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Biomarkers selection and mathematical modeling in biological
age estimation
Solim Essomandan Clémence Bafei 1 and Chong Shen 1✉

Biological age (BA) is important for clinical monitoring and preventing aging-related disorders and disabilities. Clinical and/or
cellular biomarkers are measured and integrated in years using mathematical models to display an individual’s BA. To date, there is
not yet a single or set of biomarker(s) and technique(s) that is validated as providing the BA that reflects the best real aging status
of individuals. Herein, a comprehensive overview of aging biomarkers is provided and the potential of genetic variations as proxy
indicators of the aging state is highlighted. A comprehensive overview of BA estimation methods is also provided as well as a
discussion of their performances, advantages, limitations, and potential approaches to overcome these limitations.
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INTRODUCTION
Biological aging is a process or set of processes that cause the
viability of organs to deteriorate over time1, while chronological
aging refers to the passage of time. Biological age (BA), often used
to measure the progress of biological aging, can indicate an aging
individual’s life expectancy and health status2. Chronological age
(CA) counts individuals’ years lived, not their functional level, life
experience, or vulnerability to aging-related diseases and disabilities.
Consequently, people with the same CA might age differently3,
more likely due to variations in their fundamental biological aging
mechanisms4. BA is affected by various factors such as heredity,
physical fitness, and external environmental stressors5.
BA predicts mortality and the occurrence of various age-

associated disorders, such as cardiovascular diseases (CVD),
diabetes, cancers, and Alzheimer’s disease4,6,7. BA is useful for
clinical and community surveillance and evaluating interventions
to delay or prevent aging-related disease and disability8. BA
estimations methods measure aging biomarkers and integrate
these values into years using the evolving mathematical models9.
To date, there is not yet standardized or widely accepted aging
biomarkers and mathematical model for quantifying BA10.
Methods proposed to quantify BA in units of years include

multiple linear regression (MLR)11, principal components analysis
(PCA)12, Hochschild method (HocM)13, Klemera-Doubal method
(KDM)2,9, machine learning (ML) algorithms14, and epigenetic age
calculators4,15–18. Other methods, including homeostatic dysregu-
lation (HD)19, allostatic load (AL)20, and polygenic risk scores
(PRS)21 algorithms have evolved to explore biological aging. In this
review, we aim to overview BA estimation processes covering the
biomarkers selection and the choice of mathematical models to
calculate BA. The performance of the different mathematical
models in predicting age-related adverse health outcomes is
compared, noting their benefits, drawbacks, and potential
solutions to overcome these limitations.

AGING BIOMARKERS
An aging biomarker is a physiological measure used alone or
combined with other variables to detect, diagnose, or forecast the
functional competence or function loss of any biological

component of a live organism in the absence of illness22. The
American Federation of Aging Research (AFAR) recommends the
following to select aging biomarkers23: (1) a biomarker should
predict the extent of aging and lifespan better than CA; (2) it should
control the primary mechanism that underlies aging, not be the
result of illnesses; (3) it can be tested multiple times without
harming anyone; (4) it can be effective in humans and experimental
animals. In other words, biomarkers for BA estimations must predict
the best lifetime than CA. Nevertheless, biomarkers that strictly
fulfill AFAR guidelines are not likely to exist24.
Nakamura and Miyao25 also proposed and tested four other

statistical approaches for aging biomarkers selection. According to
their standards, (i) an aging biomarker should correlate signifi-
cantly with CA cross-sectionally; (ii) the longitudinal change of an
aging biomarker with CA should concord with cross-sectional
correlation; (iii) there should be a significant steadiness of
individual variability in the measures; (iv) the part of change
caused by aging should be proportional to the variation in lifespan
among the concerned species.
Generally, researchers select two main types of aging biomar-

kers: those based on specific cellular level modification (cellular
biomarkers) and patient-level combining data from multiple
clinical tests (clinical biomarkers), according to their biological
role in the aging process. Typical methods of BA estimation as
suggested by Nakamura and Miyao25 standard (i) correlate11,26,27

and/or regress28,29 candidates’ biomarkers on CA to select the
significant ones according to established cut-off-points of their
effect sizes to determine aging biomarkers. However, in the Levine
method, biomarkers are selected based on their relationship with
death, while in HocM, biomarkers are selected based on their
association with life and death factors4,13.

Cellular biomarkers
Genomic biomarkers. BA can reflect the life expectancy of an
individual30. About a quarter of the variance in human longevity is
due to genetic factors31. Telomeres are protective chromosomal
ends of repeated DNA sequences bound by particular nucleopro-
teins and are lengthy at birth and diminish with each mitosis as
age increases32 Telomere shortening is theorized to facilitate the
physiological mechanism of aging33, longevity34, and death35.
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Genome-wide association studies (GWAS) including Catalog
lists 55 studies that revealed 676 genetic variants associated with
aging, aging characteristics, lifespan, and longevity36. The variants
of apolipoprotein (APO)E, and Forkhead box O3 A(FOXO3A) have
replicated almost constantly in various populations37,38. APOE is a
pleiotropic gene that has many functions including packaging
and transporting low-density lipoprotein cholesterol39. Its poly-
morphisms are determined by three alleles: ε2, ε3, and ε4 defined
by combinations of genotypes of the single nucleotide poly-
morphisms (SNPs) rs7412 and rs429358. APOE-ɛ2 is associated
with increased odds of longevity while ɛ3 and ɛ4 are associated
with shorter life expectancy37,38. Long-lived individuals often
have a lower frequency of ɛ4, and a higher frequency of ɛ2 or a
higher concentration of plasmatic APOE40 whereas careers of
APOE-ɛ4 alleles often have abnormal lipid levels41 and are more
at risk of Alzheimer’s disease, diabetes, and CVD42. Those diseases
might accelerate biological aging and increase the likelihood of
death which could explain the detrimental effect of APOE-ɛ4 on
longevity.
There are about 40 noncoding SNPs in FOXO3A that have

been repeatedly linked to longevity in humans43. FOXO3A is a
component of the nutrient-sensing pathway connected to
insulin and insulin growth factor (IGF)-1 regulates the cell
response to oxidative stress and nutrition availability. It
functions as a transcription factor on several homeostatic genes
in response to diminished insulin or IGF-1 signaling44. The
variants may boost FOXO3A to battle oxidative stress by
strengthening its links with upstream and downstream mole-
cular partners. In animal models, changes that affect these
signals can delay the aging process since this pathway controls
many facets of cell homeostasis, including cell survival
and proliferation44. Another example of genetic variation
associated with longevity is provided in the Supplementary
information file.
Polygenic risk score as a predictor of longevity: One method of

summarizing findings from GWAS for the prediction of complex
variables, like longevity, is through polygenic risk scores (PRS).
PRS are the weighted scores of independent variations that
represent the genetic risk to develop a phenotypic characteristic.
PRS for longevity can serve as a proxy indicator of biological
aging as higher PRS for longevity might forecast a slower
biological aging process and are associated with an increased
likelihood of longevity45 whereas high PRS of life-threatening
diseases are often associated with decreased odds of longevity46.
High PRS for longevity is associated with an increased likelihood
of healthy cognition aging and longer survival47 and is
negatively associated with metabolic syndrome48 and brain
aging process49. All these strengthen the idea that genetic
variation contributing to lifespan might regulate the biological
aging process.

Epigenetic biomarkers. Epigenetics is rapidly being recognized
as an important fragment of aging and longevity50. Epigenetic
modifications are theorized to facilitate the physiological
mechanism of aging and are used as biomarkers to quantify
BA33,51. Biomarkers based on DNA methylation (DNAm) which is
an epigenetic modification characterized by a chemical change
of genomic nucleotide bases52 met the various elusive criteria
for a cellular biomarker of aging: they apply to all sources of
DNA and across the CA spectrum53. Researchers apply ML
algorithms to measure DNAm modification in multiple tissues,
which enables the generation of highly accurate age estimators
called epigenetic clocks. Numerous epigenetic clocks have
emerged in recent years; the most popular ones are Hannum,
Horvath, Levine, and Lu clocks, and genes that are associated
with these four clocks’ age acceleration (AA) have been
identified. These genes include PIK3CB a gene related to
human longevity, CISD2 which has an important role in lifespan

regulation54, TET2 involved in many aging/regenerative phe-
notypes55, and IBA57 a protein-coding gene that is linked to
several disorders of mitochondrial malfunction56. The associa-
tion of at least one epigenetic clock with aging and/or
longevity-related genes suggests that epigenetic clocks might
be valuable biomarkers of biological aging.

Transcriptional biomarkers. The expression of many genes
exhibits age-related changes during growth and develop-
ment57 and studies that have constructed transcriptomic age
which is a BA from transcriptomic sources using these genes
have reported relatively good results (mean absolute error
(MAE)= 4.7 and 7.8 years)57,58. A previous study by Harries
et al.59 showed that the molecular pathways mostly involved in
the processing and maturation of messenger RNA transcripts
were strongly related to increasing CA, and identified a group of
six transcripts to distinguish successfully young and old people.
The transcriptomic age correlated strongly with CA but not to
the same extent as epigenetic clocks age in two studies57,60.
Although the transcriptomic age was not a significant predictor
of mortality in one study60, it was significantly related to
smoking, waist-to-hip ratio, and systolic blood pressure in
another study57. Furthermore, subjects with accelerated tran-
scriptomic age had increased levels of total cholesterol and
blood pressure57 whereas subjects with younger transcriptomic
age displayed younger biochemical indices such as IL-6, blood
urea, and serum albumin than their counterparts with older
BA61. All these highlight the relevance of transcriptomic
biomarkers in reflecting the biological aging state.

Clinical biomarkers
Individual deteriorations in system integrity are theorized to be
caused by molecular variations in aging, such as parameters that
combine information from multiple clinical tests are the most used
aging biomarkers to quantify BA33. Those parameters can be
biochemical, physical, mental, and functional parameters that
continuously vary with age62. The potential of metabolites and
proteins as biomarkers for BA estimation is provided in the
Supplementary information file. Table 1 presents some parameters
used to calculate BA across studies.

BA ESTIMATION METHODS
Multiple linear regression (MLR)
The MLR approach is widely used in small and large-scale
studies26,63. Using MLR, BA is assumed to be equal to the
predicted CA of an individual and based on the relationship
between the measured CA and several biomarkers11. Durbina et
al.64 provided an upgrade of MLR because of the distorted
estimation of BA at the regression edges (called systematic error)
with the equation below:

BAc ¼ BAþ z (1)

z ¼ CA�MeanCAð Þ ´ 1� bð Þ (2)

BA’s simple linear regression coefficient on CA is b; BAc is the
resulting BA after correction or improvement. MLR is easy to
perform and provides BA estimates that correlate significantly
with CA among healthy individuals (r > 0.80)29,63 and predicts
mortality among adults7. Nevertheless, MLR is criticized
because each biomarker’s weight effect depends on the
strength of its link with CA. MLR’s systematic error persists
despite its correction approaches; there is also a risk of
multicollinearity13, which can be overcome by excluding highly
intercorrelated biomarkers in the same model. Also, studies
comparing mathematical models reported MLR as not being the
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best for BA estimation because of the low power of its BA
estimates to predict adverse health events compared to other
models5,7,9,10,28.

Principal component analysis (PCA) method
PCA selects the least possible physiological parameters to quantify
BA12 and is widely used to estimate BA6,10,12,65. With PCA, BA
estimates are built in five phases: correlation analysis, constancy
analysis, redundancy analysis, PCA, and final equation construc-
tion65. The last step, which consists of the equation construction, is
built using the following equation66:

BAS ¼ a ´ X1 �Mean1ð Þ
SD1

þ b ´ X2 �Mean2ð Þ
SD2

þ :::::þm ´ Xm �Meanmð Þ
SDm

(3)

BAS, Meanm, SDm, m, Xm are BA score, the mean, standard
deviation, coefficient obtained by PCA, and the values of
biomarker m, respectively. It is suggested to transform BAS to
BA because the unit of BAS is not in a year using the following
equation66:

BA ¼ BAS ´ SDCAð Þ þMeanCA (4)

To avoid systematic error, BA is corrected using the following
equation:

BAc ¼ BAþ z z ¼ 2ð Þ (5)

Increasing evidence shows that the BA estimates resulting from
PCA can serve as an illness prediction tool to screen vulnerable
populations and monitor the aging degree67. As an example, BA
estimates resulting from PCA predicted metabolic syndrome68 and
reduced survival likelihood69 in different studies.
PCA is simple to understand and perform compared to ML,

HocM, and KDM67. PCA outclassed only MLR in predicting frail
individuals28 and has shown a good linear fit with CA with a mean
regression slope of 0.9610 and 15, respectively. However, MLR and
PCA share the same correction method by using z-scores to
correct the BAS, which has been found inappropriate because of
the persistence of the distortion of the BA estimates at regression
edges13. PCA limitations also include essential parameters
exclusion70, contributing to a loss of information71.

Hochschild’s method (HocM)
HocM consists of assessing biomarkers based on their influence on
lifespan and death. Hochschild72 chose physiological parameters
according to their sensitivity to CA found in previous studies,
“quality of life criterion”, their ability to adapt to the devised
instrument to quantify biomarkers, and their correlation with
mortality. To consider the selected parameters as biomarkers of
aging, they were correlated with the composite validation variable
(CVV) based on eight death risk factors grouped in smoking status,
diet, exercise level, lifespan, and education level72. Each risk factor
was assigned a particular weight and the risk factors scores were
standardized and combined into the mean validation variable
(MVV) following the equation below:

MVV ¼
Pn

i¼1 WiSFiPn
i¼1 Wi

(6)

where Wi and SFi are the weight and the standardized scores of
factor i and n is the total number of risk factors. CVV is obtained by
standardizing MVV72. HocM was the first to use the reverse
regression technic in the BA estimation process. In HocM, n linear
regression equations of biomarkers on CA replace multiple linear
regression of CA on biomarkers.

Yi ¼ di þ eiCA þfi Kð Þ (7)

i= 1 ~ n, K is height and the term in brackets is added only
when i designates a height-dependent biomarker such as forced
expiratory volume and forced vital capacity. Stepwise mathema-
tical procedures are performed to get the standardized BA (SBA),
an intermediate BA product. The final phase of HocM is to convert
the SBA to BA in years units. This is accomplished by employing a
concept similar to Stanford-IQ Binet’s index, which requires
selecting an arbitrary mean and standard deviation72. There is a
need for a cautious exploration of which subject’s death risk
factors will be included in CVV and a large sample size to apply
HocM to a newly developed system9. HocM is a challenging
multiple-stepwise approach that is not widely used for BA
estimation.

Klemera and Doubal method (KDM)
KDM is a graphing method developed by Klemera and Doubal2 to
compute BA. KDM uses the reverse regression technique
proposed in HocM for the BA estimation process in which CA is

Table 1. Parameters used to calculate BA across studies.

Clinical biomarkers Groups Parameters

Musculoskeletal Height6, waist circumference6, height and thigh circumference28, gait-handgrip strength28,
knee extension strength28, timed up and go28, gait speed28, chair rise28, hands bones62

Respiratory Forced expiratory volume25,28

Renal Estimated glomerular filtration rate6,28, Albumin26,63, creatinine26,63, Urea nitrogen6,26,28, uric
acid63

Cardiovascular Systolic blood pressure6,25,63, diastolic blood pressure28, cholesterol6,26,63, triglycerides6,26,
high-density lipoprotein cholesterol6, Low-density lipoprotein cholesterol26

Hepatic Aspartate aminotransferase6, gamma-glutamyl transpeptidase6, alkaline phosphatase6,26,63,
bilirubin

Red blood cells Hemoglobin6,28, hematocrit26, glycated hemoglobin63

White blood cells and immune Immunoglobulin M26, β2-microglobulin26, white blood cell count63, C-reactive protein63

Cellular biomarkers Genome Telomere length34,64, (rs8176719, rs687621, rs643434, and rs505922)65, (APOE-ɛ2, APOE-ɛ3, and
APOE-ɛ4)38,66, (rs2069837 and rs2440012)67, rs2802292, (rs2764264 and rs13217795)

Epigenome Hannum clocks15, Horvath clocks16, Levine clocks4, and Lu clocks17

Transcriptome (LRRN3, CD27, GRAP, CCR6, VAMP5, CD248, D248, ABLIM1, LRRN3, CD27, GZMH, FAM102A,
NELL2, SERPINE2, LEF1, CCR7 etc…)57,59,61
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used as a standard biomarker, not an outcome to be predicted,
enabling a substantial improvement in BA estimates’ precision.
The following equation was formulated using many mathematical
steps2:

BA ¼
Pn

i¼1 xi � gið Þ his2i þ
E
s2DPn

i¼1
hi
si

� �2
þ 1

s2D

(8)

E stand for CA, xi is the value of biomarker i, gi, hi, si is the
regression slope, the intercept, and the root mean squared error
(RMSE) from a regression of i on CA, and s2D is equal to the variance
in CA explained by the n biomarkers. BA equations are built using
computer-generated simulations; this advanced concept makes
KDM an optimal method for BA estimation2. Studies that have
compared BA estimates resulting from KDM and other models in
mortality prediction found that KDM was an excellent method to
compute BA than the previous algorithms5,7,10,28 but recent
algorithms such as HD and ML outperformed KDM in predicting
various health outcomes including mortality20,73.

Machine learning (ML) approaches for BA estimation
The ML approach, a generic artificial intelligence technique in
which a computer learns data using a specially developed
algorithm or without one is rapidly emerging and encourages
biological aging and longevity research74. ML can be supervised,
unsupervised, and semi-supervised. Table 2 represents the ML
algorithms used to compute BA in some studies. ML algorithms
are broad and have provided relatively reliable BA estimates with
prediction accuracy of 0.87–4.76 years and R2 of 0.25–0.9473,75. ML
algorithms are useful for big data and estimating BA from non-
conventional parameters, including radiograph76 and magnetic
resonance imaging results77. Nevertheless, they are subjected to
some limitations: there is not yet a specific algorithm in ML
specially dedicated to BA estimation; also, many ML algorithms
have a “black box” effect that prevents a systematic under-
standing of the relationships between features and labels, as well
as how they are estimated78. In this scenario, traditional statistical
tools and comprehension of medical or biological topics are
helpful. Also, there is a risk of overfitting with many biomarkers in
the same model79. Recently Yang et al.80 suggested a composite
ML-BA based on the stacking technique with a simple meta-model
to avoid overfitting and improved the performance of the BA
estimates in predicting different health outcomes80. A brief
description of the stacking method is provided in the Supple-
mentary information file.

Epigenetic age calculators
First-generation epigenetic clocks. Hannum, Horvath, Levine, and
Lu clocks are the most popular clocks that estimate epigenetic
age, which is BA from DNA sources. Hannum clock is the first-
reported trained and tested clock based on blood-derived DNA.
Hannum’s epigenetic age model was built using ENR analysis. It
encompasses 71 CpGs chosen from the Illumina 450k array, which
powerfully captures CA variations, partly driven by age-related
shifts in blood cell composition15.
The Horvath clock was built using several tissues, including the

blood data from Hannum as a likely “pan-tissue” master clock of
CA, and focused on catching common changes independent of
tissue type. The Horvath epigenetic age model was built using
ENR analysis. It encompassed 353 CpGs on the previous Illumina
27k array16. Horvath’s epigenetic age can be estimated using an
online age calculator (http://dnamage.genetics.ucla.edu/home). A
study reported Horvath’s epigenetic age performing Hannum in
correlation with CA81 whereas another study reported Hannum’s
epigenetic age as having the highest correlation with CA82.

Second-generation epigenetic clocks
DNAm PhenoAge: Levine et al.4 built a BA model using

biomarkers from the whole blood sample of individuals in
NHANES III. The hazard of death due to aging was regressed on
44 clinical parameters and CA in a Cox penalized regression model
for choosing ten variables to include in their epigenetic age model
called phenotypic age. The ten parameters were encompassed in
a parametric proportional hazards model based on the Gompertz
distribution. Based on that model, individuals’ 10 years of death
hazard were estimated. Subsequently, the death score was
transformed into years4. Using ENR analysis, the phenotypic age
estimates were regressed on DNAm data. The penalization
parameter has been selected to lessen the cross-validated
mean-square error rate, resulting in 513 CpGs. The PhenoAge is
strongly correlated with CA (r= 0.94) and outclasses earlier
epigenetic clocks in predicting all-cause death, malignancies,
healthspan, Alzheimer’s disease4, and breast cancer83.
DNAm GrimAge: DNAm GrimAge is a composite biomarker

based on seven DNAm substitutes and an estimator of the self-
reported number of cigarettes smoked yearly based on a DNAm
developed by Lu et al.17. The GrimAge was constructed in two
steps. The first was to define surrogate DNAm biomarkers for
physiological stressors and risk variables and the second step
consisted of integrating these biomarkers to create DNAm
GrimAge, a single composite biomarker of longevity that is
expressed in years using elastic net Cox regression17. The authors

Table 2. ML algorithms used to compute BA in some studies.

Studies ML algorithms

Putin et al.80 Gradient boosting machine (GBM), random forest (RF), decision trees (DT), k-nearest neighbors (KNN),
elastic net regression (ENR), Support vector machine (SVM)

Rahman et al.81 Deep neural network (DNN), convolutional neural network (CNN), convolutional long short-term
memory

Egorova et al.82 RF, SVM

Sagers et al.83 RF

Galibourg et al.84 AdaBoost, Bayesian ridge regression (BRR), DT, KNN, multi-layer perceptron (MLP), polynomial
regression (POLYREG), RF, SVM, voting regressor

Wang et al.78 ENR, SVM, partial least squares, extreme gradient boosting (Xgboost)

Bae et al.85 POLYREG, SVM, Xgboost, DNN, RF

Yang et al.86 Xgboost, Catboost, Adaboost, Extra Trees, DNN, CNN, Light gradient boosting machine

Pyrkov et al.14 CNN

Levine et al.4, Hannum et al.15, Horvath16,
Belsky et al.18

ENR
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further developed GrimAge 2 following the same steps as in the
previous GrimAge with the difference that they added two
plasmatic biomarkers: CRP and hemoglobin AIC which were log-
transformed84. The GrimAge 2 estimation approach is implemen-
ted in an online software (https://dnamage.clockfoundation.org/).
The GrimAges outperformed the previously reviewed clocks and
clinical biomarkers related to BA in predicting aging-related
ailments and all-cause death60,85,86.

Third-generation epigenetic clocks
Dunedin pace of aging (PA) methylation: Belsky et al.18

developed DNAm-related PA using the data from Dunedin cohort
participants who had 18 biomarkers measured in three waves (age
26, 32, and 38) and who had DNAm data available at age 38. They
applied ENR using the PA (please see the Supplementary
Information file for PA estimation method description) as the
criterion variable and all methylation probes found on both the
Illumina 450k and EPIC arrays as predictors. A total of 46 CpG sites
was associated with the longitudinal PA and the resulting Dunedin
PA methylation was more strongly associated with aging-related
ailments than PA18.
Dunedin Pace: Dunedin Pace measure differed from Dunedin

PA methylation in four points: (1) PA analysis included data from
20 years of follow-up; (2) PA analysis included four-time points of
measurement; (3) Dunedin Pace modeling excluded CpG sites for
which probes having low reliability in blood datasets; and (4) the
algorithm used to implement Dunedin Pace includes a normal-
ization step that allows Dunedin Pace values for individual
samples to be compared to the Dunedin87. The final Dunedin
Pace algorithm included 173 CPG sites. It has a high reproduci-
bility with the intraclass correlation (ICC) greater than 0.87 across
databases which enables it to be used as a reliable measurement
tool for aging intervention trials87.
Advantages and limitations of epigenetic clocks and age

estimators: The epigenetic age estimates have yielded impress-
ively robust correlations with CA with minimal variance and great
consistency across multiple age groups and studies’ populations88.
However, epigenetic age calculators have some limitations:
instead of limiting the set to biologically important pathways,
epigenetic age calculators take hundreds of CpGs as input. As a
result, they are not as informative to identify intervention targets
or molecular pathways. In addition, epigenetic clocks often have
low reliability with the ICC in the poor to moderate range89,90,
resulting in up to 3 to 9 years difference between technical
replicates and providing false positive or negative associations90.
To overcome this limitation, Higgins-Chen et al.90 proposed and
trained epigenetic clocks using principal components instead of
individual CpGs which contributed significantly to clock reliability
improvement with ICCs 0.990–0.99890.

OTHER MEASURES OF BIOLOGICAL AGING
Homeostatic dysregulation (HD) algorithm
HD offers an alternative to exploring biological aging and has
been used for that purpose across studies8,27,91,92. Subjects’ HD
shows the variation of their physiology from a reference in good
health based on a biomarker Mahalanobis distance (MD)92. MD is
the multidimensional distance of an individual’s biomarkers values
from a single reference point93. A higher HD score reflects a higher
BA, risk of illness, incapacity, and death, while a smaller HD score
reflects the opposite. HD does not assume any unidirectionality of
aging biomarkers relationship with CA and does not incorporate
CA into its calculation8.
Before calculating HD, a reference population should be

defined; in some cases, the reference is the mean of all values,
however, in other cases is theory-driven, such as the mean of
values in a young, healthy population representing the maximum

of reproductive fitness. Then, biomarker values from the reference
population should be standardized and used to calculate a
biomarker variance-covariance matrix. The biomarker raw mean
and SD, and the standardized-biomarker variance-covariance
matrix should be applied within the Mahalanobis distance
equation to obtain the HD algorithm93:

HD1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw*� y

*ÞT ´ S�1 ´ ðw*� y
*Þ

q
(9)

w
*
is a vector of biomarkers values of a subject in the study; y

*
is

a vector of biomarker means in the reference sample, and S is the
reference sample variance-covariance matrix. If none of the
parameters are correlated, the HD score is obtained by scaling
each biomarker by its variance and adding the deviance squared
for each biomarker93.

HD2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

wi � yið Þ2
SD2 xið Þ

s
(10)

SD2(xi) is the variance of biomarker i, and n is the number of
biomarkers. HD estimates have predicted morbidity, mortality, and
functional deficit8. A study reported that HD estimates out-
performed KDM in predicting mortality94 whereas another study
showed that KDM outperformed HD33. The HD algorithm has
limitations: the statistical distance depends on detecting a normal
biological state, often calculated as the population average for all
parameters, a reasonable imperfect estimate. Finding the ideal
centroid is not easy; therefore, the dysregulation score could be
systematically biased91.

Allostatic load algorithms
The AL is wear and tear on the body and brain caused by
persistent overactivity or inactivity of biological systems that are
often involved in response to environmental stimulus95. While AL
has been often used to explore how physiological stress
influences different outcomes, Hasting et al.20 demonstrated that
AL and primary measures of biological aging such as KDM and HD
share similarities in their fundamental concepts: Similar to
biochemistry parameters of systemic BA, AL assessment incorpo-
rates systemic biomarkers to form a measure of cumulative
dysregulation; furthermore, AL theory is theoretically relevant for
BA processes because psychosocial stress can accelerate the
progression of several aging signs. The authors further estimated
AL scores using three methods as well as calculated two measures
of biological aging using KDM and HD. The three different AL
estimates had a moderate correlation with KDM-BA (r= 0.34–0.39)
and a moderate to stronger correlation with HD estimates
(r= 0.46–0.68), suggesting that the three estimates might share
some similarities in reflecting the aging process. Subjects with
higher AL and HD scores and KDM-BA performed worse on
physical agility tests and reported being in worse physical and
mental health. Through these, AL might be considered a proxy
measure of biological aging. There are over 30 methods of AL
estimation which were reviewed in a recent literature review96.

Polygenic risk score algorithms
A polygenic risk score is a weighted score of independent variants
that quantifies the genetic likelihood of developing a certain trait.
PRS is typically calculated as follows:

PRSi ¼
XM

j
ESj � Dji (11)

M is the number of variants in the score, the effect size (ES) of the
variants j, and dosage (Dji) is the number of copies of SNP j in the
genotype of individual i. The ES is often gotten from a discovery
GWAS21. Other variations of the classical method of PRS46,97 have
been proposed and software was developed to facilitate PRS
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calculation98. The step-by-step construction of polygenic scores
has been reviewed in a recent study99.

SUMMARY OF BIOLOGICAL AGING ESTIMATION ALGORITHMS
Although each method has its advantages and limitations, all the
BA estimates from the reviewed BA estimation methods have
relatively good prediction power of various health outcomes than
CA in many studies. Table 3 represents the summary of the BA
estimation algorithms.

DISCUSSION
Biomarkers selection is an integral part of the BA estimation
process, and the standards for biomarkers selection vary depend-
ing on BA estimation methods and researchers. Furthermore,
many BA estimation approaches presume a linear relationship
between biomarkers and CA. A linear model presupposes a
constant increase or decrease of the biomarkers’ values over time
which might not accurately reflect the complex aging process
taking place in the body. In reality, aging can occur at different
rates for different individuals and in different parts of the body100

making the assumption of linearity difficult to establish.

Additionally, many aging biomarkers such as telomere length or
clinical parameters are influenced by a multitude of factors that
are not necessarily linked directly to age, such as lifestyles, stress,
and genetic predisposition. Thus, relying on a linear relationship
between biomarkers and age may not accurately capture the true
relationship between them. Furthermore, there is an increasing
body of evidence showing a linear and non-linear variation of
proteins, clinical biomarkers composites, and gene expression
throughout the life course in healthy and general popula-
tion75,101,102. Lehallier et al.102 reported a non-linear variation of
more than two thousand plasmatic proteins across the lifespan in
both healthy humans and mice and in human replication cohorts.
The authors further pinpointed hundreds of proteins varying in
waves throughout the lifespan and summing the number of
differentially expressed proteins at each age revealed three peaks
at ages 34, 60, and 78. Additionally, there was a statistically
significant overlap between proteins altering in the three age
groups but the majority of proteins altering in old age were not
identified by the linear model102. These results highlight the
inadequacy of linear modeling to capture the complexity of
biological aging across the lifetime. Thus, relying only upon a
linear association assumption of parameters and CA to select
aging biomarkers might exclude potentially valid aging

Table 3. Summary of the BA estimation algorithms.

Methods Merits Limitations

MLR MLR is easy to understand and perform -Each biomarker’s weight effect depends on the power of its
relationship with CABA estimates from MLR are relatively reliable and have

good prediction power

-Distortion of BA estimates at the regression edges (systematic
error)

-Risk of multicollinearity

PCA PCA is easy to understand and perform -The exclusion of important parameters

It solves the major limitation of MLR -Loss of information due to parameters dimensionality reduction in
PCA

PCA-BA estimates are effective in illness prediction to
screen vulnerable populations and monitor the aging
degree

-Inadequacy of the proposed correction

HocM HocM avoids distortion of BA estimates at the regression
edges (systematic error)

There is limited information on HocM because that approach is not
widely used

HocM considers CA as an independent variable HocM is difficult to be implemented in systems other than its
author’s own

KDM It considers CA as a standard biomarker

It solves the major limitations of MLR

BA estimates resulting from KDM are highly predictive
of illnesses, impairments, and mortality

ML ML is useful for big data and non-usual parameters There is limited evidence that ML methods are better than
conventional methods

Risk of overfitting

There is not yet an explicit algorithm in ML mainly dedicated to BA
estimation

Epigenetic age
calculators

Epigenetic age calculators provide BA estimates that
correlated highly with CA

-Epigenetic age calculators take hundreds of CpGs as input instead
of limiting the set to biologically important pathways limiting their
ability to identify intervention targets or molecular pathwaysEpigenetic age calculators use DNAm clocks as

biomarkers -DNAm clocks have low reproducibility

-Risk of overfitting

They are highly predictive of illnesses and mortality

HD HD does not assume the unidirectionality of aging
biomarkers’ relationship

Finding the ideal centroid is not easy, making the dysregulation
score biased systematically

HD does not incorporate CA into its calculation

HD estimates are highly predictive of morbidity,
mortality, and functional deficit
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biomarkers that have a non-linear association with CA and result
in inaccurate BA estimates. Therefore, both linear and non-linear
associations of parameters and CA are worth exploring in the
biomarker’s selection process.
Progress in technology and easy data accessibility through

open-access databases have contributed to an increased number
of studies exploring biological aging. To date, the National
Institute on Aging has listed over 20 publicly available databases
for aging-related research103, and their data have been extensively
used in biological aging investigations. All these have not only
enabled the identification of complex age-related patterns of
potential aging biomarkers75,102 but have also raised some
concerns about the data quality. There is a lack of standardized
measurement methods making it difficult to compare and
contrast results from different studies. For example, methods
commonly used in large epidemiological studies for telomere
length measurement are frequently associated with substantial
measurement error104. As a result, even when results are
consistent and of high quality, they may be difficult to compare
between laboratories. A recent study dropped telomere length
from its list of biomarkers to be used for biological aging
exploration because of the yet-unresolved field-wide controver-
sies about its measurement105; these highlight the need to
develop standardized biomarkers measurement tools.
In this study, we have summarized current knowledge on aging

biomarkers and BA estimation methods as well as discussed their
performances in predicting numerous age-related diseases, their
advantages, shortcomings, and potential solutions to overcome
those shortcomings. The validity of the BA estimates highly
depends on the choice of biomarkers and the method applied for
its calculation. Previous studies have assessed the utility of
different biomarkers and BA estimation methods have identified
the best mathematical model based on the association between
its BA estimates and CA and its capacity to predict various health
outcomes compared to others. However, the constancy of the
predictive ability of these BA estimates is inconclusive across
multiple studies because the model that correlated the best with
CA and/or predicts various outcomes in one study might fail in
another study. Therefore, there is a need to clarify which
parameter(s) and mathematical model might provide a trust-
worthy indicator of biological aging.
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