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Machine learning prediction of hepatic steatosis using body
composition parameters: A UK Biobank Study
Delbert Almerick T. Boncan 1,2, Yan Yu1, Miaoru Zhang3, Jie Lian3 and Varut Vardhanabhuti 1,3✉

Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease worldwide, yet detection has
remained largely based on surrogate serum biomarkers, elastography or biopsy. In this study, we used a total of 2959 participants
from the UK biobank cohort and established the association of dual-energy X-ray absorptiometry (DXA)-derived body composition
parameters and leveraged machine learning models to predict NAFLD. Hepatic steatosis reference was based on MRI-PDFF which
has been extensively validated previously. We found several significant associations with traditional measurements such as
abdominal obesity, as defined by waist-to-hip ratio (OR= 2.50 (male), 3.35 (female)), android-gynoid ratio (OR= 3.35 (male), 6.39
(female)) and waist circumference (OR= 1.79 (male), 3.80 (female)) with hepatic steatosis. Similarly, A Body Shape Index (Quantile 4
OR= 1.89 (male), 5.81 (female)), and for fat mass index, both overweight (OR= 6.93 (male), 2.83 (female)) and obese (OR= 14.12
(male), 5.32 (female)) categories were likewise significantly associated with hepatic steatosis. DXA parameters were shown to be
highly associated such as visceral adipose tissue mass (OR= 8.37 (male), 19.03 (female)), trunk fat mass (OR= 8.64 (male), 25.69
(female)) and android fat mass (OR= 7.93 (male), 21.77 (female)) with NAFLD. We trained machine learning classifiers with logistic
regression and two histogram-based gradient boosting ensembles for the prediction of hepatic steatosis using traditional body
composition indices and DXA parameters which achieved reasonable performance (AUC= 0.83–0.87). Based on SHapley Additive
exPlanations (SHAP) analysis, DXA parameters that had the largest contribution to the classifiers were the features predicted with
significant association with NAFLD. Overall, this study underscores the potential utility of DXA as a practical and potentially
opportunistic method for the screening of hepatic steatosis.
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INTRODUCTION
Previously, the term non-alcoholic fatty liver disease (NAFLD) has
been used to encompass a spectrum of liver pathology with
macrovesicular steatosis in at least 5% of hepatocytes in
individuals with low to no alcohol consumption. Non-alcoholic
fatty liver (NAFL) or simple steatosis is the non-progressive
subtype that does not usually have serious implications, although
it is estimated that 25% of individuals with NAFLD develop non-
alcoholic steatohepatitis (NASH)1—a progressive subtype that
eventually advances to fibrosis, cirrhosis (ca. 25% of those with
NASH)2, and hepatocellular carcinoma (HCC). Studies have shown
that the presence and severity of NAFLD are associated with
increased incidence and prevalence of cardiovascular disease
(CVD) and chronic kidney disease (CKD)3–13. Notwithstanding the
morbidity, mortality, and limited therapeutics of NAFLD-related
cirrhosis and HCC, disease mortality is often seen as a result of
type 2 diabetes mellitus (T2DM) and CVD complications14,15. While
the aetiology remains to be fully understood, NAFLD is recognised
as the hepatic manifestation of the metabolic syndrome16. Hence,
the causal link of NAFLD to chronic morbidities (i.e., obesity,
hypertension, T2DM, CVD, and CKD) is hypothesised—under-
scoring the concept of NAFLD as a multisystem disease with
potential involvement in the pathology of extra-hepatic
diseases17.
With NAFLD being closely associated with obesity and

metabolic syndrome, its incidence and prevalence are increasing
to epidemic proportions and becoming the most common cause
of abnormal serum aminotransferase levels, chronic liver disease,

and liver transplantation in the United States (US)18–20. Data in
Asia also shows that NAFLD is as common and important as in the
West, albeit it manifests at a lower body mass index (BMI) with
many patients not displaying insulin resistance21–23. This ethnic
variability including the differences in severity and rate of
progression as a function of environmental risk exposures
demonstrates that NAFLD is a complex disease trait24.
Lifestyle modification, as with other chronic diseases, is the

cornerstone of NAFLD management regardless of the disease stage,
so while end-stage liver disease has a poor prognosis, NAFLD is
clinically manageable at its early onset. Classifying NAFLD into
grades is imperative, especially in patients with advanced fibrosis
who are at greater risk of developing complications of end-stage
liver disease. Although invasive and costly, liver biopsy is still the
gold standard in NASH diagnosis and NAFLD staging. While
surrogate serum biomarkers exist for NASH, there have been no
non-invasive tests that can reliably differentiate it from NAFL18,25.
Ultrasonography, while lacking sensitivity, is used as the first-line
screening of steatosis. Other imaging techniques such as controlled
attenuated parameter (CAP) and computed tomography (CT) are
promising, whilst magnetic resonance imaging—proton density fat
fraction technique (MRI-PDFF) is considered by many as the gold
standard. Considerations on sensitivity, efficiency, operator-
dependent results, ease of operation, access, availability, and cost
among others remain as limiting factors for these modalities,
particularly limiting their potential utility in longitudinal and
epidemiology-based studies25. The current understanding of NAFLD
pathogenesis, its epidemiology and the available diagnostic
strategies underscore the importance of thorough surveillance,
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early detection, and timely interventions (e.g., lifestyle modification)
not only for epidemiological surveillance but also to address the risk
of comorbidity in NAFLD patients.
DXA is an imaging technique that has been used commonly for

assessing bone density. It also allows for body composition
assessment particularly relating to muscle and fat deposition in
the body. It is based on an X-ray imaging technique, with low
radiation dose, and has been validated extensively for both bones
and body composition analyses26–28. Besides the commonly used
bone density measurements, body composition-related para-
meters that can be derived from DXA include visceral adipose
tissue mass, total body fat percentage, fat-free mass, as well as
muscle-related mass. In total, a DXA scan can give up to 48
different parameters pertaining to body composition. The major
limitation of DXA, however, is the lack of representation of the
body as a true 3D structure. Volumetric parameters are therefore
estimates of the 2D projection measurements. Meanwhile,
accuracy validations have shown that DXA-estimated mass with
scale weight is within 1%28–30. Furthermore, DXA has been shown
to correlate well with CT and MRI—cross-sectional imaging
techniques which serve as gold standards in body composition
assessment31. While this limitation exists, there has been a
reported consensus in which DXA is considered a reference
technique or at least a surrogate to CT/MRI for the assessment of
body composition in clinical practice32,33.
Given the known relationships between NAFLD and body

composition-related parameters such as visceral fat, we reasoned
that using body composition-related parameters based on DXA
imaging, a prediction model can be derived to predict people at risk
of hepatic steatosis. To aid in this task, we first performed association
analyses of various DXA-derived parameters and traditional body
composition indices. The reference standard for hepatic steatosis for
this study is taken as measurements on MRI using the PDFF
techniques, which have been extensively validated previously to be
comparable to histopathology34–36. We demonstrated that several
DXA-derived parameters were significantly associated with hepatic
steatosis. We then leverage the use of machine learning (ML) to
identify the potential of hepatic steatosis and to classify them into
grades based on DXA scan and body composition-related indices.
Our hypothesis is that an accurate prediction model can be built to
predict the risk of NAFLD based on DXA parameters.

RESULTS
Cohort characteristics
A total of 2959 participants remained after exclusion (see Table 1,
Fig. 1). These were 1271 males and 1688 females. In this cohort,

582 participants (19.67%) were deemed as having NAFLD based
on the liver MRI-PDFF37. In total 303 were classified as grade 1, 225
as grade 2, and 54 as grade 3, respectively. The characteristics of
the cohorts are summarized in Table 1. When stratified by gender,
there were significant differences between all the DXA-derived
body composition indexes and BSA-normalized DXA parameters
between the NAFLD +ve and NAFLD -ve groups (see Supple-
mentary Tables 1 and 2).

Association analysis
The multivariable logistic regression analysis of the body
composition indices reveals several parameters to be significantly
associated with hepatic steatosis (see Table 2). Of note, obesity
defined as BMI over 25 yielded an odds ratio (OR) of 1.9 for males
and 2.62 for females. Abdominal obesity, as defined by WHR
(OR= 2.50 (male), 3.35 (female)), AGR (OR= 3.35 (male), 6.39
(female)) and WC (OR= 1.79 (male), 3.80 (female)) were all
associated with hepatic steatosis. Similarly, when examining ABSI
into different quartiles, the higher quartiles yielded the highest OR
(Quantile 4 OR= 1.89 (male), 5.81 (female)), and for FMI, both the
overweight (OR= 6.93 (male), 2.83 (female)) and the obese
(OR= 14.12 (male), 5.32 (female)) categories were significantly
associated with hepatic steatosis. When looking at DXA para-
meters, there were several parameters that were significantly
associated with hepatic steatosis. A summary of the top 10
features is shown in Table 3 (with full results in Supplementary
Table 3). Of note, we observed the biggest contribution from VAT
mass (OR= 8.37 (male), 19.03 (female)), VAT volume (OR= 8.37
(male), 19.03 (female)), trunk fat mass (OR= 8.64 (male), 25.69
(female)), android fat mass (OR= 7.93 (male), 21.77 (female)) and
total fat mass (OR= 3.60 (male), 3.90 (female)).

Machine learning models and prediction
We set out to compare 3 machine learning classifiers. In binary
classification, all three achieved reasonable performance with ROC
AUC= 0.83-0.87 (Fig. 2). Supplementary tables 4-7 show the full
results with separate evaluations using cross-fold validation and
hold-out test validation sets. In this main section, we discuss the
results of the hold-out test set with the graphical comparison of
the 3 models on the hold-out test set shown in Fig. 2. We shall
discuss the results of HGBC binary classification in more detail.
Using the body composition indices, HGBC achieved an AUC of
0.8519, sensitivity of 0.7601, and specificity of 0.7500. Using DXA-
parameters, HGBC achieved an AUC of 0.8617, sensitivity of
0.7736, and specificity of 0.7605. Using combined parameters,
HGBC achieved an AUC of 0.8656, sensitivity of 0.7686, and

Table 1. Descriptive statistics of body composition indices stratified by gender.

Male (n= 1271) Female (n = 1688)

NAFLD- (n= 960) NAFLD+ (n= 311) NAFLD- (n= 1417) NAFLD+ (n= 271)

Mean SD Mean SD P Mean SD Mean SD P

Age 62.57 7.76 62.08 7.79 <0.01 61.13 7.50 62.39 7.09 <0.01

ABSI 0.08 0.00 0.08 0.00 <0.01 0.07 0.00 0.08 0.00 <0.01

AGR 0.68 0.18 0.87 0.14 <0.01 0.43 0.13 0.62 0.13 <0.01

ASMMI 7.94 0.89 8.65 1.03 <0.01 6.42 0.81 7.07 0.93 <0.01

BMI 25.65 3.33 29.81 4.12 <0.01 25.39 4.25 30.63 4.87 <0.01

FMI 7.10 2.43 10.01 2.71 <0.01 9.55 3.21 13.48 3.53 <0.01

HC 99.95 6.61 105.70 7.63 <0.01 100.17 9.01 108.58 10.59 <0.01

HI 99.04 3.73 97.35 4.10 <0.01 105.02 4.06 104.49 4.28 <0.01

WC 90.60 8.91 100.86 10.30 <0.01 80.06 10.17 94.03 10.69 <0.01

WHR 0.91 0.05 0.95 0.06 <0.01 0.80 0.06 0.87 0.06 <0.01
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specificity of 0.7542. Using a combination of traditional body
composition indices and DXA parameters did not improve
performance. Multiclass classification models performed reason-
ably well in NAFLD grading (Supplementary Fig. 2). For example,
using HGBC on DXA parameters, a weighted average ROC AUC
(wROCUC) of 0.8377 was achieved, with class 0 (AUC= 0.86), class
1 (AUC= 0.72), class 2 (AUC= 0.79) and class 3 (AUC= 0.70),
respectively. In addition, gender-specific binary classification
models had similar or better performance for females (Supple-
mentary Figs. 3 and 4). For example, with HGBC, body composition
indices (AUC= 0.86), DXA-parameters (AUC= 0.88), and com-
bined (AUC= 0.89).
We then proceeded to examine the contribution of each of the

features using SHAP analysis. All SHAP analyses for the 3 classifiers
are demonstrated in Supplementary Figs. 5-10. The SHAP features
for HGBC and XGBC were almost identical. For the main result
section, we shall focus on HGBC. As expected, the top contribu-
tions from the machine learning models were from the features
that were highly associated with hepatic steatosis based on the
odds ratio (Fig. 3). For example, the top 3 contributions from body
composition analyses were from AGR, FMI, and WC. Whereas for

the BSA-normalised DXA parameters, the top 3 contributions were
from VAT mass, trunk fat mass, and trunk total mass.
The SHAP dependency plots are shown in Fig. 4 for the top 3

contributions. There are clear positive correlations between
increasing SHAP values and increasing risks of disease with more
distinct separations between the low and high-risk groups.

DISCUSSION
We have shown that DXA-derived parameters were highly
associated with hepatic steatosis as measured on MRI-PDFF.
Within the traditional body composition indices, FMI (which
utilises fat mass information from DXA scan) has the strongest
association compared to other traditional metrics. Previously, it
has been shown that traditional metrics such as WC were shown
to be predictive for hepatic steatosis and fibrosis38 but we have
shown in our study that FMI was more predictive. Other studies
have also highlighted the importance of DXA parameters such as
AG ratio and VAT mass39 but we believe our study is the first to
compare all the parameters with traditional parameters such as
WC. A recent study also demonstrated that FMI can be used with

Fig. 1 Overview of included data cohorts from the UK Biobank population and patient selection study workflow. DXA dual-energy X-ray
absorptiometry, NaN null values, WHR waist-to-hip ratio, ASMMI appendicular skeletal muscle mass index, AGR android gynoid ratio, FMI fat
mass index, BMI body mass index, HI hip index, ABSI A Body Shape Index, MRI-PDFF magnetic resonance imaging proton density fat fraction,
NAFLD non-alcoholic fatty liver disease, ICD International Classification of Diseases, ROC receiver operating characteristic, AUC area under the
curve, SHAP SHapley Additive exPlanations.
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high accuracy to identify hepatic steatosis as determined by
ultrasonography with a high degree of accuracy40. With regards to
DXA, we have shown that many DXA parameters (normalised to
BSA) were highly associated with hepatic steatosis, not limiting to
fat-related parameters which would be expected, but also other
parameters such as those relating to lean mass. For instance, the
total lean mass has an odds ratio of less than 1 for both genders
indicating a negative association with NAFLD. Lee et al. (2021)
observed that participants in their study had less skeletal muscle
mass over several years of follow-up, and their findings suggest
that maintaining muscle mass is important in NAFLD manage-
ment41. Meanwhile, Cho et al. (2022) have shown that skeletal
muscle mass to visceral fat area ratio could serve as a
complementary index to conventional adiposity indices in
detecting NAFLD among lean yet overweight men and women42.
This underscores the potential and practical application of non-
conventional indices or measurements to NAFLD diagnosis—not

only limited to adiposity indices. There are several studies that
have examined the role of muscle mass (particularly fat infiltration
of muscle), and we also wanted to examine some of the other
parameters relating to muscle that can be derived from DXA
scans. Whilst some associations were seen between some of the
lean mass parameters on DXA, by far the strongest associations
were observed in parameters pertaining to fat, with an extremely
strong association with VAT mass and volume, trunk fat mass,
android fat mass, and total mass, far higher than those seen using
traditional parameters. With several parameters on DXA being
associated with hepatic steatosis, we set out to build a machine
learning model that can be used to predict hepatic steatosis, and
we showed that a reasonably accurate model can be built using
these parameters.
In this study, we utilised logistic regression and 2 boosting

classifiers. As expected, the performance and feature importance
of classifiers varied slightly. On one hand, LR performed marginally

Table 2. NAFLD-associated body composition indices based on multivariable logistic regression analysis stratified by gender and adjusted by age,
weight, and height.

Male Female

Predictor (Quantiles, Min-Max for Male and Female) Odds Ratio 95% Confidence Interval Odds Ratio 95% Confidence Interval

Abdominal Obesity, WHR > 0.9 (men), WHR > 0.85 (women)

Normal 1 1

Obese 2.50*** 1.72 3.64 3.35*** 2.49 4.51

ABSI

Quantile 1 (0.064434-0.075964, 0.061029-0.070002) 1 1

Quantile 2 (0.075993-0.078676, 0.070008-0.072982) 0.94 0.62 1.42 1.85* 1.08 3.16

Quantile 3 (0.078706-0.081124, 0.072985-0.076279) 1.40 0.92 2.13 3.54*** 2.17 5.76

Quantile 4 (0.081130-0.096132, 0.076282-0.091292) 1.89** 1.24 2.89 5.81*** 3.60 9.36

ASMMI, kg/m2

Low 1

High 1.20 0.58 2.52 1.01 0.61 1.66

FMI, kg/m2

Normal (men: 3-6, women: 5-9) 1 1

Overweight (male: > 6-9, women: > 9-13) 6.93*** 3.18 15.13 2.83** 1.56 5.14

Obese (men > 9, women > 13) 14.12*** 5.94 33.60 5.32*** 2.52 11.22

HC, cm

Quantile 1 (82-97, 77-94) 1 1

Quantile 2 (98-101, 95-100) 1.00 0.59 1.69 1.19 0.62 2.29

Quantile 3 (102-105, 101-107) 0.74 0.41 1.32 0.69 0.33 1.45

Quantile 4 (106-150, 108-147) 1.14 0.63 2.09 0.61 0.27 1.36

HI

Quantile 1 (85.73-96.14, 85.45-102.14) 1 1

Quantile 2 (96.16-98.75, 102.16-104.99) 0.88 0.60 1.29 0.70 0.47 1.03

Quantile 3 (98.75-100.95, 104.99-107.69) 0.76 0.51 1.14 0.56** 0.38 0.84

Quantile 4 (100.97-134.92, 107.70-121.83) 0.66 0.43 1.01 0.46*** 0.30 0.69

Overall Obesity, BMI 25

Normal 1 1

Obese 1.90* 1.04 3.49 2.62** 1.45 4.76

AGR

AGR � 1 (men), AGR � 0.8 1

AGR > 1 (men), AGR > 0.8 (women) 3.35*** 1.96 5.72 6.39*** 2.56 5.65

WC, 102 cm/90 cm (non-Asian/Asian men), 88 cm/80 cm (non-Asian/Asian women)

Low 1 1

High 1.79** 1.21 2.66 3.80*** 2.56 5.65

Significance: *P � 0.05, **P � 0.01, ***P � 0.001.
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better than HGBC with DXA parameters in the gender-unstratified
dataset (Fig. 2). On the other hand, gender-stratified-trained
models show that histogram-based boosting classifiers out-
performed LR with body composition indices but not with DXA
parameters (Supplementary Figs. 3 and 4). Theoretically, LR is less
robust in high-dimensional datasets where it tends to overfit as
opposed to boosting classifiers. While LR could be trained with
DXA parameters, the assumption of linearity between dependent
and independent variables is a major limitation. Furthermore, the
existence of multicollinearity between DXA parameters is
expected which makes boosting ensemble classifier a more
suitable algorithm that can estimate all types of relationships
between dependent and independent variables. In cases where LR
performed better, we hypothesize that it is because of the default
regularisation in LR. With regularisation, the performance, and
accuracy of the LR model are improved by reducing overfitting
and underfitting. Furthermore, it also addresses the issue of
multicollinearity in LR. In general, DXA parameters outperformed
traditional body composition indices in any ML algorithm.
Meanwhile, combining body composition indices and DXA
parameters did not result in a significant improvement in
performance. We hypothesised that this could be due to the
more encompassing nature of DXA parameters than traditional
body composition indices. While a minimum number of DXA
parameters based on association and feature importance could be
inferred, the infinitesimal yet cumulative importance of other
parameters cannot be discounted.
Early detection of NAFLD is important in order that timely

intervention can be prescribed to patients (e.g., lifestyle and diet
modification) by healthcare practitioners. In this study, DXA-based
ML models demonstrate a potential alternative means to perform
early diagnosis of NAFLD, although it is important to take note
that the results presented are preliminary and are subject to
follow-up validations. Moreover, accessibility to DXA scanning
needs to be borne in mind. Nevertheless, the performance of the
models based on ROC AUC and sensitivity makes them a
promising surrogate compared to conventional imaging techni-
ques. Ultrasonography, for instance, has a sensitivity greater than
90% if the fat content is higher than 30%. Similarly, CT achieves
82% sensitivity on moderate to severe degrees of steatosis43,44.
Meanwhile, MRI has a sensitivity of 80-95.8% making it the gold
standard in the detection of liver steatosis35,45,46. While these
imaging techniques can all be considered suitable for early
detection of NAFLD, concerns on detection limit, radiation
exposure (in case of CT), access, and ease of operation among
others have resulted in divided preferences on their adoption in
the clinical practice to quantify liver steatosis. To this end, liver

biopsy has remained the gold standard in confirming NASH.
However, due to its invasiveness, the frequency of patient/
participant hesitating and subsequent refusal to undergo the
procedure may exceed 50% in some centres—ostensibly preclud-
ing its potential utility as a practical option in early NAFLD
screening or detection47.
There are some limitations worth noting. First, we recognise

that the recently proposed metabolic-associated fatty liver disease
(MAFLD) is now recommended for usage with the aim to cover the
more heterogeneous nature of the disease, and not excluding the
impact of alcohol on the disease48. For the purpose of this study,
we set out to examine and isolate the metabolic associated factors
and hence have excluded patients with excess alcoholic intake.
Second, the data used for this study was from the UK Biobank
cohort, and whilst this is useful for the predominantly Western
population, applicability to other regions and ethnicity may need
to be further examined. Third, we did not have an independent
validation set to test the generalisability of our model beyond the
UK Biobank cohort. We are currently in the process of recruiting
participants to pursue this objective, so we can test the
generalisability of our findings.
As NAFLD cases rise to epidemic proportions, new tools that can

potentially be used as opportunistic screening may be helpful
particularly as early detection is important. In this study, we not
only showed the association of traditional body composition
indices to hepatic steatosis but also the strong association of DXA
parameters to hepatic steatosis. As expected, visceral adipose
tissue mass, trunk fat mass, and adipose tissue mass showed a
strong positive association with hepatic steatosis, while total lean
mass also demonstrated a negative association. The ML models
trained on two types of predictors are practical applications of
how body composition indices and DXA can potentially be
leveraged to opportunistically screen for NAFLD although more
prospective studies with validation across different populations as
well as cost-effective analysis need to be performed before this
can be adopted more widely.

METHODS
The data used were from the UK Biobank which received ethical
approval from the North West Multicentre Research Ethics
Committee (REC reference: 11/NW/03820). All participants gave
written informed consent before enrolment in the study. This
research has been conducted using the UK Biobank Resource
under Application Number 78730. Additionally, this study was
approved by the authors’ own local ethics board (UW-20814) at
the University of Hong Kong.

Study population
The UK Biobank cohort consists of over half a million participants
from the general population in the United Kingdom (UK). Participants
were aged between 40 and 70 years at enrolment and were
recruited between 2006 and 2010, with follow-up data. In 2014, the
imaging assessments were performed on these cohorts with the aim
of collecting 100,000 participants with imaging of the brain, cardiac
and abdominal magnetic resonance imaging, DXA, and carotid
ultrasound. At the time of writing, the UK Biobank imaging project
has collected imaging scans from over 60,000 participants (https://
www.ukbiobank.ac.uk/explore-your-participation/contribute-further/
imaging-study). For this study, we focused on the imaging data,
particularly those with abdominal MRI and DXA imaging and
retrieved all other relevant associated information. Only participants
with MRI-PDFF37,49 (UK Biobank Category 126) and DXA-derived
parameters including visceral fat were included. The UK Biobank
provides an imaging modality (https://biobank.ctsu.ox.ac.uk/crystal/
crystal/docs/DXA_explan_doc.pdf) for DXA as a reference.

Table 3. Top 5 positively NAFLD-associated DXA parameters with
multivariable linear regression analysis stratified by gender and
adjusted by age, weight, and height.

Male (n= 1271) Female (n= 1688)

Predictor Odds
Ratio

95%
Confidence
Interval

Odds
Ratio

95%
Confidence
Interval

Android fat mass 7.93*** 3.66 17.18 21.77*** 11.42 41.48

Total fat mass 3.60** 1.46 8.84 3.90** 1.54 9.90

Trunk fat mass 8.64*** 3.75 19.94 25.69*** 12.80 51.58

VAT (visceral adipose
tissue) mass

8.36*** 4.59 15.23 19.03*** 12.74 28.42

VAT (visceral adipose
tissue) volume

8.37*** 4.59 15.23 19.03*** 12.75 28.42

Significance: *P � 0.05, **P � 0.01, ***P � 0.001

D.A.T. Boncan et al.

5

Published in partnership with the Japanese Society of Anti-Aging Medicine npj Aging (2024)     4 

https://www.ukbiobank.ac.uk/explore-your-participation/contribute-further/imaging-study
https://www.ukbiobank.ac.uk/explore-your-participation/contribute-further/imaging-study
https://www.ukbiobank.ac.uk/explore-your-participation/contribute-further/imaging-study
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/DXA_explan_doc.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/DXA_explan_doc.pdf


Data pre-processing
Data processing, statistics, machine learning classification and
visualization were performed with custom-made Python scripts
based on Statsmodels and Scikit-Learn unless stated other-
wise50,51. Electronic health records were retrieved from partici-
pants in the UK Biobank limiting the search to those with “10 P
Liver PDFF (proton density fat fraction) | Instance 2” and “VAT
(visceral adipose tissue) mass”. The downloaded dataset includes

DXA-related attributes with additional attributes on gender, age,
alcohol consumption, and comorbidities. In summary, a total of
4663 participants were retrieved from the UK Biobank with
matching records. DXA-related attributes with more than 50%
missing values were excluded (n= 7), while participants with less
than 50% missing DXA attributes were imputed with multiple
imputation by chained equations (MICE)52,53. Likewise, participants
with missing height and/or weight attributes in Instance 2 were

Fig. 3 SHAP feature importance on body composition indices (left) and BSA-normalised DXA parameters (right). SHAP SHapley Additive
exPlanations, BSA body surface area, AGR android gynoid ratio, FMI fat mass index, BMI body mass index, WC waist circumference, WHR waist-
to-hip ratio, HC hip circumference, HI hip index, ASMMI appendicular skeletal muscle mass index, ABSI A Body Shape Index.

Fig. 2 ROC AUC curves for the three different machine learning classifications. ROC receiver operating characteristic, AUC area under the
curve, LR logistic regression, HGBC HistGradient Boosting Classifier, XGBC Extreme Gradient Boosting, DXA dual-energy X-ray absorptiometry.

Fig. 4 SHAP dependence plots of the top 3 predictors of HGBC models trained on body composition indices and DXA parameter. HGBC
HistGradient Boosting Classifier, AGR android gynoid ratio, SHAP SHapley Additive exPlanations, BSA DXA, dual-energy X-ray absorptiometry,
NAFLD non-alcoholic fatty liver disease.
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excluded (n= 18). This resulted in 4645 remaining participants.
DXA attributes were normalized with body surface area (BSA)
using Mosteller formula54. The choice of Mosteller formula to
calculate BSA was based on its accuracy in various clinical use-case
scenarios and applicability among normal, overweight, and obese
adults55–60. Body composition indices including waist-to-hip ratio
(WHR), appendicular skeletal muscle mass index (ASMMI), android
gynoid ratio (AGR), fat mass index (FMI), BMI, hip index (HI), and a
body shape index (ABSI) were calculated. National Health And
Nutrition Examination Survey (NHANES) population average
values for {height} = 166 cm, {weight} = 73 kg were used for
calculating ABSI38,61,62.

Reference standard, predictor variables and inclusion criteria
While liver biopsy remains the gold standard in NAFLD diagnosis and
grading, its inherent invasiveness limits it from routine use. The
proton density fat fraction in MRI (MRI-PDFF) has been demonstrated
to correlate well with total lipid accumulation in the liver and thus
making it a suitable surrogate and reference standard for liver
biopsy34–36. In this study, UK Biobank participants were categorized
into NAFLD grades (0-1 – absence-presence or 0-3 – normal, mild,
moderate, severe as class labels) based on the MRI-PDFF values
following Szczepaniak et al.’s NAFLD grading scheme (cut-off
values)63. In brief, the grading scheme 0, 1, 2 and 3 corresponds to
0-�5.56%, 5.56%-�10%, 10%-�20%, and >20% fat content (stea-
tosis), respectively34,64. Participants with excess alcohol intake or
known chronic liver disease were excluded, defined as either
consuming more than 21 (Male) or 14 alcohol units (Female) per
week (n= 1654), with chronic liver diseases (International Classifica-
tion of Diseases, Tenth Revision ICD-10: K73, K74 and K75) (n= 18), or
both (n= 14)65–68. Considering both alcohol intake habits and the
presence/absence of chronic liver disease, the total number of
participants in the final cohort is 2959.

Statistical analysis
Two sets of predictor variables were adopted for the analysis: (1) 9
body composition indices and (2) 36 (mass- and volume-based)
BSA-normalized DXA parameters. We set out to determine the
association between the different variables with hepatic steatosis.
Independent sample t-tests with unequal variances were per-
formed to determine whether the two groups (NAFLD- and
NAFLD+ ) in this study exhibit significant differences in various
predictor variables. Multivariable adjusted (with age, weight, and
height) analysis with logistic regression with respective odds ratios
was performed to rank categories or quantiles (body composition
indices) with respect to case-control (“normal”) or to the first
quantile of the sample69. Similarly, odds ratios for DXA parameters
were calculated from the standardized (beta, β) coefficients of
linear regression analysis.

Machine learning model training and evaluation
We then set out to develop ML prediction models for the
prediction of hepatic steatosis. Three machine learning classifiers
were compared. Logistic regression (LR), two histogram-based
gradient boosting ensembles: HistGradientBoostingClassifier
(HGBC, Scikit-Learn), and Extreme Gradient Boosting (XGBoost)
classifier (XGBC) ensemble algorithms were employed to train
binary and multiclass classifiers taking inputs of body composition
indices, BSA-normalised DXA values or combined variables (body
composition indices and BSA-normalized DXA)70,71. Data was
randomly partitioned into 80:20 train-test sets with stratification
such that the proportions of NAFLD +ve and NAFLD -ve were
consistent in both sets. Owing to imbalanced datasets, boosting
techniques of the minority class were used72. The minority
classes were oversampled with the synthetic minority over-
sampling technique—support vector machine (SMOTE-SVM)

(k, m= 10, 5). Meanwhile, the majority class was re-sampled
and under-sampled in the process with the synthetic minority
oversampling technique—edited nearest neighbour (SMOTE-
ENN) and RandomUnderSampler, respectively72. Hyperpara-
meters were optimised for specificity based on k-1 validation
sets while simultaneously testing for performance with repeated
(n= 3) and stratified k-folds (k= 10) cross-validation. For LR, the
solver and tolerance parameters were optimized for specificity
(and in all other algorithms with L2 regularisation parameters).
For HBGC, optimisation parameters included a maximum
number of leaves for each tree, the maximum depth of each
tree, and a minimum number of samples per leaf. For XGBC
optimisation parameters included learning rate, number of
estimators, maximum tree depth, lambda regularisation, and
subsample ratio of the training instances. Models were built
using optimized hyperparameters with SMOTE-oversampled
minority class/es on the hold-out train sets. Supplementary
Table 8 lists the optimised hyperparameters for various models
we trained for this study, while Supplementary Tables 4 and 5
show the performance metrics of ML algorithms trained with
different types of predictors on gender-(un)stratified sets. Model
performance was evaluated on a separate hold-out test dataset
for (area under the curve of the receiver operating characteristic)
various performance metrics. Finally, feature importance was
identified and ranked based on SHAP values73.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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