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An ensemble learning model for continuous cognition
assessment based on resting-state EEG
Jingnan Sun1, Yike Sun 1, Anruo Shen1,2, Yunxia Li3, Xiaorong Gao1✉ and Bai Lu4,5✉

One critical manifestation of neurological deterioration is the sign of cognitive decline. Causes of cognitive decline include but are
not limited to: aging, cerebrovascular disease, Alzheimer’s disease, and trauma. Currently, the primary tool used to examine
cognitive decline is scale. However, scale examination has drawbacks such as its clinician subjectivity and inconsistent results. This
study attempted to use resting-state EEG to construct a cognitive assessment model that is capable of providing a more scientific
and robust evaluation on cognition levels. In this study, 75 healthy subjects, 99 patients with Mild Cognitive Impairment (MCI), and
78 patients with dementia were involved. Their resting-state EEG signals were collected twice, and the recording devices varied. By
matching these EEG and traditional scale results, the proposed cognition assessment model was trained based on Adaptive
Boosting (AdaBoost) and Support Vector Machines (SVM) methods, mapping subjects’ cognitive levels to a 0–100 test score with a
mean error of 4.82 (<5%). This study is the first to establish a continuous evaluation model of cognitive decline on a large sample
dataset. Its cross-device usability also suggests universality and robustness of this EEG model, offering a more reliable and
affordable way to assess cognitive decline for clinical diagnosis and treatment as well. Furthermore, the interpretability of features
involved may further contribute to the early diagnosis and superior treatment evaluation of Alzheimer’s disease.
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INTRODUCTION
Cognitive decline is an outward manifestation of neurological
decline caused by factors other than natural aging1. The causes of
cognitive decline include but are not limited to, many neurological
disorders such as Alzheimer’s disease, epilepsy, cerebrovascular
disease, tumors, other injuries or illnesses such as trauma,
diabetes, HIV, thyroid abnormalities, etc.2. According to WHO
estimates, people suffering from cognitive decline will reach 152
million worldwide by 2050.
The main symptoms of cognitive decline are 1. memory loss. 2.

repetitive questioning. 3. abstract logic impairment. 4. language
impairment. 5. loss of hobbies and interests. 6. emotional deficits
and moodiness. 7. reduced judgment. 8. spatial orientation
impairment. 9. misplaced objects. 10. comprehension impair-
ment3–6. Cognitive decline places a considerable economic
burden on society due to its overall impairment of a person’s
ability to function autonomously. Early detection of cognitive
decline has become the key to its treatment as many studies have
shown that early intervention is relatively effective.
The current diagnosis of cognitive decline relies heavily on

scales7,8. Alzheimer’s disease, a primary neurodegenerative
disease, is one of the leading causes of cognitive decline and
even dementia9. However, although the academic community
often considers scale tests as the ‘gold standard’ for clinical
assessments, scale tests themselves indeed have many short-
comings10. First, scale tests might not capture the full spectrum of
cognitive impairments, especially subtle changes that could be
crucial for early diagnosis11. Second, they can be influenced by a
patient’s educational level, cultural background, or even their
emotional state during the assessment12,13. Sometimes the results
might even be deliberately manipulated. Moreover, repeatability

can become an issue; patients might perform better during
subsequent tests merely due to familiarity with the test format
rather than genuine cognitive improvement14. In addition,
subjective interpretation by the examiner can also introduce
variability in the results. With these inherent limitations, it
becomes evident that a more objective and comprehensive
method, such as PET and EEG-based assessments, could provide a
more accurate picture of a patient’s cognitive health.
EEG has many applications in cognitive decline research as a

high temporal resolution neural signal that can be easily
acquired15–17. Various temporal, spatial, and frequency-based
EEG computational features are currently available to evaluate
cognitive decline at different levels18,19. EEG, as an objective
manifestation of the neurological state, will significantly reduce
the potentially in cognitive assessments. Moreover, mathematical
models based on EEG features will enable a continuous mapping
of the macro cognitive state, thereby achieving a more refined
evaluation compared to scales20,21.
While there exists a robust body of research on cognitive

segmentation22,23, the pronounced noise and substantial varia-
bility in resting-state EEG signals make continuous cognitive
assessment a challenging endeavor. Nowadays large models are
currently a promising method for information modeling, data
volume poses a significant challenge in the field of EEG. Before
building a vast and reliable dataset, feature engineering remains
an effective and feasible approach. Considering that numerous
previous studies have explored the differences between patients
with cognitive decline and normal subjects from various
perspectives of EEG24–26, such as time domain, spatial domain,
and frequency domain, and have provided different interpreta-
tions. The results indicate that time, space, and frequency can
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each extract distinct information embedded in the EEG. Hence,
combining this information seems likely to yield better cognitive
assessment results. To extract sufficient information from the
complex resting-state EEG, researchers inevitably need to combine
as many features as possible. Therefore, this study, using scale
scores as the standard, employs the Adaboost method to
integrate as many features as possible to achieve continuous
cognitive assessment. Furthermore, introducing a plethora of
features allows the research to investigate the contributions of
distinct features to the modeling outcomes, thereby offering a
more comprehensive understanding of the patterns in cognitive
decline (Fig. 1).

RESULTS
Cognitive scale results
The study analyzed the cognitive scale test results for the three
subject groups (Table 1 and Fig. 2) and discovered that the two-
scale tests indicated a decreasing trend in scores with decreasing
cognitive capabilities. The mean MoCAB scores for the HC, MCI,
and Dementia groups were 24.39, 18.01, and 10.68, respectively,
while the MMSE scores were 27.47, 25.18, and 17.86, respectively.
It can be seen that as the level of cognition decreases, the range of
distribution of the scale test results increases. This suggests that
even among those with a clinical diagnosis of dementia, a few
subjects have high-scale test scores, which may be associated with
high levels of schooling, difficult work, etc. As a result, depending
exclusively on scale results carries some risk.

EEG patterns of cognitive decline
In the time dimension, cognitive impairment appears to have
destabilized network activity (Fig. 3). This implies shorter state
durations and more significant gaps between states. In the resting
state, the average brain is in a dynamic and stable process that
involves constant switching between many modes. The findings,

on the other hand, suggest that dementia patients are missing
states 12 and 15 (Supplementary Fig. 1), which could be related to
structural damage produced by brain atrophy and neuronal death.
From a translational standpoint, cognitive deterioration decreased
state duration, implying more translations and systemic dissocia-
tion. When the average transformation distance results are
combined, it is known that brains with cognitive impairment
appear to be more prone to state leaps rather than continuous
and smooth evolution. The temporal representation results hint at
cognitive deterioration, rendering the conscious experience
discrete, which may also be associated with impaired central
control and a lack of attention.
Regarding the frequency domain dimension, cognitive decline

implies an overall slowing of activity. A decrease in high-frequency
activity and an increase in low-frequency activity are typical of the
frequency domain (Fig. 4). The change from the HC to MCI stage is
relatively moderate. In contrast, the change from MCI to dementia

Fig. 1 Constructing a continuous cognitive evaluation model. a Raw signal EEG signal input. b Signal pre-processing, including ring
segment rejection, removal of high-frequency noise, low-frequency drift, and industrial frequency interference. c Extraction of valid
information in the signal from three perspectives: time, frequency, and space domain. d Feature filtering to reduce redundant information,
triple classification of HC, MCI, and dementia using SVM + AdaBoost method. e Cognitive evaluation of the model using cognitive scale test
data for regression constraint construct continuum.

Table 1. Classified expressions of different characteristics.

Weak classifier Single classifier
accuracy
(baseline)

Final
weights

The final
number of
features

Fractal characteristics 0.44 (0.33) 0.02624 34

Complexity
measures

0.56 (0.33) 0.14783 26

Microstate feature 0.67 (0.33) 0.31355 125

Spectral
characteristics

0.51 (0.33) 0.11679 113

Bispectral features 0.52 (0.33) 0.10355 82

Network Properties 0.64 (0.33) 0.22268 95

Phase
synchronization

0.47 (0.33) 0.07846 37
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is more pronounced. In terms of the spatial distribution of power,
the temporoparietal lobe of HC has relatively strong activity in the
resting state, while MCI and dementia have weaker activity.
Overall activity in HC is highly homogeneous, while frontal lobe
activity is significantly reduced in dementia.
Observed in the spatial dimension, the decrease in overall

information transfer brought about by the cognitive decline
implies a silent and inactive network (Fig. 5). The results point to a
higher outflow of information from the central regions of the
network (C1, C2, C3, C4, CP1, CP2) in the resting state, which may
imply central control and moderation. This phenomenon
diminishes with decreasing cognition, and the average informa-
tion transfer across the network decreases. In addition, it was
observed that cognitive decline did not imply a monotonic
network degeneration and that enhanced information between
specific regions was observed from the HC to the MCI stage, e.g., a
slight increase in outflow information in C5, C6, FP1, FP2
compared to the HC network (4.93% increase on average).
Observed from the perspective of spatial networks, cognitive

decline reduces network connectivity. This section calculates the

sum of incoming and outgoing information between any two
nodes as the strength of the connection between these two
nodes. The research filters the network’s major connections
according to a criterion of greater than 80%. It presents them
normalized (Fig. 6). The results indicate that the number of major
connections in the network decreases with cognitive decline and
follows the principle of retaining strong connections and reducing
weak ones.

Cognitive decline prediction
In this work, many features were extracted from the EEG of
subjects with different cognitive levels in three dimensions: time
domain, space domain, and frequency domain. Features are
composed of eight weak classifiers according to the feature types,
and the classification effect of each feature individually is shown in
Table 1. The results point to a relatively good classification
performance for the microstate phase pipe features and a
classification accuracy of only 0.64. This indicates that the amount
of information carried by a single-dimensional feature is

Fig. 2 Cognitive scale test for three groups. The box plot shows that the two cognitive scale outcome scores gradually decrease with
decreasing clinical cognition, and there is a significant difference between them (MoCAB: HC and MCI, p= 9.22*e−25; MCI and Dementia,
p= 1.63e−21; MMSE: HC and MCI, p= 6.42*e−11; MCI and Dementia, p= 7.58*e−21). (The statistical test was a Mann–Whitney U Test with
p < 0.05 implying a significant difference).

Fig. 3 General chronological characteristics of microstates in the three groups. The mean duration and mean state transition distance were
calculated for each microstate. a It was found that cognitive decline caused the mean duration of states to be shorter, with results showing
that HC and dementia all showed significant differences in mean duration for states 2,3,5,7,8,9,10,11,16,18,19 (p < 0.05, using ANOVA analysis
followed by Bonferroni correction). b The mean transition distance showed that cognitive decline might cause an increase in state transition
distance. This result was 3.97 for HC, 5.26 for MCI, and 7.06 for dementia, with a significant difference between MCI and dementia (p= 0.032).
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insufficient for the triple classification task of HC, MCI, and
dementia.
The strong classifier consisting of 7 weak classifiers after feature

filtering and a combination of 7 weak classifiers could achieve a
better triple classification, and a classification accuracy of 0.9333
(28 out of 30) was obtained on the test set. As can be seen from
the confusion matrix (Fig. 7), all patients with dementia were
correctly predicted. One HC was predicted as MCI, and one MCI
was predicted as dementia. While studies usually consider HC,
MCI, and dementia as a continuum of development, this study
also looked further at the cognitive test scores (mean MoCAB and
MMSE) of the mis-scored sample. The cognitive test score for the
misclassified HC sample was 23, while the MCI misclassified
sample had a cognitive test score of 18. Considering that the full
score on the cognitive test is 30, the lowest score for the HC
sample was 22, while the lowest score for the MCI sample was 15,
both misclassified samples were also at the lower end of their
respective categories.

A continuous cognitive evaluation model can be obtained by
restricting and weighing the outcomes of the generated
trichotomous model based on the results of the cognitive scale
tests (MoCAB and MMSE). After mapping the true and predicted
scores to a score between 1 and 100 using the procedure section
of the algorithm, when making final predictions for the cognitive
levels of 30 individuals through cross-validation, the average error
obtained was 4.63 (Fig. 8). Examining the two misclassified
samples again, the true cognitive score for the sample classified as
MCI was 62.70 and the predicted value was 66.11, while the true
value for the sample misclassified as dementia was 33.15 and the
anticipated value was 35.54. The results demonstrate that after the
continuous evaluation, the cost of misclassification was lowered,
and the prediction of the neighboring category shows that there
may be a cognitive effect—the forecasts for the neighboring
categories point to a potential pattern of perceived deterioration
in this sample. Overall, the findings indicate that the approach
accurately predicts cognitive function from resting EEG. The mean
prediction error was 4.82 on a scale of 1–100 (100 being the

Fig. 4 Frequency domain description of cognitive decline. The frequency characteristics and power distribution patterns of the three
groups of people with cognitive decline were analyzed according to band power. a The power in the delta and theta bands gradually
increased with cognitive decline, while the power in the alpha, beta, and gamma bands gradually increased. b The delta band MCI was
significantly different from Dementia (MCI: 12.42 uv2, Dementia: 14.65 uv2 and p= 0.014), the alpha band HC being significantly different from
MCI (HC: 6.94 uv2, MCI: 5.66 uv2 and p= 0.032) and MCI from Dementia (MCI: 5.66 uv2, Dementia: 4.37 uv2 and p= 0.027), and the gamma
band MCI being significantly different from Dementia (MCI: 5.13 uv2, Dementia: 3.18 uv2 and p= 0.012). (The statistical test was a two-sample
t-test with p < 0.05 implying a significant difference).

Fig. 5 Directed transform function for three groups of people. DTF-based directed information flow, where each sub-square represents the
flow of information from the column labels to the row labels. It can be seen that overall information transfer diminishes as cognition declines,
a with a mean information strength of 0.0099 for HC, b 0.0074 for MCI, and c 0.0032 for dementia, with a significant difference between MCI
and Dementia (p= 0.026). (The statistical test was a two-sample t-test with p < 0.05 implying a significant difference).
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healthiest and one being seriously demented), resulting in a less
than 5% error rate. To assess the generalization performance of
the model, the study also conducted tests on an external dataset,
yielding an average error of 6.12 (Fig. 8).

DISCUSSION
This study proposes a method that can predict the cognitive level
of subjects based on resting-state EEG and validates the feasibility
of the method on EEG dataset of people with different cognitive
levels, obtaining predictions error of 4.82 (<5%). The evaluation
model has easy input data collection advantages, low algorithm
complexity, and high model interpretability. The method may
contribute to the early screening of cognitive decline, the
assessment of the effectiveness of therapeutic interventions for
neurodegenerative diseases associated with cognitive decline,
mainly Alzheimer’s disease, the development of drugs for related
diseases, and the evaluation of drug efficacy. In the context of
current cognitive assessment methods, scales exhibit limited
sensitivity to subtle changes and suffer from ceiling effects, while
neuroimaging tools are constrained by environmental factors and
expensive contrast agents, and the collection of biological markers
is challenging. Based on the findings of this study, electroence-
phalography (EEG) may potentially offer contributions in this
direction.

One question worth discussing is why many single types of
features do not distinguish the three groups well simultaneously,
while once they are combined in a specific form, satisfactory
classification accuracy can be obtained. Schapire proves that if the
target is weakly learnable, it must be possible to make it strongly
learnable in some form based on the significant number
theorem27. In practice, to achieve this goal, the errors of each
weak classifier need to be independent of each other. That is,
different weak classifiers can provide different information to
achieve the error reduction of strong classifiers. The core purpose
of this study’s sample weight adjustment strategy using the
Adaboost method is to ensure an even distribution of correctly
classified samples, ultimately making the number of correctly
classified samples more than the number of incorrectly classified
samples. The results of the weak classifier for the predicted
samples point out that the starting classification distribution of the
samples in this problem is relatively uniform, making it easier to
improve the accuracy during further iterations of the weights
(Supplementary Fig. 2). In addition, the study also correlated the
classification result labels of each weak classifier (Supplementary
Fig. 3). The results showed that each weak classifier did not
perform the same, and there was no weak class of classifiers with
similar information contributions that could be replaced or
removed.
Specifically, in this study, the reason for the success of

integrated learning is that the different features pinpoint different
levels of variation and increase the amount of valid information at
each iteration. The results show that the microstate sequence-
related features perform relatively well in the differentiation of the
three populations, which may be due to the high temporal
resolution of the EEG that allows for the mining of fine-grained
systemic transformations that are highly correlated with disease
and abnormal activity28. Spatial network features performed best
in distinguishing MCI from dementia but were average for
distinguishing HC from MCI. This may be because the structural
changes accompanying early neurological decline are not very
significant, while the structural differences become increasingly
significant as the system collapses29.
Another advantage of this work is that the data used contains

three different acquisition devices (NeuroScan, Neuracle, BP). The
combination and processing based on the feature level are not
device-dependent and do not require device consistency (Sup-
plementary Table 1 and Supplementary Fig. 4), so a multi-device
acquisition dataset has no impact on the model building of this

Fig. 6 Schematic diagram of the major connections for the three groups. As can be seen from the connection, the number of major
network connections decreases as cognition moves downwards. a The HC network containing 82 connections, b MCI network containing 43
connections, c the dementia network only 25 connections. There were significant differences between HC and MCI (p= 0.043) and MCI and
dementia (p= 0.041). The results indicate a tendency for solid connections to remain and weak connections to decrease or disappear during
cognitive decline. In the figure, the color indicates the normalized connection strength. (The statistical test was a two-sample t-test with
p < 0.05 implying a significant difference).

Fig. 7 Confusion matrix with three classifications. The confusion
matrix shows an accuracy of 0.93 for the triple classification, with
two misclassified samples out of 30 tested. No HC was misclassified
as demented, or demented was misclassified as HC.
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work. This study also researches the distribution of the true and
predicted values of the prediction sample by an amplifier to
ensure the approach is pervasive and cross-device capable. The
results showed that the distribution tests between the true and
predicted values of the test samples from the three amplifiers did
not show any difference (p > 0.1). Furthermore, the absolute
prediction error for all three amplifiers is close to the absolute
prediction error for the full sample (Total error: 4.63; NeuroScan
error: 4.13; Neuracle error: 4.33; BP error: 5.23). The advantage of
multiple devices, however, is the increased diversity of data, which
also contributes to the generalizability and credibility of the model
and establishes a sound basis for future algorithm applications30.
Considering the strong correlation between cognitive decline

and aging, the contribution of age in the model obtained by
fitting based on cognitive decline is also worth discussing; after all,
the study does not expect to obtain only one age predictor. For
this reason, this study used the same Adaboost method to fit the
age and predict the test sample’s age. After obtaining the
predicted age corresponding to the actual clinical labels of the
subjects, it was found that the results of the model fitting seemed
to have some age correlation. However, it can be seen from the
figure that the results of the model fit do not all depend on age, as
there are normal subjects with a high predicted age and
demented subjects with low predicted age (Supplementary Fig. 5).
The method has strong interpretability, which is crucial for

clinical purposes. The results of the weak classifier show that the
time domain features are relatively well classified, followed by the
space domain features and again by the frequency domain
features. This fully reflects the high temporal resolution of the EEG
signal, which also indicates that the three categories of HC, MCI,
and dementia, that is, the process of cognitive decline, differ more
significantly in the transformation of neural activity patterns in the
temporal dimension. This part of the results is also reflected in the
paper. In particular, early cognitive decline, which is poorly
identified subjectively, can be better detected by this model.
This study also describes the pattern of cognitive decline in

three dimensions, spatiotemporal and frequency, to enhance the
interpretability of the evaluation system. Combining the results of
this study with previous work, the study concluded that cognitive
decline follows four rules: the stronger ones always prevail., non-
monotonic changes, decreased efficiency, and reduced stability.
One of the key principles elucidated by this study is the concept

that ‘the stronger ones always prevail.’ This principle underscores
the non-uniform nature of neural system changes during
cognitive decline. It suggests that certain strong connections

and active neural regions endure the degeneration process more
effectively. These robust connections and active areas may
represent an individual’s essential cognitive capacity. For example,
preserving parietal connections31 may be related to central
control and basic perception.
It is important to recognize that cognitive decline does not

follow a monotonic trajectory. Instead, it exhibits dynamic
characteristics, including the potential for neural repair and
compensation, especially in the early stages32. As demonstrated
by our results, cognitive decline accelerates over time, with the
transition from Mild Cognitive Impairment (MCI) to dementia
displaying a notably faster decline rate compared to the transition
from Healthy Controls (HC) to MCI. Intriguingly, there are instances
of additional connectivity and enhanced information observed
during the HC to MCI transition. This phenomenon may contribute
to the limited success of linear predictive models in some previous
studies33, highlighting the complexity of cognitive decline
dynamics.
Decreased efficiency is also a primary phenomenon. Cognitive

decline characterizes the degradation of the nervous system, with
reduced activity and information implying reduced processing of
external input34. Some studies on cognitive states have also
demonstrated that dementia may lead to increased reaction
times, attention deficits, and reduced memory capacity35. These
phenomena are closely associated with a decrease in the
information content of signals and a reduction in complexity,
both of which signify a weakening of information transmission
capacity and contribute to model evaluation. This correlates with
the slowness of response, attention deficit, and repetition of
questions and answers exhibited by patients with cognitive
decline.
Finally, cognitive decline will reduce stability. The normal brain

is a stable dynamic equilibrium system, and cognitive decline
disrupts this equilibrium36. Combined with the findings, the jumps
in state and the diminished persistence indicate a system
disruption. Some patients with cognitive decline exhibit emotional
abnormalities, and communication difficulties may be associated
with this.
In reference to previous studies on EEG data24,37, it is generally

considered that a sample size of several dozen data points carries
significant statistical significance. In this study, a total of 252
participants were included, resulting in 504 data instances. While
this sample size may not be considered large when compared to
large-scale models used in image and text processing, it is
sufficient for addressing the research questions and methods

Fig. 8 Final cognitive level prediction results and Validation. The integrated learning approach combining resting-state EEG and cognitive
scales has an excellent predictive effect on the cognitive level, a with results indicating a mean prediction error of 4.82 (error rate less than 5%)
on a scale of 1–100 (with 100 representing the healthiest and 1 representing severe dementia). The model also predicted subjects at different
levels with uniform errors (left figure). b The validation results of the predictive model on an external dataset yielded an error of 6.12 (right
figure).
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employed in this study. Furthermore, the inclusion criteria for
patients strictly adhered to clinical labels provided by the hospital,
ensuring a relatively reliable assessment of patient progress.
However, it is important to acknowledge that there are still some
limitations in this study due to data constraints. The application of
the AdaBoost method based on feature engineering introduces a
relatively high computational complexity, which may lead to
practical challenges during real-world implementation. In addi-
tion, the inherent nature of the AdaBoost method prioritizes the
handling of outliers, potentially affecting the model’s ability to
cope with noise.
In fact, this study is primarily based on cross-sectional data to

characterize signals and features across different populations for
the development of predictive models. However, conducting a
longitudinal tracking of a cohort of participants to investigate
cognitive changes and EEG variations within a group over time
would offer an entirely fresh perspective. Such an approach could
aid researchers in gaining a deeper understanding of the patterns
of cognitive decline and associated neurophysiological changes.
While the inclusion of a longitudinal follow-up component in our
study presents logistical challenges, it also holds the promise of
yielding richer insights into cognitive trajectories and model
performance. Future research endeavors could explore the
feasibility and potential benefits of such an approach in advancing
our understanding of cognitive assessment using EEG.
The implementation of our EEG-based cognitive assessment

model holds significant promise for enhancing patient care. Firstly,
it could serve as a valuable tool for early detection and monitoring
of cognitive decline in individuals, allowing for timely intervention
and personalized treatment strategies. By providing quantitative
insights into cognitive function, the model could aid clinicians in
making informed decisions about treatment plans and interven-
tions. Furthermore, the model’s ability to capture nuanced
patterns of cognitive decline, as highlighted in our study, could
contribute to more accurate and sensitive assessments of
treatment efficacy. Clinicians could use the model to track
changes in cognitive function over time, allowing for the precise
evaluation of therapeutic interventions and the adjustment of
treatment approaches as needed. In terms of clinical decision-
making, the model’s predictive capabilities could aid in risk
assessment and prognosis estimation, enabling clinicians to
provide patients and their families with more informed expecta-
tions about the course of cognitive decline.
In summary, this study also presents a potential approach for

constructing a neural activity space using samples and labels, such
that the mapping can characterize various neural activity changes.
With the help of some techniques to increase the signal-to-noise
ratio of EEG38,39, such a framework could extract information from
resting-state scalp EEG more effectively. The cognitive decline
mapping proposed in this study is only one part of a larger neural
activity space. The construction of such a mapping system will be
helpful for neurological function assessment, disease develop-
ment evaluation, clinical target research, and drug effect testing.

METHODS
Participants
The participants were patients with complaints of cognitive
decline from the Memory Specialist Clinic of the Department of
Neurology, Tongji Hospital, Tongji University. The Ethics Commit-
tee of Tongji Hospital, Shanghai, China, approved the study.
Healthy elderly controls (HECs) with matching sex, age, and
education level were recruited from the local community in
Shanghai. Patients with MCI and dementia underwent a standard
clinical diagnosis including cranial computed tomography (CT)
imaging or Magnetic Resonance imaging (MRI) scan and scale
testing40. All subjects were informed and signed an informed

consent form. Patients were required to meet the following
criteria: (1) no brain tumor, epilepsy, neurosyphilis, no new
cerebral infarction at the time of consultation, and no other
central nervous system diseases (infections, clear history of
demyelinating diseases, etc.); (2) no major medical or physical
diseases such as hepatic encephalopathy or myocardial infarction;
(3) no previous history of severe mental disorders, psychoactive
substances, or drug abuse; (4) able to cooperate with the
examination, complete the full neuropsychological assessment
and sign an informed consent form; (5) no contraindications to
cranial MRI or electroencephalography. A total of 252 participants
were enrolled in this study, including 75 healthy controls, 99 MCI,
and 78 patients with dementia (Table 2). In addition, EEG was
acquired twice per participant, so the data involved in the model
building was 150 healthy subjects, 198 MCI, and 156 dementia
patients.

EEG data acquisition and pre-processing
EEG data acquisition is performed using a 64-lead EEG recording
system from Brain Products (www.brainproducts.com), NeuroScan
(www.compumedicsneuroscan.com), and Neuracle
(www.neuracle.tech), with electrode positions using International
10–20 EEG Society standards. The equipment sampling rate is
1000 Hz. The electrode contact resistance was less than 5 KΩ.
Resting EEG was recorded with eyes open for at least 5 min before
the task EEG was performed on all subjects. EEG signal pre-
processing processing included pre-positioning electrodes,
removal from 50 Hz industrial frequency interference, 0.5–100 Hz
band-pass filtering, rejection of useless channels, threshold
method to reject bad segments, ICA to remove EMG artifact
components and whole brain average re-referencing. EEG signals
were processed in this research by MATLAB 2018b platform
(ww2.mathworks.cn).

Validation dataset
In order to assess the robustness and generalization of the model,
the study was tested on an external dataset (available at https://
figshare.com/articles/dataset/dataset_zip/5450293/1)41. This data-
set comprises 2 healthy subjects, 7 mild cognitive impairment
(MCI) subjects, and 59 dementia subjects, each accompanied by
their Mini-Mental State Examination (MMSE) scores as a cognitive
assessment. The dataset consists of 19-channel EEG data. To align
with the evaluation of the model, channel expansion was
performed on the dataset using nearest-neighbor interpolation.

Cognitive scale tests
Each participant was tested on the Montreal Cognitive Assessment
Basic (MoCAB)42 and the Mini-Mental State Examination (MMSE)43

scales to determine their cognitive level. MoCAB is a quick
cognitive impairment assessment tool, and the MMSE is a
technique for detecting cognitive and intellectual deterioration
in older persons. The scales test the capability of visuospatial,

Table 2. Subject information.

HC MCI Dementia

Number 75 99 78

Females/males 38/37 53/46 40/38

Age (years) 67.9 ± 13.5 70.6 ± 14.2 72.7 ± 13.8

p-value of t-test
for age
distribution

0.014 (HC and
dementia)

0.095 (HC and
MCI)

0.021 (MCI and
dementia)

MoCAB 24.39 ± 5.39 24.39 ± 5.39 24.39 ± 5.39

MMSE 27.47 ± 3.47 27.47 ± 3.47 27.47 ± 3.47
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executive, naming, memory, attention, language, abstraction,
delayed recall, orientation through charts, answers for questions
and choices. Both scales have been translated into several
languages and are widely used around the world.

Time domain feature extraction (fractal features)
The time domain feature extraction mainly considers the time-
varying characteristics of the EEG signal. In this part, except for the
microstate calculation, 50 trials 2 s segments are segmented for
superimposed averaging. Fractal features characterize the wave-
form of the EEG, and in this work, the fractal features of nine EEGs
were calculated. The specific calculations are shown in Supple-
mentary Table 2, assuming an EEG signal of X.

Time domain feature extraction (signal complexity)
Complexity is a statistical measure of the amount of information
carried by a signal, and Lempel-Ziv signal complexity (Lempel and
Ziv, 1976) is used in this study. It evaluates the probability of
emerging signal patterns and the feature of neural activity
transitions. Assume that the EEG signal X = [x1, x2, …, xn], xn
denotes the amplitude, while n denotes the time.

Sn ¼

0 xn � T1

1T1 < xn � T2

..

.

l T l < xn

8
>>>><

>>>>:

;C ¼ clogln
n

(1)

In the formula, the original signal (formula 1) is segmented into
a new sequence S according to l segments. Tl denotes the
threshold value obtained by dividing the difference between the
maximum and minimum values of the EEG signal according to
l-segment averaging. And then, the normalized complexity of the
S sequence is calculated44, in which c is the complexity of
sequence S.

Time domain feature extraction (microstate feature)
In this study, the microstate analysis method is used to extract the
transformation information of the EEG. In this paper, the segments
are segmented according to 100 ms, and the standard deviation of
the signal within each 100ms is calculated as a single microstate.
Each segment of EEG data is divided into a total of 1500
microstates. Each 100 ms (0.1 s) characterizes a microstate, and the
research selects 150 s of high-quality segments from the recorded
5min data and divides them into a sequence of 1500 microstates.
Finally, 756,000 microstates from all 504 segments of EEG are
clustered to obtain a category label for each microstate (divided
into 20 classes). The sequence features of each individual
microstate sequence were extracted to obtain the state transition
information of each data, and the specific calculation features45

and methods are shown in Supplementary Table 3. In the table Si
represents the microstate I, and Sin is one element of microstate
vectors Si ¼ ½Si1;Si2; ¼ ; Sin�.

Frequency domain feature extraction
The frequency domain is a classical observational dimension of
the signal view (bispectral frequencies in paper46). The frequency
domain information could generally reflect how much the signal
contains different rate activity components. In the signal
decomposition process, 50 trials 2 s segments of each EEG signal
were selected for superimposed averaging, resulting in a
frequency domain resolution of 0.5 Hz. At the frequency domain
level, the five features shown in Supplementary Table 4 were
calculated in this study. The following standard frequency bands
are used in this work: delta band (0.5–3 Hz), theta band (4–7 Hz),

alpha band (8–12 Hz), beta band (13–20 Hz), gamma band
(21–40 Hz).

Spatial domain feature
The spatial features calculate the connections and interactions
between different brain regions, reflecting the activity patterns of
the nervous system. In this part of the study, the EEG was
averaged by superimposing 20 trials 2 s segments, and then the
information transfer between individual leads was calculated
based on the directed transfer function (DTF) to form a directed
graph (calculated with eConnectome toolbox47). Subsequent
calculations were based on the BCT toolbox48 to extract spatial
features in the EEG, with the feature parameters shown in
Supplementary Table 5. In phase lag index computation, N
denotes the time point, +rel denotes the phase difference
between the two channel signals at time tn, and sign is a sign
function.

Statistical analysis
In the results section of this study, two distinct statistical testing
methods were introduced, namely, the two-samples t-test and the
Mann–Whitney U Test. Their differentiation lies in the former
being employed for assessing differences in samples conforming
to a normal distribution, while the latter is utilized for samples that
do not adhere to a normal distribution. In this research, an initial
Kolmogorov–Smirnov test (K-S test) was conducted on the data
distributions to determine which testing method to employ.
Specifically, the results of the test indicated that the distributions
of the EEG features across different groups followed a normal
distribution. As such, the paired-samples t-test was employed for
these datasets, where a p-value less than 0.1 was considered
indicative of a significant difference, and a p-value less than 0.05
was denoted with an asterisk (*). Conversely, the
Kolmogorov–Smirnov test results indicated that the distribution
of scores on the cognitive assessment scale did not adhere to a
normal distribution. Consequently, the Mann–Whitney U Test was
applied to analyze this particular subset of data. Similar to the
paired-samples t-test, the results of the Wilcoxon signed-rank test
considered a p-value less than 0.1 as indicative of a significant
difference and a p-value less than 0.05 was denoted with an
asterisk (*).

Feature selection and model training
In this study, the EEG features of HC, MCI, and dementia were
extracted from three spatial and temporal frequency perspectives,
which describe the differential information contained in the EEG
from different perspectives. Many features are extracted from the
research’s time, space, and frequency domains, and each feature
may contain multiple parameters. To avoid excessive spatiotem-
poral complexity, this study uses the ReliefF49 feature selection
method, which is a method of assigning different weights to
features by considering the distance between like and unlike, and
the core idea of ReliefF is that if a feature makes the closest
distance of a sample point to like less than the closest distance of
unlike, then the feature is beneficial for classification and the
weight of the feature is increased. This study uses the ReliefF
method. This study uses the ReliefF method to rank the features in
descending order of weight and selects the top N features that
maximize the correct classification rate as the final training result
of the model.
Different information has different abilities to differentiate

between different groups of people at the feature level, so a
specific approach is needed to combine and train the valid
information to build a cognitive-level assessment model. In terms
of feature combination, SVM was first used to construct models for
Fractal characteristics, Complexity measures, Microstate features,
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Spectral characteristics, Bispectral features, Network Properties,
and Phase synchronization, and eight weak classifiers was
constructed. This study combined the eight weak classifiers into
one strong classifier for HC, MCI, and dementia classification using
the AdaBoost idea. The SVM method was also used to predict the
three categories’ EEG and cognitive scale scores, and the results
were combined using Adaboost.
AdaBoost procedure (Classification and regression):
Step 1: Each sample is given an initial weight w= 1/N (a total of

N samples), and all weak classifiers are used for classification.
Step 2: Select the classifier with the smallest error rate (the sum

of the weights of all misclassified sample points is the error rate e)
so that its weight is 0.5*log((2−e)/e).
step3: Update the sample weights, the correct sample weight is

w/2*(1−e), the wrong sample weight is w/2*e.
Step 4: Repeat Step 2 until all classifiers are assigned weights or

several iterations are reached.
According to previous studies, healthy individuals, mild

cognitive impairment, and dementia are a continuum of devel-
opment and are accompanied by a gradual decline in cognitive
ability50,51. This means that these three groups represent the full
range of the cognitive level space, and if the interval 0–100 is used
as the cognitive level score, the healthy group would have the
highest score, the mild cognitive impairment group would have
the medium score, and the dementia group would have the
lowest score. Based on this criterion, the study divided the 100
equivalents into three ranges. That is, 66.6–100 for the normal
group, 33.3–66.6 for the mild cognitive impairment group, and
0–33.3 for the dementia group.
In this study end of the AdaBoost algorithm, all classifiers were

given weights, and the final cognitive assessment scores were
obtained by summing the classification and cognitive regression
results. The final cognitive scores are shown in Formula 2, with the
classification results being a default score of 66.6 for HC, 33.3 for
MCI, and 0 for dementia.

ognitive score ¼ classification resultsþ 0:5

�ðMoCABþMMSEÞ=30 � 33:3 (2)

The formula implies that the scale scores obtained by EEG
fitting are first mapped to 0–33 and then mapped to 0–100
according to subjects’ clinical labels (HC, MCI, dementia). The final
cognitive scores are shown in Eq. 1, with a default score of 66.6 for
HC, 33.3 for MCI, and 0 for dementia. In the formula, 30 represents
a score of 30 on the cognitive scale. 0.5 represents the mean value
of the MoCAB and MMSE scores.

Model validation
To validate the predictive performance of the model, this study
introduced two validation components. Firstly, the research
conducted cross-validation on an internal dataset, wherein 10
healthy subject samples, 10 mild cognitive impairment patient
samples, and 10 dementia patient samples, totaling 30 samples,
were reserved as the test set in each round, without participating
in the training. 504 EEG cases were included in the study, of which
474 cases were used as training samples and 30 cases were set
aside as test samples. The following principles were followed
when reserving the test sample: 1. random sampling. 2. 10 cases
from HC, 10 from MCI, and 10 from dementia. 3. ensure no sample
was taken from the same subject twice. Otherwise, re-sample.
After a total of 15 rounds of cross-validation, the average error was
calculated as the final prediction result. The second validation
component involved testing on an external dataset, consisting of
69 samples, all of which were used as test samples.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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