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Developing cognitive workload and performance evaluation
models using functional brain network analysis
Saeed Shadpour1, Ambreen Shafqat2, Serkan Toy 3, Zhe Jing4, Kristopher Attwood4, Zahra Moussavi5 and Somayeh B. Shafiei 2✉

Cognition, defined as the ability to learn, remember, sustain attention, make decisions, and solve problems, is essential in daily
activities and in learning new skills. The purpose of this study was to develop cognitive workload and performance evaluation
models using features that were extracted from Electroencephalogram (EEG) data through functional brain network and spectral
analyses. The EEG data were recorded from 124 brain areas of 26 healthy participants conducting two cognitive tasks on a robot
simulator. The functional brain network and Power Spectral Density features were extracted from EEG data using coherence and
spectral analyses, respectively. Participants reported their perceived cognitive workload using the SURG-TLX questionnaire after
each exercise, and the simulator generated actual performance scores. The extracted features, actual performance scores, and
subjectively assessed cognitive workload values were used to develop linear models for evaluating performance and cognitive
workload. Furthermore, the Pearson correlation was used to find the correlation between participants’ age, performance, and
cognitive workload. The findings demonstrated that combined EEG features retrieved from spectral analysis and functional brain
networks can be used to evaluate cognitive workload and performance. The cognitive workload in conducting only Matchboard
level 3, which is more challenging than Matchboard level 2, was correlated with age (0.54, p-value= 0.01). This finding may suggest
playing more challenging computer games are more helpful in identifying changes in cognitive workload caused by aging. The
findings could open the door for a new era of objective evaluation and monitoring of cognitive workload and performance.
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INTRODUCTION
Cognitive workload, which has been identified as a factor
impacting learning and performance as well as an impacting on
daily activities, is described as mental effort devoted to a task1.
Increased task demands increase the requirements for already
limited working memory (WM) resources, and result in an
increased cognitive workload1. Long-term memory (LTM) is a
relatively unlimited data storage that stores previously acquired
information. The efficient interaction between LTM and WM
resources enables healthy people to balance the cognitive
demands of complicated tasks1. When executing the same task,
healthy older people continuously showed higher cognitive
workloads than younger adults2. This observation suggests that
an excessive cognitive workload may be caused by the inefficient
use of brain resources and may potentially be a sign of cognitive
impairment2.
Clinical and non-clinical uses for cognitive workload evaluation

include improving learning and skill development, enhancing
performance in physically demanding professions like aviation3,4

and surgery5, determining whether commercial video games can
delay cognitive decline, and creating models for the early
detection of cognitive decline in the elderly6,7.
Contradictory findings have been found in studies examining

how cognitive activities influence the improvement of executive
functions in the brains of healthy aging people. Several studies
found a link between engaging in mental exercises, such as
playing video games, and physical and cognitive health improve-
ments, especially in elderly people8–13. This is encouraging since
improving seniors’ cognitive capabilities, such as reasoning,

making decisions, and memory, may help prevent or mitigate
cognitive decline. However, only performing taught activities
improved executive functioning in the brain; evidence for this
theory has not been shown by non-trained tasks14–16.
West et al. explored the connection between playing video

games and tissue growth in different areas of the brain connected
to memory and the onset of Alzheimer’s Disease (AD)11. They
assigned three groups of seniors, 55 to 75 years old, to three
different activities for about 6 months: group 1 regularly played a
three-dimensional (3-D) video game; group 2 received self-
directed digital piano lessons, and group 3 did nothing new.
The gaming group had significantly increased gray matter in the
hippocampus compared to the piano and inactive groups. The
authors concluded that playing video games improved seniors’
cognition and reduced their risk factors for AD11. Playing 3-D
video games has been associated with improved attention and
memory, mental flexibility, and multitasking abilities in older
people12.
In contrast to these findings, a study by Stojanoski et al.

investigated the association between cognitive training and
improvement in general cognitive function17. They conducted a
large-scale online study to see whether brain-training techniques
were connected to enhanced cognition. They recruited over 1000
people who practiced a variety of brain-training programs for up
to 5 years and assessed their cognition using multiple tests that
assessed attention, reasoning, working memory, and planning.
Even for the most devoted brain trainers, there was no association
between any cognitive performance measure. Additionally, no
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correlation was found between the length of brain training and
any measured cognitive ability17.
An evidence-based, objective cognitive workload evaluation

approach is required to discover whether engaging in a brain
exercise, such as playing computer games, can assist seniors in
making the most of their cognitive resources to delay cognitive
decline. Currently, primary care providers assess cognitive
functioning only when a patient or caregiver voluntarily complains
of a cognitive problem18. However, underdiagnosis is likely to
persist because some patients may not be aware of their mental
health status19,20 or may be unwilling to talk about it because of
the shame and concern of social judgment21.
Currently, most techniques for evaluating cognitive workload

are quite subjective. Furthermore, the shortcomings of computa-
tional algorithms and technical constraints have an impact on the
validity of existing objective evaluation methodologies, leading to
inconsistent results. It has frequently been suggested that
electroencephalogram (EEG) signals could be used to evaluate
cognitive workload5,22,23. The volume conduction phenomenon,
which causes signal leakage from one channel to another, is a
significant problem with current EEG research and the validity of
the findings24.
The purpose of this study was to identify specific brain areas,

whose function is responsive to cognitive workload and perfor-
mance, using high temporal and spatial resolution EEG data. In
this study, the impact of volume conduction was alleviated by
employing a high-density headset to record EEG data and by
processing the signals with spatial filtering methods25. The results
of this study could have therapeutic implications, after being
validated in a larger sample, since they could be used to detect
cognitive decline by evaluating changes in cognitive workload.

RESULTS
Findings based on Approach A
Search information, strength, temporal network flexibility, integra-
tion, recruitment, and PSD features were extracted from 116 EEG
signals within 21 BAs at four band frequencies. To evaluate
cognitive workload and performance, linear random intercept
models were developed using all extracted features. The average
temporal flexibility in BA 45 at the beta-band frequencies was
associated with the performance (Table 1), and the average search
information in BA 47 at the theta-band frequencies was associated
with the cognitive workload (Table 2) of participants when
conducting Matchboard level 2.
The average temporal flexibility in BA 9 at the theta-band

frequencies, the recruitment in BA 47 at the theta-band
frequencies, and the average search information in BA 37 at the
gamma-band frequencies were associated with the performance
in conducting Matchboard level 3 (Table 3).
Average search information in BA 45 and the average temporal

flexibility in BA 44 at the gamma-band frequencies and BA 7 at the
beta-band frequencies were associated with the cognitive work-
load in conducting Matchboard level 3 (Table 4).
In this study, our initial feature selection method (Approach A)

did not include PSD features. However, this finding does not
necessarily imply that PSD is unsuitable or impractical for
adoption in evaluations of cognitive workload and performance.
Indeed, spectral analysis, which utilizes PSD, has been successfully
employed for assessing mental workload in several previous
studies26–30. Models for evaluating performance and cognitive
workload, exclusively utilizing PSD features, were developed
according to Approach A. The results of these models are
presented in Supplementary Table 1. Associations were observed
between the average PSD in BA 45 at beta-band and the
performance, and between the average PSD in BA 40 at alpha-
band frequencies and cognitive workload, at Matchboard level 2.

Similarly, the average PSD in BA 20 and BA 45 at beta-band
frequencies was associated with performance and cognitive
workload at Matchboard level 3, respectively.
Cognitive workload and performance were not significantly

correlated in conducting Matchboard level 2 (−0.13, p-value=
0.56) and Matchboard level 3 (−0.17, p-value= 0.44). Age and
performance were not significantly correlated on the Matchboard
level 2 (−0.4, p-value= 0.06), and similarly age and cognitive
workload were not significantly correlated (0.38, p-value= 0.08).
There was no significant correlation between performance and
age (−0.14, p-value= 0.5), in conducting Matchboard level 3;
however, there was a significant correlation between age and
cognitive workload (0.54, p-value= 0.01). Age was not selected as
a significant predictor in the random intercept models for
cognitive workload and performance in Matchboards level 2 and
level 3.

Findings based on Approach B
To further investigate the effects of integrating features extracted
from functional brain networks and spectral analysis on perfor-
mance and cognitive workload evaluation, the GLMM-LASSO
method was applied to all extracted features across four brain
cortices and frequency bands. The results are presented in Table 5.

Findings based on Approach C
To investigate the impact of reduced EEG density, EEG features
were extracted from 32 channels, distributed according to the
international 10–20 system. The GLMM-LASSO method was then
applied to all extracted features across the four brain cortices and
frequency bands. This analysis was done to evaluate performance
and cognitive workload in Matchboard levels 2 and 3. The results
are presented in Table 6.

DISCUSSION
The EEG data recorded from 26 participants conducting two
cognitive tasks on a robot simulator were used to extract search
information, strength, temporal network flexibility, integration,
recruitment, and PSD features in 21 BAs at four band frequencies.
Features were used to develop linear models to evaluate cognitive
workload and performance.

Table 1. Results of linear random intercept model analysis for
performance evaluation at the Matchboard level 2 (number of
samples: 87).

Predictor Estimate Standard
error

p-value

Average temporal flexibility in BA
45 at beta-band frequencies

0.16 0.06 0.007

Subject was a significant random effect (p-value= 0.002); pseudo R2= 0.72;
MAE= 7.36; RMSE= 9.36.

Table 2. Results of linear random intercept model analysis for
cognitive workload evaluation at Matchboard level 2 (number of
samples: 68).

Predictor Estimate Standard
error

p-value

Average search information in BA
47 at theta-band frequencies

−0.39 0.11 0.001

Subject was a significant random effect (p-value= 0.001); pseudo R2= 0.95;
MAE= 2.34; RMSE= 3.31.
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Matchboard level 2
Matchboard level 2 requires conscious focus on the characters
below Matchboard doors, finding a logical pattern between
characters and doors, and memorizing the place of characters
below doors.
Average temporal network flexibility in BA 45 at the beta-band

frequencies was positively associated with the performance in
Matchboard level 2. The BA 45 was proposed, by functional MRI
studies, to be involved in working memory31,32 and brain
oscillations at the beta-band frequencies have shown a connec-
tion with conscious thought and logical thinking33. The selection
of this feature is in line with the nature of Matchboard level 2,
which needs WM loading and logical reasoning. This result may
indicate that the brain is able to access information from WM
resources, to process logical reasoning relevant to cognitive tasks,
better if the temporal network flexibility in BA 45 is higher at beta-
band frequencies. As a result, performance in conducting
cognitive task improves.
Average search information in BA 47 at theta-band frequencies

was negatively associated with cognitive workload. The functional
MRI studies showed that BA 47 area is involved in WM31,34 and
executive functions35. Brain activity oscillations in the theta-band
frequencies have shown a relationship with the processing of new
information, creativity, and intuition36. This result may suggest
that retrieving information from WM resources, to process new
information and create executive commands, is less efficient and
may result in cognitive overload if search information in BA 47 is
higher.
Results showed that performance in conducting straightforward

Matchboard can be evaluated by only one feature. Similarly, only
one feature was needed and sufficient to evaluate cognitive
workload. However, the pseudo R2 was lower for performance
(0.72) compared to that for cognitive workload (0.95). It may imply
that the extracted features can better explain cognitive workload
variations than performance.

Matchboard level 3
Matchboard level 3 is a challenging task where participants should
properly manipulate three instruments with minimum collision
and force. To complete this task successfully, participants should
be aware of the status of each instrument, memorize the locations
of characters below Matchboard doors, and make appropriate
decisions to choose instrument and character. More features were
needed to predict performance and cognitive workload in

Matchboard level 3. It might demonstrate how challenging this
task is compared to Matchboard level 2.
The average temporal network flexibility in BA 9 at theta-band

frequencies was positively associated with the performance.
Functional MRI studies showed that BA 9 area is involved in
memory encoding and recognition31,37,38, memory retrieval38–40,
working memory41–43, executive functions such as executive
control of behavior44, inferential reasoning45–47, decision mak-
ing48, and error processing/detection49. The selection of this
feature as a performance predictor complies with the require-
ments for the successful completion of Matchboard level 3. The
significant role of flexibility in BA 9 in the performance evaluation
model may indicate that (1) conducting Matchboard level 3
requires reasoning, decision making, and retrieving information
from WM resources; and (2) the brain retrieves information, to
process new stimulations related to cognitive task and make
proper decisions, more efficiently if BA 9 is more flexible.
Additionally, performance in the Matchboard level 3 was

negatively associated with the recruitment feature in BA 47,
which according to functional MRI studies, is involved in working
memory31,34 and executive functions35, at theta-band frequencies.
Greater recruitment in BA 47 suggests a better connection within
this area than a connection between this area and other BAs. The
BA 47 is engaged in WM and executive functions, so it should
effectively communicate with other areas to acquire updated
inputs and process stimulation information related to executive
functions. Hence, greater recruitment of BA 47 reduces task
performance.
Performance was negatively associated with search information

of BA 37, which is involved in processing visual motion50–52 and
structural judgments of familiar objects53, in the gamma-band
frequencies. The gamma-band frequencies have shown a connec-
tion with perception and cognitive processes54, attention and
working memory processes, and information integration55–60. This
result may suggest that performance decreases if access to BA 37
resources, to process perceptual and cognitive processes,
demands a higher amount of information.
Additionally, the higher search information value in BA 45,

which contributes to working memory, at gamma-band frequen-
cies was associated with more cognitive workload. This may
indicate that more information is required to access WM resources
in this area, in order to process perceptual and cognitive functions,
resulting in a higher allocation of working memory resources and
cognitive overload.

Table 3. Results of linear random intercept model analysis for performance evaluation at Matchboard level 3 (number of samples: 124).

Predictors Estimate Standard error p-value

Average temporal flexibility in BA 9 at theta-band frequencies 0.41 0.15 <0.001

Recruitment feature in BA 47 at theta-band frequencies −0.28 0.10 <0.001

Average search information in BA 37 at gamma-band frequencies −1.29 0.34 <0.001

Subject was a significant random effect (p-value= 0.01); pseudo R2= 0.55; MAE= 9.43; RMSE= 11.61.

Table 4. Results of linear random intercept model analysis for cognitive workload evaluation at Matchboard level 3 (number of samples: 96).

Predictors Estimate Standard error p-value

Average search information in BA 45 at gamma-band frequencies 0.51 0.16 0.002

Average temporal flexibility in BA 44 at gamma-band frequencies −0.36 0.11 0.001

Average temporal flexibility in BA 7 at beta-band frequencies 0.29 0.09 0.002

Subject was a significant random effect (p-value= 0.001); pseudo R2= 0.88; MAE= 4.23; RMSE= 6.18.
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Average temporal network flexibility in BA 44 at gamma-band
frequencies was negatively associated with cognitive workload.
Functional MRI studies showed that BA 44 is involved in working
memory31,32,61, goal-intensive processing62, and object manipula-
tion63. As a result, this finding could suggest that a more flexible
BA 44 facilitates information retrieval that is more effective at
processing cognitive and perceptual tasks, freeing up WM
resources.
Average temporal network flexibility in BA 7 at beta-band

frequencies was positively associated with cognitive workload in
Matchboard level 3. Functional MRI studies showed that BA 7 is
involved in processing tool-use gestures64,65, bimanual manipula-
tion66, and tactile localization and tactile recognition67. The
selection of this feature is in line with the characteristics of this
task and its required skills. This finding might indicate that the BA
7 should be less flexible (more stable) in processing logical
functions and bimanual manipulation for a more efficient
allocation of mental resources.

Similar to Matchboard level 2, the pseudo R2 was lower for
performance (0.55) compared to that for cognitive workload
(0.88). It confirms that extracted features are better predictors of
cognitive workload rather than performance.

Relationship between age and cognitive workload
Cognitive workload was correlated with age (0.54, p-value= 0.01)
in conducting Matchboard level 3. However, there was no
correlation between age and cognitive workload in conducting
Matchboard level 2. It might be because Matchboard level 2 is a
straightforward task and can be completed by adult people of any
age. This result may suggest that playing difficult computer games
is recommended for detecting changes in cognitive workload
caused by aging.

Combining spectral and network features for cognitive
workload and performance evaluation
Both PSD and functional brain network features independently
demonstrated robust abilities in assessing performance, particu-
larly in evaluating cognitive workload (Tables 1–4, and Supple-
mentary Table 1). PSD features evaluated performance and
cognitive workload in Matchboard level 2 with respective R2

values of 0.74 and 0.96, while in Matchboard level 3, these values
were 0.46 and 0.85. Functional brain network features could assess
performance and cognitive workload in Matchboard level 2 with
R2 values of 0.72 and 0.95 and in Matchboard level 3 with R2

values of 0.55 and 0.88. Notably, functional brain network features
showed to be better predictors when evaluating performance and
cognitive workload in more complex tasks, as seen in Matchboard
level 3.
The integration of PSD and functional brain network features

enhanced the performance of cognitive workload evaluation
models (Approach B; Table 5). With the inclusion of these features,
the models achieved an R2 value of 0.97 for the cognitive
workload evaluation of Matchboard level 2, and 0.95 for level 3.
These results represent improvements over the previous scores of
0.95 and 0.88, respectively, achieved without the involvement of
PSD features, following Approach A (Tables 2 and 4, respectively).
Similarly, the outcomes present an improvement from the
previous scores of 0.96 and 0.85, respectively, attained without
employing functional brain network features, also following
Approach A (Supplementary Table 1).
PSD helps understand the power contribution of different brain

rhythms (like alpha, beta, gamma-band frequencies), which are
often linked with different cognitive states. The outcomes from
Approach B highlight the substantial value that PSD features add
to the evaluation of cognitive workload. For instance, the average
PSD within the beta-band frequencies of the frontal cortex was a
significant predictive factor for cognitive workload at both
Matchboard levels 2 and 3 (Table 5). Furthermore, when
evaluating performance and mental workload based solely on
PSD features, associations were found between the average PSD
in BA 45 at beta-band and the performance, and between the
average PSD in BA 40 at alpha-band frequencies and cognitive
workload, at Matchboard level 2. Likewise, an association was
observed between the average PSD in BA 20 and BA 45 at beta-
band frequencies and both performance and cognitive workload
at Matchboard level 3, respectively (Supplementary Table 1).
Without incorporating PSD features and focusing solely on
functional brain network features, such important insights would
remain undiscovered.
While the PSD provides useful insights into overall electrical

activity in the brain, it might not fully capture the complexities
of cognitive workload. On the other hand, functional brain
network features capture the dynamics of interaction and
communication between different brain regions over time,
crucial for performing cognitive tasks68–73. Functional network

Table 5. Results of GLMM-LASSO analysis for performance and
cognitive workload evaluation at Matchboard levels 2 and 3 based on
approach B (96 features extracted from 116 EEG signals).

Predictors Estimate p-value

Performance, Matchboard level 2

Average strength in Parietal cortex, at theta-band
frequencies

−34.49 0.014

Random Effect; Subjects’ standard deviation: 106.26

Number of observations: 82; R2: 0.67; MAE:5.61; RMSE: 7.23

Cognitive workload, Matchboard level 2

Average temporal network flexibility in Occipital
cortex at alpha-band frequencies

1.44 0.034

Average temporal network flexibility in Parietal
cortex at theta-band frequencies

−2.19 0.004

Average PSD in Frontal cortex at beta-band
frequencies

−3.33 <0.001

Random Effect; Subjects’ standard deviation: 284.2

Number of observations: 62; R2: 0.97; MAE: 1.81; RMSE: 2.29

Performance, Matchboard level 3

Average search information in Frontal cortex at
beta-band frequencies

−17.93 0.031

Average search information in Temporal cortex at
beta-band frequencies

22.7 0.022

Average search information in Frontal cortex at
gamma-band frequencies

−19.23 0.021

Average search information in Frontal cortex at
alpha-band frequencies

29.09 0.035

Average PSD in Occipital cortex at gamma-band
frequencies

9.24 0.029

Average PSD in Parietal cortex at gamma-band
frequencies

−11.81 0.049

Random Effect; Subjects’ standard deviation: 33.32

Number of observations: 111; R2: 0.54; MAE: 8.57; RMSE: 10.48

Cognitive workload, Matchboard level 3

Average temporal network flexibility in Frontal
cortex at theta-band frequencies

1.99 0.024

Average strength in Temporal cortex at beta-band
frequencies

−10.13 0.001

Average PSD in Frontal cortex at beta-band
frequencies

8.44 0.002

Random Effect; Subjects’ standard deviation: 421.94

Number of observations: 83; R2: 0.95; MAE: 3.44; RMSE: 4.18
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features such as “average temporal flexibility” and “average
search information” provide insight into the dynamics of brain
network interactions, such as how easily nodes switch between
communities (temporal flexibility) or how much information a
node gathers from the rest of the network (search information).
These network-level dynamics are not captured by PSD features.
These features incorporate complex network measures, encap-
sulating higher-level organizational principles of the brain. In the
present study, the important insights derived from the Approach
A analyses would be missed if we exclusively utilized PSD,
without considering the pivotal role of functional brain network
features.

While PSD features provide valuable insights into cognitive
workload, relying solely on them may overlook critical information
about the collaboration among different brain regions, the
efficiency of information flow in the brain network, and the
adaptability of the brain network under varying cognitive workload
conditions68–73. PSD and functional brain network features are
complementary to each other. By integrating these two distinct
types of features, a more comprehensive understanding of brain
functionality can be achieved. Such a combination has the potential
to enhance the performance of models used to evaluate cognitive
workload, particularly for challenging tasks, therefore offering a
more robust and detailed understanding of these processes.

Table 6. Results of GLMM-LASSO analysis for performance and cognitive workload evaluation at Matchboard levels 2 and 3 based on approach C
(96 features extracted from 32 EEG signals).

Predictors Estimate p-value

Performance, Matchboard level 2

Average temporal network flexibility in Occipital cortex at gamma-band frequencies −4.14 0.021

Average strength in Occipital cortex at beta-band frequencies 19.4 0.027

Average strength in Temporal cortex at gamma-band frequencies −16.13 0.016

Average PSD in Temporal cortex at theta-band frequencies 4.13 0.048

Random Effect; Subjects’ standard deviation: 83.33

Number of observations: 84; R2: 0.69; MAE: 5.86; RMSE: 7.30

Cognitive workload, Matchboard level 2

Average temporal network flexibility in Occipital cortex at beta-band frequencies 2.36 0.008

Average search information in Parietal cortex at beta-band frequencies 6.41 0.003

Average search information in Frontal cortex at gamma-band frequencies −5.06 0.012

Average search information in Occipital cortex at gamma-band frequencies 3.68 0.045

Average strength in Parietal cortex at alpha-band frequencies 25.73 0.029

Average strength in Occipital cortex at alpha-band frequencies −13.87 0.021

Average strength in Parietal cortex at gamma-band frequencies −9.02 0.013

Average strength in Parietal cortex at theta-band frequencies −39.66 0.001

Average strength in Frontal cortex at theta-band frequencies 14.67 0.006

Average strength in Occipital cortex at theta-band frequencies 23.71 <0.001

Average PSD in Occipital cortex at alpha-band frequencies −3.99 0.033

Random Effect; Subjects’ standard deviation: 212.56

Number of observations: 63; R2: 0.94; MAE: 1.82; RMSE: 2.41

Performance, Matchboard level 3

Average temporal network flexibility in Frontal cortex at beta-band frequencies 5.57 0.033

Average temporal network flexibility in Parietal cortex at gamma-band frequencies 8.31 0.026

Average temporal network flexibility in Occipital cortex at gamma-band frequencies −6.79 0.002

Average search information in Parietal cortex at theta-band frequencies 8.61 0.025

Average strength in Temporal cortex at gamma-band frequencies −8.69 0.038

Random Effect; Subjects’ standard deviation: 30.77

Number of observations: 118; R2: 0.57; MAE: 7.52; RMSE: 9.34

Cognitive workload, Matchboard level 3

Average temporal network flexibility in Parietal cortex at alpha-band frequencies 2.67 0.024

Average search information in Frontal cortex at beta-band frequencies 4.11 0.001

Average strength in Occipital cortex at alpha-band frequencies −3.88 0.025

Average PSD in Parietal cortex at alpha-band frequencies −12.27 0.027

Average PSD in Frontal cortex at alpha-band frequencies 32.17 0.001

Average PSD in Temporal cortex at alpha-band frequencies −13.13 0.013

Average PSD in Occipital cortex at beta-band frequencies −5.71 0.014

Average PSD in Frontal cortex at theta-band frequencies −22.65 0.005

Random Effect; Subjects’ standard deviation: 474.54

Number of observations: 89; R2: 0.96; MAE: 3.05; RMSE: 4.07
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Impact of reduced EEG electrode density on performance and
cognitive workload evaluation
Results showed that a reduced EEG density still provided
considerable insight into predicting cognitive workload and
performance. Despite this reduced density, the predictors still
showed a significant relationship with performance and cognitive
workload at Matchboard levels 2 and 3. This is evidenced by the
statistical significance of the predictors in the GLMM-LASSO
analyses, as well as the relatively high R2 values indicating that the
predictors could explain a substantial proportion of the variation
in the outcomes. This suggests that while higher-density EEG may
provide more detailed information, lower-density systems can still
yield valuable data. The results obtained from the 32-channel
system were still informative, indicating that significant and useful
information can be extracted from these lower-density systems.
However, the results from the lower-density EEG (Approach C)

were not identical to those from the higher-density EEG
(Approach B). Different features and cortices were significant in
each case. This suggests that while lower-density EEG can provide
useful information, the specific insights it offers may differ from
those obtained from a higher-density system. Although high-
density EEG may provide more detailed information and facilitate
the detection of more complex patterns, lower-density systems
can still generate significant and valuable insights.
The models generated from lower-density EEG data incorpo-

rated a greater number of features compared to those derived
from high-density EEG data. This is displayed by the cognitive
workload evaluation model for Matchboard level 2, where the low-
density EEG model incorporated 11 features and achieved an R2

value of 0.94. In contrast, the corresponding high-density EEG
model incorporated only three features, with a slightly higher R2

value of 0.97. This comparison suggests that when working with
lower-density EEG data, a wider range of features spread across
various brain cortices might be necessary to effectively identify
patterns associated with performance and cognitive workload.
Hence, the nature of the data acquisition method influences the
complexity of the models required to capture significant brain
activity and its relationship with cognitive performance and
workload.
Study strengths: Several studies proposing EEG data to evaluate

mental workload use features that are extracted by only spectral
analysis of EEG signals rather than considering the dynamic
changes in the functional brain network26–30. Limited studies
showed a relationship between the human brain’s network
flexibility and the individual cognitive state74,75, learning75,
mood74, cognitive control76, and mental workload in robot-
assisted surgery5 and the relationship between integration and
recruitment in learning77,78. However, this study investigated the
association between cognitive workload, performance, functional
brain network features, and PSD features in conducting cognitive
tasks. The developed models could be used to evaluate cognitive
workload and performance and might be used to identify early
warning signals of cognitive decline if they have been validated in
a larger sample, especially elderly persons.
Limitations of the study: Although this study’s results are

encouraging, there are several limitations. There were only 26
participants, and the majority were young, healthy, and well-
educated. Only three participants were above 60 years old. The
proposed models should be tested on data from the older
population, those with cognitive problems, and people represent-
ing different education levels conducting computer games with
different complexity levels. Finally, although SURG-TLX is a well-
established cognitive workload assessment tool, it relies on the
subject’s self-report.
Application of results: We described the role of EEG features in

various BAs and band frequencies, which represent the dynamic
nature of neural processes during a cognitive task, in performance

and cognitive workload level. Our study demonstrates the
importance of combining dynamic network neuroscience
approaches and spectral analysis in performance and cognitive
workload evaluation. Results showed that average search informa-
tion, average temporal network flexibility, average strength, and
PSD were the main features associated with participants’
performance and cognitive workload. Understanding the relation-
ship between extracted features and cognitive workload should
improve our understanding of cognitive disorders. The results of
this study could have therapeutic implications, after being
validated in a larger sample. The results could be used to detect
cognitive decline by evaluating changes in cognitive workload in
follow-up studies. We will explore the development of follow-up
studies with a larger and more diverse sample, including a greater
number of elderly participants in the future. This will help validate
the results and enhance the generalizability of the findings.

METHODS
This study was conducted in accordance with relevant guidelines
and regulations and was approved by the Roswell Park
Comprehensive Cancer Center’s Institutional Review Board (IRB;
I-241913). The IRB issued a waiver of documentation of consent.
Participants were given a research study information sheet and
provided verbal consent.
Twenty-six participants, comprised of 18 males and eight

females with an average age of 35.5 years (standard deviation:
11.7 years), conducted two psychomotor cognitive tasks (Match-
board with complexity levels 2 and 3), and EEG data were
recorded at a constant rate of 500 Hz using a 124-channel EEG
headset (AntNeuro®; Fig. 1), with Cz as the reference channel79,80.
Participants included premedical students, scientists, surgical
residents and fellows, and surgeons. The EEG data were used to
extract search information, strength, temporal network flexibility,
integration, recruitment, and Power Spectral Density (PSD)
features at four band frequencies and 21 Brodmann’s areas (BA).
The extracted features were used to evaluate performance and
overall cognitive workload using linear models.
The da Vinci® Skills Simulator™ (developed in collaboration with

Mimic® Technologies, Inc. Seattle, WA, USA) has two instruments
attached to mechanical arms and a camera arm. The participant

Fig. 1 Experimental setup. Illustration of EEG recording from
participants who used the da Vinci surgical simulator to conduct
two psychomotor cognitive tasks. This figure was developed by the
ATLAS illustrator team at RPCCC, using the Adobe Illustrator
software.
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operates the arms while sitting at a computer console (Fig. 1). The
tasks and software developed for this simulator system are similar
to well-known computer video games that let players experience
virtual reality.

Tasks and the purpose of conducting each task
There are three levels of complexity for the Matchboard task in the
da Vinci simulator program; level 1 is the most straightforward,
and level 3 is the most challenging. As all participant performance
scores were high (>70) and similar, data for Matchboard level 1
were not analyzed. Data for Matchboards level 2 and level 3 were
used in the study. The goal of these tasks, which resembled video
games, was to improve psychomotor and cognitive abilities. The
tasks involved several cognitive domains, including attention,
memory, executive cognitive function, and visuospatial ability81.
Objects with shapes like numbers and letters appeared around a
Matchboard with corresponding character-shaped recesses. In
Matchboard level 2, three-panel doors were blocked by the
Matchboard. Participants were instructed to retract the panel
doors with one instrument while placing the characters in the
proper bins with the other. In Matchboard level 3, three sliding
doors and three swinging panel doors were blocked by the
Matchboard. This task required switching between three instru-
ment arms to move multiple doors. Participants had to retract one
of the sliding doors using one of the three instruments before
opening the swinging door with the other instrument’s arms to
reveal the character bin below. Participants placed the appropriate
character in the bin.

Performance score
Simulator program provided performance scores based on several
weighted metrics. The simulator metrics included time to complete
the task: the total amount of time the user spent on the task
(measured in seconds; weight: 17.54); economy of motion: total
distance traveled by all instruments (measured in centimeters;
weight: 17.54); instrument collisions: total number of instrument-
on-instrument collisions (weight: 17.54); excessive instrument force:
total time an excessive instrument force was applied above a
prescribed threshold force (measured in seconds; weight: 8.77);
instruments out of view: total distance traveled by instruments
outside of the user’s field of view (measured in centimeters;
weight: 17.54); master workspace range: radius of user’s working
volume on master grips (measured in centimeters; weight: 3.51);
and drops: number of times an object was dropped in an
inappropriate region of the scene (weight: 17.54).
The simulator assigned a single score between 0 and 100,

where 0 denoted no acceptable performance to complete the
simulated task and 100 denoted performance that met all
necessary standards.

Cognitive workload
At the end of each exercise, participants completed the Surgery
Task Load Index (SURG-TLX) questionnaire to assess their
cognitive workload. The SURG-TLX is a six-domain tool that
provides a measure of the perceived cognitive workload82. The
domains are Mental demands: level of mental effort required to
complete the task; Physical demands: level of physical effort
required to complete the task; Temporal demands: level of rush in
completing the task; Task complexity: level of difficulty of the task;
Situational stress: level of anxious felt during the task completion;
and Distractions: level of environmental distractions. A scale of 1 to
20 is used for each domain, with 1 designating the minimum and
20 the highest. The scores for the six domains were added to
calculate the overall cognitive workload score.

EEG pre-processing
Due to the poor quality of signals recorded from the F8, POz, AF4,
AF8, F6, FC3, M1, and M2, those signals were excluded from this
study. EEG artifacts of the remaining 116 channels were corrected
by blind source separation and a topographical Principal
Component Analysis using the advanced source analysis (ASA)
framework. The framework is developed by ANT Neuro Inspiring
Technology Inc., Netherlands. EEG artifact correction was done in
five steps: (1) EEG data were re-referenced to the “common
average reference,” which is the average of all scalp channels
involved in the study83. (2) A 60 Hz notch filter was applied to
remove the line noise. (3) The EEG data were filtered with a band-
pass filter (0.2–250 Hz) and a filter steepness of 24 dB/octave. (4)
Artifacts related to facial and muscle activity were detected and
decontaminated by ASA. Then, individual segments of the EEG
data were visually inspected for those artifacts83. (5) The spatial
Laplacian technique was applied to the decontaminated signals84.
The Surface Laplacian method emphasizes sources at small spatial
scales to alleviate the effect of volume conduction on coherence
calculations25. After being decontaminated from artifacts, EEG
data were used to extract the search information, strength,
temporal network flexibility, integration, recruitment, and PSD
features at theta (4–8 Hz)85, alpha (8–12 Hz)86, beta (13–35 Hz)87,
and gamma (35–65 Hz)88 band frequencies, and 21 Brodmann
areas (BA).
Each EEG channel was assigned to a specific BA based on their

position that was roughly above each BA89. The BA that each EEG
channel belongs to was identified using the Brodmann’s Interactive
Atlas (http://www.fmriconsulting.com/brodmann/Interact.html) and
the Brain master software (http://www.brainm.com/software/pubs/
dg/BA_10-20_ROI_Talairach/). The 116 EEG channels were assigned to
the 21 Brodmann areas (Table 7).

Table 7. List of EEG channels roughly above each Brodmann area.

BA Channels BA Channels BA Channels

1 C4, CCP4h 2 C3, CP3, CCP3h, CPP3h 5 Cz, CP1, CP2, C1, C2, CCP1h, CCP2h, CPP1h,
CPP2h

6 FC1, FC2, FCz, FC4, FCC3h, FCC4h, FCC2h,
FCC1h

7 Pz, P1, P2 8 F4, F3, Fz, F1, F2, AFF1, AFF2, FFC3, FFC4, FFC1,
FFC2

9 AF3, AFz 10 AFp3h, AFp4h, FPz, FP3, FP4, FP1, FP2 18 O1, O2, I1, I2, OI1h, OI2h, POO9h, POO10h

19 PPO2, PPO1, POO3h, POO4h, PO3, PO4, PO7,
PO8

20 FT9, FT10, PO9, P9, FTT9h, FTT10h,
PPO9h

21 TP7, TP8, TPP10h, TTP8h, TPP7h, TPP8h, T8,
TPP9h

37 PO10, P10, PPO10h, P7, P8 39 P3, P4, P5, P6, PPO5h, PPO6h 40 CP5, CP6, CP4, CPP5h, CPP6h

41 C6, CCP6h 42 CCP5h, TTP7h, T7, C5 44 FC6, FC5, FCC6h

45 FFT8h, FFT7h 46 AFF5h, AFF6h, AF7, F5, FFC5h, FFC6h,
FCC5h

47 FTT7h, FTT8h, F7, FT7, FT8
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Extraction of search information and strength features
Search information is the amount of information (measured in
bits) required to pass the shortest, and presumably the most
efficient path between two nodes of a network90–93. Search
information feature was extracted using the adjacency matrix,
commonly known as the functional brain network, of each EEG
recording90–92 and the Brain Connectivity Toolbox (https://
sites.google.com/site/bctnet/measures) (Fig. 2A, B). The adja-
cency matrix is a network that mathematically illustrates the
functional connections between various brain areas involved in
information processing94. Entries of this matrix reflected the
weight of connections between various EEG channels i and j (
Γ ¼ ðΓijÞ 2 <N ´N; i and j ranged from 1 to N, where N is the
number of EEG channels). Those entries were calculated using
the coherence analysis.
Finally, a total of 84 search information features were generated

after calculating the average of the extracted search information
for channels inside each BA (i.e., 21 BAs and four band
frequencies).
The average functional connection weight of channels within

each BA was calculated and considered as the strength in that BA.
Finally, a total of 84 strength features were generated after
calculating the average of the extracted strength for channels
inside each BA (i.e., 21 BAs and four band frequencies).

Extraction of temporal network flexibility feature
The temporal network flexibility (f) of each network node is
proportional to the number of times the node changed its network
community assignment over time74. A network community is
described as a subset of network nodes with denser connections
between themselves than to other nodes in the network95.
Temporal network flexibility has been proposed as a functional
brain network feature that changes by learning96, surprise, and
fatigue97. This feature has also been proposed for evaluating the
mental workload of surgeons conducting surgical tasks5.
To calculate the temporal network flexibility feature first

adjacency matrix (i.e., functional brain network) was extracted for
every one-second window of EEG data recording (Fig. 2C). Then
modularity metric associated with each adjacency matrix was
extracted using the “community Louvain” function of the Brain
Connectivity Toolbox. This metric measures how well nodes are
assigned to communities. To detect the network communities,
modularity was maximized using a Louvain-like locally “greedy”
algorithm98,99. This process was repeated 100 times in a consensus
iterative algorithm to identify a single consistent representative
partition from all partition sets, based on statistical testing in
comparison to the ‘Newman–Girvan (NG)’ null network99,100. The
output of modularity maximization is the community assignment of
EEG channels for each 1-s window EEG. The community assignment
of each EEG channel is the community that the EEG channel was
assigned to (e.g., if five communities were detected for an adjacency
matrix, the community assignment of each node is an integer from
one to five). The community assignments of EEG channels across 1-s
windows were used as elements of the partition matrix A 2 RNXT.
The elements of the partition matrix Ai;t 2 1:::gf g displayed the
communities (g) to which brain area i (EEG channels; 1 to N, where
N= 116) was assigned at time t (second; t= 1 to T, where T denotes
recording duration).
Finally, the partition matrix was used in the flexibility function of

Network Community Toolbox (http://commdetect.weebly.com/)75

to calculate the temporal network flexibility of each channel as Eq. 1.

f i ¼ 1� 1
T � 1

XT�1

t¼1

δðAi;t;Ai;tþ1Þ (1)

The number of times that brain area i changed its community
assignment across successive 1-s time windows was measured by

the temporal network flexibility of channel i. Low (high) temporal
flexibility indicated that the corresponding community assign-
ment of each EEG channel area was stable (changing) across time
windows74,75.
Finally, the average of the extracted temporal network flexibility

for channels within each BA was calculated, resulting in a total of
84 temporal network flexibility features (i.e., 21 BAs and four band
frequencies).

Extraction of integration and recruitment features
Recruitment of a node is described as the “average probability
that this node is in the same network community as other nodes
from its own system”77,101. BAs were considered as systems in this
study. Integration of a node corresponds to the “average
probability that this node is in the same network community as
nodes from other systems”77,101. Integration and recruitment have
been proposed as functional brain network features that change
through practice and learning77,78.
Integration and recruitment features were extracted using

Module Allegiance Matrix (MAM), which was developed using the
partition matrices. Element (i,j) in the MAM represents the
probability that nodes ‘i’ and ‘j’ belong to the same community
(Fig. 2D) throughout the time of a recording. The interaction
strength (I), between two systems Ck1 and Ck2, can be defined as
the average probability of pairs of channels belonging to the same
community, where one electrode belongs to the first system and
the second electrode belongs to the second system:

Ik1;k2 ¼
P

i2Ck1 j2Ck2
Pij

Ck1j jjCk2j
(2)

where |Ck | is the number of nodes in the system Ck, and k1 ≠ k2.
Note that the average recruitment of a single system to the task
can be calculated by letting k1= k2 in Eq. (2). The average
integration between two separate systems is calculated using the
normalized interaction between the two systems (k1 ≠ k2).
Integration and recruitment features were extracted using the
MAM matrix and the Network Community Toolbox (http://
commdetect.weebly.com/)77,101. The Pij in Eq. (2) are elements
of MAM.
Finally, the average of the extracted integration and recruitment

for channels within each BA was calculated, resulting in a total of
84 integration features (i.e., 21 BAs and four band frequencies) and
a total of 84 recruitment features.

Extraction of power spectral density features
Short Fast Fourier Transform (SFFT) with a one-second Kaiser
moving window was used to calculate the power spectral density
(PSD) of EEG signals. A 50% overlap was considered for Kaiser
moving window. Spectral band power features (henceforth PSD
features) were extracted by averaging spectral band power within
the standard band frequencies (i.e., theta, alpha, beta, and
gamma) for channels within each BA, resulting in a total of 84
PSD features.

Understanding performance and cognitive workload: the
potential insights from functional brain network and PSD
features
The functional brain network features enhance our understanding
of performance and cognitive workload by providing a range of
valuable insights, including:68–73 (1) Inter-regional communication:
Brain regions communicate with each other to support cognition.
Functional connectivity measures can provide insights into the
strength and patterns of these interactions, which are crucial for
understanding cognitive workload and performance; (2) Efficiency
and network topology: Functional brain network analysis can
reveal the efficiency of information transfer within the brain. These
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factors might be relevant for cognitive workload and performance;
(3) Network dynamics: Functional brain networks exhibit dynamic
changes over time. These changes might be associated with shifts
in cognitive state, task demands, or learning processes, and could
be missed by analyses that only consider the PSD; (4) Specific
cognitive functions: Different cognitive functions are associated

with varying patterns of functional connectivity. Analyzing
functional brain network features could provide specific insights
about the types of cognitive processes that are engaged; (5)
Resilience and flexibility: Functional brain network analysis can
also provide insights about the brain’s resilience (how well it can
handle disruptions) and flexibility (its capacity to reconfigure its

Fig. 2 Representation of EEG feature extraction steps. A The EEG data were recorded using a high-density EEG headset. B Adjacency
matrices at different band frequencies were extracted using coherence analysis. Adjacency matrix of each recording was used to extract the
search information feature. C A community detection algorithm was applied to adjacency matrices associated with 1-s windows throughout a
recording. The community assignment for each channel across windows created a partition matrix for each recording and was used to extract
temporal network flexibility for each channel. D The partition matrix was used to extract a module allegiance matrix for each recording which
was then used to extract integration and recruitment features.
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connections in response to changing task demands). These factors
could be important for understanding individual differences in
cognitive workload.
The PSD features provide an understanding of the overall

power distribution within specific frequency bands, which is an
important factor for understanding cognitive workload and
performance.

Statistical analysis
Extracted features were used as independent variables to develop
models for evaluating cognitive workload and performance. The
goal was to find the features that are associated with cognitive
workload and performance among different participants. Addi-
tionally, the correlation between performance, cognitive workload,
and participants’ age was determined using the Pearson correla-
tion. All tests were two-sided, and the statistical significance level
was 0.05. All statistical analyses were performed with SAS®
(version 9.4, SAS Institute Inc., Cary, NC, USA). Three approaches
were considered to develop performance and cognitive workload
evaluation models.

Approach A. Seven-fold cross-validation was used to reduce
individual effects in detecting important features (i.e., predictors).
Forward feature selection was used to identify the possible
predictors. Variables selected at least twice by cross-validation
were considered as possible predictors and were used to develop
the final linear random intercept models. The Šidák p-value
correction was applied to selected features from cross-validation.
The Efron’s pseudo-R-square was calculated to measure how

much variation of an output variable is explained by the
independent variable(s). Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) measures were used to quantify the
difference between predicted values and true values.

Approach B. The average features of all channels within the
frontal, parietal, occipital, and temporal brain cortices were
calculated. These specific brain regions have been extensively
explored in research studies that aim to understand the intricate
relationship between brain function and cognitive workload102,103.
This process resulted in a set of 96 distinct features (i.e., six feature
types across four brain cortices, each at four band frequencies). A
widely used feature selection method, the Generalized Linear
Mixed Model using penalized Lasso method (known as GLMM-
LASSO), was used to develop models for performance and
cognitive workload based on this feature set. The Local Outlier
Factor (LOF) algorithm was used to detect outlier samples and
exclude those from the analyses.
The Generalized Linear Mixed Model with a penalized Lasso

method (known as GLMM-LASSO) was used to identify significant
features. This penalized Lasso method simultaneously selects
variables and estimates coefficients104. The tuning parameter,
lambda, was meticulously chosen using the Bayesian Information
Criterion (BIC) and cross-validation techniques.

Approach C—extension of methods to scenario where less density
EEG system is used. Reducing the number of electrodes used in
EEG collection is a growing trend in practical applications, such as
evaluating or training the cognitive workload and performance of
pilots/aviators in a simulator105. Thirty-two EEG channels, from the
original 116, were selected based on the international
10–20 system. Configurations employing fewer than 32 channels
may significantly compromise spatial resolution, potentially
resulting in decontaminated EEG signals that do not fully reflect
brain activity at their respective locations106.
Signals from 32 channels were analyzed, with features extracted

using functional brain network and spectral analysis approaches.
Average features were then extracted for channels within the

frontal, parietal, occipital, and temporal brain cortices. This process
resulted in a set of 96 distinct features. Importantly, irrespective of
the specific configuration of an EEG headset, all inherently have
some electrodes associated with these cortices. Outliers were
identified and excluded from the analyses using the LOF algorithm.
Finally, we employed the GLMM-LASSO to develop models for
performance and cognitive workload based on this feature set.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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