22 It is well
known that each compartment within the digestive system
exhibits a range of overlapping and discrete functions in nutrient
digestion and absorption, and that the microbiota composition is
similarly distinct.23 Studying gene expression dynamics from
major digestive organs (e.g. duodenum, jejunum, ileum and ceca,
and the liver) in the context of microbiome composition and
structure can improve our ability to infer the coevolved functional
impact on broiler physiology and, ultimately, feed efficiency.
A global view of variation in gene transcription detected here

between high and low FCR performance suggests that FCR can be
explained by differences in (1) circadian feeding behavior, (2)
immune molecular pathways, (3) lipid metabolism and transport,
(4) transcription and translation processes and their regulation, (5)
cell division, growth, proliferation, and apoptosis, (6) chromatin
methylation and (7) oxidative stress. Thus, genes that are
putatively involved in these processes could be considered as
candidate genes associated with FCR. Given the complexity of the
genes that are involved in these processes, we have only
discussed representative genes and their potential role(s) in those
functional pathways that could affect host physiology and FCR.
Recently, it has been revealed that metabolism and circadian

rhythms are highly intertwined physiological processes and their
dysregulation can be associated with various disorders related to
metabolism (i.e. diabetes) and appetite.24 It has been observed
that ID2 knock-out mice present dysregulated circadian rhythms
of feeding behavior and locomotor activity, and reduced weight
gain regardless of high feed intake.25 The down-regulation of ID2
in high FCR chickens might affect the circadian rhythm of feeding
behavior. GGCT down-regulates the Notch-signaling pathway
involved in development and proper maintenance of adult
tissues. Knock-out of this enzyme is lethal in mice but GGCT−/+
mice have reduced body weight, which suggests a role in
regulation of body composition.26 Furthermore, PARP1 is found to
be involved in a pathway which connects feeding behavior to
circadian oscillators and might convey these signals through poly
(ADP-ribosyl)ation of CLOCK genes.27 Therefore, we speculate that
the up-regulation of ID2 and GGCT, and down-regulation of PARP-
1 in chickens with low FCR may improve feed efficiency with high
BWG with similar feed intake and/or reduced energy expenditure
compared to chickens with high FCR.
Genes involved in lipid metabolism and cholesterol home-

ostasis were also found to be associated with FCR.28,29 Up-
regulation of the fatty acid-binding proteins FABP1, FABP2, and
FABP5 in chickens with low FCR may improve the efficient
transport of fatty acids from the intestinal lumen, and the
subsequent high energy utilization from them, by modulating
the PPAR-signaling pathway involved in fatty acid metabolism.
Chickens selected for improved FCR can achieve high BWG with

little or no change in feed intake compared to chickens with
higher FCR, suggesting that the dynamics of growth (autophagy,
cell proliferation, and apoptosis) might be different between high
and low FCR individuals. The up-regulated gene, ATG4B,
autophagin-1, is a cysteine proteinase and regulates intestinal

homeostasis.30 BRAT1, which was up-regulated in chickens with a
low FCR, has a role in cellular proliferation and metabolism in
correlation with mitochondrial functions. Loss of this protein
induces mitochondrial malfunctions which suppress cell growth
signaling and increase apoptosis.31 It is still not clear how low FCR
chickens maintain their body weight, but it appears that regulated
control of autophagy, cell proliferation, and apoptosis contributes
to the maintenance of weight gain.
Activation of the immune system is energetically costly32 and

long-term stimulation can have a negative host impact. The down-
regulation of genes involved in immune response pathways in
chickens with low FCR may contribute to greater utilization of
absorbed nutrient energy for body growth and composition.
However, it is difficult to predict the capability of chickens with
low high or high FCR to defend against any immune challenge. In
a recent study comparing high and low BWG chickens it was
found that growth rate did not influence host responses to a
controlled coccidiosis infection when nutrition was not limiting.33

These data suggest that optimum or lower expression of genes
involved in immune responses might not limit the ability of low
FCR chickens to cope with inflammatory events. The eQTL analysis
revealed 86 enriched traits which were mainly related to meat and
carcass features and production, indicating the likely conse-
quences of selection for low FCR. However, it should be clearly
noted that findings from the QTL enrichment are speculative,
since no experimental validation has been performed to confirm
their associations.
We compared microbiota composition between high and low

FCR chickens in three intestinal locations, characterized the
functional capacity of the chicken intestinal microbiome and
identified potential relationships between the intestinal micro-
biome and host FCR. The digestion and absorption of starch
occurs predominantly in the small intestine, while non-starch
polysaccharides are fermented by bacteria to produce short chain
fatty acids (SCFA) in the ceca, which serve as important nutrients
for the host. In the jejunum of the high FCR chickens most of the
dominant OTUs belonged to Lactobacillus, Fructobacillus, and
Paralactobacillus, which have been linked to lactic acid produc-
tion.34 Here, the Lactobacillus genus was identified as undesirable
for overall performance in terms of FCR. Different strains from the
genus Lactobacillus have previously been associated with positive
or negative influences on farm animal performance.35–38 More-
over, different strains of the same Lactobacillus species have been
associated with weight gain and loss in mice.39 Our study suggests
that the use of Lactobacillus as probiotics must be considered with
caution due to a possible indirect effect on FCR.
Focusing on the ileum, Enterococcus was found to be

significantly enriched in those chickens with a high FCR. Studies
in a mouse model have shown that metalloproteases produced by
commensal Enterococcus strains could contribute to the develop-
ment of chronic intestinal inflammation by impairing epithelial
barrier integrity.40 Several Clostridium species produce toxins
which can cause intestinal damage and inflammation and have
been associated with body weight loss in hamsters and mice.41

Interestingly, in the functional metagenomics analysis, several
subsystems related to cancers were enriched at a low level in the
ileum of low FCR chickens. These findings suggest that the
potential pathogens and associated inflammation process might
contribute to the high FCR noted in these chickens. In this study,
the chickens were fed a formula diet that included plant-based
fiber-enriched polysaccharide and protein. Therefore, we hypothe-
size that the cecal microbiome of the low FCR chickens might
have had a superior ability to utilize the crude protein or dietary
indigestible plant polysaccharides. The most dominant OTUs in
the ceca of low FCR chickens belonged to the Bacteriodes,
Megamonas, Acidaminococcus, Prevotella, and Paraprevotella, all of
which have a high potential for fermenting various polysacchar-
ides and dietary proteins.42–46 In addition to these genera, the
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ceca from low FCR chickens had a greater abundance of OTUs that
represented the genera Ethanoligenens, Acetivibrio, Butyricimonas,
Blautia, Peptoniphilus, and Acetobacterium, all involved in sugar
fermentation with the concomitant production of ethanol, acetate,
and butyrate as major metabolites.47–52 It has been suggested that
the fermentation of dietary polysaccharides could produce SCFAs,
which can improve the absorptive capacity of the intestine and
increase feed efficiency.53,54 Thus, the increased abundance of
these bacteria could improve cecal and liver health, and as a
consequence increase performance.
The capacity of the gut microbiota to change host metabolism

and overall energy balance has emerged as a key feature of
host–microbe interactions in the intestinal lumen.55 In our study,
we found a high abundance of Enterobacter and Enterococcus
within the jejunal microbiome of low FCR chickens, which may
impact on the efficiency of dietary fat absorption. The abundance
of these genera was positively correlated with transcription of
USO1, a protein associated with coat protein complex II (COPII)
vesicles and, through pre-chylomicron transport vesicles (PCTVs),
involved in lipid transport. Similarly, transcription of fatty acid
binding and transport proteins increased in the jejunum of low
FCR chickens, potentially modulating energy generation and
utilization from dietary lipids. In another example, ANO5
transcription was positively correlated with abundance of
Enterobacter as well as Shigella, both Enterobacteriaceae associated
with human intestinal disease. After membrane injury, ANO5
inclusive vesicles are recruited to the injured cell plasma
membrane to repair assaults.56 Shigella is an intracellular
pathogen of humans and chickens57 with the ability to invade
and reside within cells, indicating a role in membrane disrup-
tion.58,59 The regulated expression of ANO5 in the presence of
these pathogenic microorganisms in chickens may support a
healthy intestinal epithelial barrier, encouraging proper growth
and efficient energy generation from feed with relevance to
physiological performance.
In the ileum we have found that Clostridium, Weissella, and

Bacillus, genera identified elsewhere as including strains with
probiotic potential, may modulate FCR in chickens by association
with regulation of inflammation. It has long been recognized that
feed efficiency in animal production is influenced not only by the
efficiency of energy utilization but also the inflammatory status of
the intestinal mucosa.37,60–62 Here, we detected a positive
correlation between these genera and heat shock protein
HSP90AA1 transcription. Heat shock proteins (HSPs) are involved
in many vital cell functions including control of inflammation and
oxidation.63 The presence of microbial components and metabo-
lites can upregulate HSP expression, indicating that enteric
epithelial HSPs may be directly influenced by the composition
and metabolic activities of the gut microbiota,64 protecting
epithelial cells against oxidative stress and inflammation. Many
probiotics, especially Lactobacillus strains, are able to induce gut
epithelial HSPs via different cell receptors and signaling path-
ways.65,66 Further, HSP90AA1 transcription was negatively corre-
lated with abundance of the potentially pathogenic Gallibacterium
and Veillonella. Gallibacterium is considered an opportunistic
pathogen in chickens. Its effect on poultry production is becoming
more pronounced with the emergence of antibiotic-resistant field
isolates. Furthermore, the abundance of Gallibacterium and
Veillonella, as well as Faecalibacterium, was negatively correlated
with transcription of the anti-viral protein, G3BP1. G3BP1 is
associated with the Wnt signal transduction pathway.67 A study in
humans has demonstrated upregulation of Wnt5a via Toll/NF-κB
signaling in response to microbial stimulation, illustrating a
putative functional involvement in microbial defense and
inflammation.68 When comparing G3BP1 transcription with
microbial pathways, negative correlations were noted for path-
ways which have been associated with intestinal inflammation in
human and/or mouse models.69–71 Thus, while these associations

are not supported by functional evidence, the involvement of
G3BP1 in inflammation and links to the abundance of Gallibacter-
ium, Veillonella, and Faecalibacterium indicate a delicate equili-
brium with relevance to host growth and performance.
Microorganisms have the potential to biosynthesize an array of

secondary metabolites that can mediate important host–microbe
and microbe–microbe interactions,72 facilitating actions such as
antagonistic competition or quorum sensing. Identifying the
biological consequences of these metabolites and the mechan-
isms by which they mediate interactions may open the door to
new bio-therapeutic strategies to treat diseases in animals and
humans. Terpenoids and polyketides are examples of secondary
metabolites with potential for development as antimicrobial,
immunomodulatory, cytotoxic, anti-inflammatory, anti-oxidant, or
anti-cancer products.73 We found a negative correlation between
polyketide and terpenoid metabolism and transcription of ITGA4,
PLCD1, DNAJA3, EML6, and COL18A1, and a positive correlation
with INVS, EIF2S3L, and SH3BGRL, many of which have been
implicated in inflammation via crosstalk between pathways.
SH3BGRL has been observed to modulate immune-inflammatory
and antioxidant defense in response to bacterial lipopolysacchar-
ides.74 DNAJA3 is a regulator of the NF-κB pathway75,76 with a
central role in innate and adaptive immune responses.77 Several
studies have highlighted a putative role for Endostatin, acting as
an anti-angiogenic factor and influencing inflammation in
intestinal pathology.78–80 This gradient may point towards a
coupling of the host transcriptome and intestinal microbiota,
indicating a profound impact on host physiology by maintaining
intestinal homeostasis and health. Likewise, the FCR-associated
gradient in crosstalk may also indicate functional relevance for the
correlated bacterial species. The finding that the occurrence of
specific bacterial genera correlated with transcriptome profiles in
high FCR chickens supports their potential role in intestinal
inflammation.
The work described here identifies genes and components of

the enteric microbiota associated with high or low FCR in a broiler
chicken line. Differential expression analysis between birds with
divergent FCR revealed DE genes in intestinal and liver tissues.
Microbiome sequencing identified microbiota that were asso-
ciated with FCR-relevant traits. While the number of DEGs
identified in the intestinal epithelial and liver were low, biological
processes related to response to circadian feeding behavior,
immune molecular system pathways, lipid metabolism and
transport, transcription and translation processes and their
regulation, cell proliferation, autophagy and apoptosis were
associated with FCR. These results provide new insights into the
molecular mechanisms underpinning FCR in chickens, supporting
the usefulness of host–microbiome analysis and revealing a
convenient use for integrative approaches combining host
transcriptome and microbiome data to disentangle the interaction
between them in a complex system. Deriving functional proof for
these associations will be challenging, but the present findings
emphasize that the intestinal microbiota and host intestinal
epithelium have to be viewed as a linked entity to permit
understanding of FCR trait-specific outcomes. These findings offer
value to future breeding strategies, improving feed efficiency traits
like FCR.

METHODS
Ethics statement
All animal experiments in this study were approved by the Institutional
Animal Ethics Committee of Anand Agricultural University (Anand, Gujarat,
India) with approval number CPCSEA#486, and the experimental
procedures were carried out in accordance with the approved guidelines
established by this committee.
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Experimental population
A pedigree broiler chicken population was established from Pure-Line
Marshall Breed chicks, an indigenous Indian broiler breed developed by
Marshall Breeders, Nasik, India, using a genetically restricted flock which
has been closed for more than 35 generations. Marshall Breed chickens are
farmed across much of India and have been introduced to other countries
in Asia and Africa, both regions hosting considerable expansion of poultry
production. A total of 30 sires and 300 dams were chosen as the F0
generation, 10 dams per sire. Ten chicks were collected from each sire/dam
mating to produce 3000 F1 progeny. In the absence of identical twins each
group of 10 sire/dam-matched chicks were compared as full siblings (sibs).
Each independent group of 10 F1 chicks was kept in a single enclosure
from day of hatch to 35 days of age. A starter diet (2900 kcal ME/kg and
200 g/kg CP) was provided ad libitum during this period. Then, from days
35 to 49, each individual was reared separately and fed a grower diet
(3100 kcal ME/kg and 180 g/kg CP). Body weight (BW) was measured at
hatching and on days 21, 35, and 49. FCR was calculated as the ratio
between feed intake and BWG between days 35 and 49. Full siblings with
high and low FCR were selected based upon highly significant (p < 0.01)
differences in FCR. At 49 days of age chickens were culled and intestinal
tissues (duodenum, jejunum, ileum, and ceca), their respective luminal
contents and liver were harvested immediately, snap frozen in liquid
nitrogen and then stored at −80 °C until further processing.

RNAseq library preparation and high-throughput sequencing
Total RNA from frozen samples was extracted using TRIzol reagent
(Invitrogen) and purified using an RNeasy Mini RNA kit (QIAGEN). Genomic
DNA was removed by on-column DNase I treatment according to the
manufacturer’s instructions. Total RNA integrity was measured using a RNA
Nanochip on a Bioanalyzer 2100 (Agilent Technologies) and samples with a
RIN value between 7.5 and 8.0 were retained for use in the study. RNAseq
libraries were prepared using a TruSeq Stranded mRNA kit (Illumina, USA)
and then subjected to 2 × 150 bp paired-end Illumina MiSeq sequencing as
per instructions from the manufacturer.

RNAseq alignment, differential expression, functional annotation,
and SNP calling
Reads were mapped against the reference chicken genome (galGal4) and
the annotation database Ensembl Genes 84 using the open-source
software STAR 2.4.0.2.81 The resulting BAM files containing the aligned
sequences were subsequently processed with Samtools.82 The total
number of mapped reads per gene was quantified using HTSeq. 0.9.183

with the GTF file which used in a mapping step for the splice junction-
based alignment. Differential expression analysis of contrasting samples
from extreme-phenotype individuals was performed using the DESeq2
package.84 Genes were considered as DEGs when the rate of change
between groups reached |Fold Change (FC)| > 1.5 and differences were
significant (p-value < 0.05). GO and pathway analysis of DEGs was
implemented using DAVID Bioinformatics Resources v6.8 (http://david.
abcc.ncifcrf.gov/). p-values < 0.05 were deemed to show significant
enrichment of DEGs.
The Genome Analysis Toolkit (GATK, version 2.8)85 was used to perform

Split ‘N’ Trim (ReassignMappingQuality), Indel Realignment and base
quality score recalibration to produce a ‘cleaned’ BAM file for each
individual. SNP calls were made by the HaplotypeCaller module in GATK
using the ‘cleaned’ BAM files in a single batch (14 samples in a batch). The
resulting Variant Call Format (VCF, version 4.2) file contained the called
variants that overlapped with known SNPs reported in dbSNP v138. The
annotated VCF files were then filtered using the GATK variant filter module
with a hard filter setting for initial filtering. Variant calls that failed to pass
the following filters were eliminated from the call set: QD < 2.0 || FS > 60.0 ||
MQ < 40.0 || HaplotypeScore > 13.0 || MappingQualityRankSum <−12.5 ||
ReadPosRankSum <−8.0”. Association analyses were conducted using the
simple mixed linear model (MLM) implementation in JMP Genomics 6.1
(SAS, Cary, NC, USA), which can run mixed models to account for fixed and
random effects while testing the null hypothesis. False discovery rates
were calculated using the Bonferroni correction method.

16S rDNA amplicon and metagenomic WGS sequencing
The luminal content collected from each section of the intestinal tract was
thawed on ice and ~300 µL used for metagenomic DNA extraction using
the QIAamp Fast DNA Stool Mini Kit (QIAGEN, Germany) as per the

manufacturer’s instructions. Further, metagenomic DNA was treated with
DNase-free RNase (Macherey-Nagel, Germany) to remove any contaminat-
ing RNA. The quality and quantity of metagenomic DNA was assessed
using agarose gel electrophoresis and a Qubit 3.0 Fluorometer (Invitrogen,
Life Technologies, USA), respectively. Metagenomics DNA was stored at
−20 °C until further processing. The hypervariable region V3–V4 of the 16S
rDNA gene was used to assess microbial diversity between the high and
low FCR groups. Amplified amplicons and shotgun metagenomics libraries
were made using a Nextera XT DNA library preparation kit (Illumina, USA)
according to the manufacturer’s instructions. These libraries were
sequenced on an Illumina MiSeq platform using a 2 × 250 sequencing kit.

Intestinal lumen microbiota analysis
All of the shotgun metagenomic reads generated were submitted to the
MG-RAST v 4.0.3 web server for phylogenetic and functional classification
of metagenomics WGS data. Low-quality regions were trimmed using
SolexaQA with default parameters in MG-RAST.86 Artificial duplicate reads
were removed using a k-mer-based approach. 16S rDNA amplicon data
were analyzed using the QIIME v1.9.0 pipeline.87 Operational taxonomic
unit (OTU) picking was performed at ≥ 97% sequence similarity and
taxonomic identity was assigned by comparing representative sequences
against the Greengenes reference database using RDP classifiers. Alpha
and beta diversity analyses were performed using several different metrics:
observed_OTU and phylogenetic diversity (PD) were used for measure-
ment of alpha diversity within samples, and unweighted and weighted
UniFrac PCoA were used for measurement of beta diversity between
samples. A non-parametric Kruskal–Wallis (KW) test was used to compare
alpha diversity between high and low FCR samples. The LEfSe (linear
discriminant analysis coupled with the effect size) algorithm was used to
identify those OTUs that differed significantly among the high and low FCR
groups for each tissue based on the OTU relative abundance values.88

Samples from the jejunum, ileum, and ceca were included. Insufficient
duodenal samples passed quality control at the library preparation stage,
so the tissue was excluded from this analysis. Briefly, the non-parametric
KW sum-rank test was used to detect those taxa which differed
significantly in abundance, followed by pairwise Wilcoxon tests to detect
biological consistency between the two groups. Finally, an LDA score was
used to estimate the effect size of each differentially abundant bacterial
taxon. Comparative analysis for taxa and functional features in terms of
percentage mean relative frequency was performed using STAMP, where
Benjamini–Hochberg FDR was used for multiple test corrections to
minimize false discovery rates during multiple group comparative analysis.

Host transcriptome–microbiome correlation analysis
To obtain a quantitative measure of host transcriptome–microbiome
correlation, the Pearson’s correlation was calculated using Hmisc and
visualized using the corrplot package for all DEGs and OTUs between the
respective gene expression level and OTU abundance. Correlations were
considered significant at p < 0.05. Multiple test corrections were calculated
using Holm–Bonferroni method implemented in Rcmdrmisc package in R.

Statistical analysis
SNP–Trait association analyses were conducted using the simple MLM
implementation in JMP Genomics 6.1 (SAS, Cary, NC, USA), which can run
mixed models to account for fixed and random effects while testing the
null hypothesis. False discovery rates were calculated using the Bonferroni
correction method. Alpha and beta diversity analyses were performed
using several different metrics: observed_OTU and PD were used for
measurement of alpha diversity within samples, and unweighted and
weighted UniFrac PCoA were used for measurement of beta diversity
between samples. A non-parametric KW test was used to compare alpha
diversity between high and low FCR samples. The LEfSe (linear
discriminant analysis coupled with the effect size) algorithm was used
to identify those OTUs that differed significantly among the high and low
FCR groups for each tissue based on the OTU relative abundance values.88

Comparative analysis for taxa and functional features in terms of
percentage mean relative frequency was performed using STAMP, where
Benjamini–Hochberg FDR was used for multiple test corrections to
minimize false discovery rates during multiple group comparative
analysis. The Pearson’s correlation was calculated to obtain quantitative
measure of host transcriptome–microbiome correlation using Hmisc and
visualized using the corrplot package for all DEGs and OTUs between the
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respective gene expression level and OTU abundance. Correlations were
considered significant at p < 0.05.
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