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Identification of potential blood biomarkers for early diagnosis
of Alzheimer’s disease through immune landscape analysis
Daichi Shigemizu 1,2✉, Shintaro Akiyama1, Risa Mitsumori1, Shumpei Niida3 and Kouichi Ozaki 1,2✉

Mild cognitive impairment (MCI) is a clinical precursor of Alzheimer’s disease (AD). Recent genetic studies have reported on
associations between AD risk genes and immunity. Here, we obtained samples and data from 317 AD, 432 MCI, and 107 cognitively
normal (CN) subjects and investigated immune-cell type composition and immune clonal diversity of T-cell receptor (TRA, TRB, TRG,
and TRD) and B-cell receptor (IGH, IGK, and IGL) repertoires through bulk RNA sequencing. We found the proportions of plasma
cells, γδ T cells, neutrophils, and B cells were significantly different and the diversities of IGH, IGK, and TRA were significantly small
with AD progression. We then identified a differentially expressed gene, WDR37, in terms of risk of MCI-to-AD conversion. Our
prognosis prediction model using the potential blood-based biomarkers for early AD diagnosis, which combined two immune
repertoires (IGK and TRA), WDR37, and clinical information, successfully classified MCI patients into two groups, low and high, in
terms of risk of MCI-to-AD conversion (log-rank test P= 2.57e-3). It achieved a concordance index of 0.694 in a discovery cohort and
of 0.643 in an independent validation cohort. We believe that further investigation, using larger sample sizes, will lead to practical
clinical use in the near future.
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INTRODUCTION
Mild cognitive impairment (MCI) is an intermediate stage of
cognitive impairment between normal aging and dementia and is
associated with an increased risk of developing clinically probable
Alzheimer’s disease (AD)1–3. The annual conversion rate from MCI
to AD is approximately 10% to 15%4, and most MCI patients
convert to AD within 5 years from diagnosis (i.e., they are MCI
converters: MCI-C)5,6; however, some MCI patients remain stable or
convert back to being cognitively normal (CN) (i.e., they are MCI
non-converters: MCI-NC)7. There are four drugs approved by the
US Food and Drug Administration (FDA) for the management of
cognitive impairment and dysfunction in symptomatic AD (three
cholinesterase inhibitors: donepezil, rivastigmine, and galantha-
mine, and a glutamate regulator: memantine), although they can
only help lessen symptoms, such as memory loss and confusion8.
Currently the FDA has only approved aducanumab as a therapy
drug for AD9. However, the current best strategy is to delay
disease progression to reduce the number of patients who
ultimately develop AD10. Therefore, promising biomarkers for early
detection of MCI-C are urgently required because the accurate
prediction of MCI-to-AD conversion would enable earlier inter-
ventions for MCI-C patients, which could lead to a reduction in
MCI patients at high risk for converting to AD.
The most common multifactorial neurodegenerative disease,

AD is induced by a complex interaction between genetic and
environmental factors. The heritability of AD—that is, the
presence of genetic risk factors—is estimated to be 60% to
80%11. A large number of genetic factors undoubtedly contribute
to the etiopathogenesis and progression of AD, and some of them
have been identified via whole-genome sequencing analyses12,13

and genome-wide association studies14–16. The AD risk genes are
implicated in the immune response (CLU, CR1, CD33, EPHA1,
MS4A4E/MS4A6A, ABCA7, PTK2B, TREM2, and TREML2), endocytosis

(BIN1, PICALM, and CD2AP), and lipid processing (APOE, ABCA7, and
SORL1)17,18. Thus, a large percentage of the detected AD risk genes
are associated with immunity. In addition, recent clinical observa-
tions have revealed that neutrophils, essential for executing the
acute inflammatory response, contribute to AD pathogenesis and
cognitive impairment19,20. Therefore, there is consensus that the
immune system is intimately involved in AD pathology, but it has
yet to be established which components of the immune system
actively contribute to its development.
The human adaptive immune system provides protection

against an enormous variety of pathogens. The protection is
mediated by receptors on the surfaces of T cells (TCRs) and B cells
(BCRs). The complementarity determining region 3 (CDR3) of TCRs
and BCRs is the main determinant of specificity for antigen
recognition21. The diversity of the TCR and BCR repertoires is
established during development through recombination of
variable (V), diversity (D), and joining (J) genes (VDJ recombina-
tion) and gene insertion/deletion22,23. Previous studies have
reported that the repertoire diversity plays a critical role in several
diseases, including cancers24, autoimmune diseases25, and neuro-
degenerative diseases26.
High-throughput next-generation sequencing platforms

enable a comprehensive assessment of the TCR and BCR
repertoires, and various methodologies have been developed
for the analysis of TCR and BCR repertoires from bulk RNA
sequencing (RNA-seq) data (e.g., MiXCR27 and TRUST428). Here,
we performed large-scale RNA-seq transcriptome analyses using
a large number of samples from persons with AD or MCI or who
were CN, to detect blood-based biomarkers for early AD
diagnosis. We investigated the differences in immune-cell type
composition and immune clonal diversity of TCR and BCR
repertoires using bulk RNA-seq data of samples with the three
phenotypes (AD, MCI, and CN). We further characterized
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differentially expressed genes (DEGs) in the RNA-seq data
between MCI-C and MCI-NC samples (i.e., prospective data).
Prognosis prediction models were applied to the prospective
data based on clinical information (age, sex, and APOE ε4
genotypes) and combinations of the immune-related biomarker
candidates. Our final prognosis prediction model—composed of
two immune repertoires (IGK and TRA), one DEG (WDR37), and
clinical information—successfully classified the MCI patients in
an independent validation cohort into two groups, high and low,
in terms of risk of MCI-to-AD conversion. We believe that further
investigation, using a larger sample size, will contribute to future
practical clinical use in healthcare.

RESULTS
RNA-sequencing data
The study included 856 samples: 317 AD, 432 MCI, and 107 CN.
The average ages of the individuals from whom the AD, MCI, and
CN samples were obtained were 79.3 years (SD= 5.6 years), 76.9
years (SD= 6.2 years), and 70.8 years (SD= 5.7 years), respectively,
and the percentages of male subjects were 31, 42 and 51,
respectively. RNA-seq analysis was performed on all samples by
using the Illumina NovaSeq6000 platform. Averages of 42.9, 42.8,
and 44.9 million raw read sequences were obtained from the AD,
MCI, and CN samples, respectively, of which >99.5% were high
quality (>Q20). After low-quality read sequences and trimmed
reads with adaptor sequences were discarded, >42.3 million reads
of cleaned data remained, of which >82.5% were uniquely
mapped to the human reference genome (GRCh37) in the three
phenotype groups (Table 1).

Immune-cell type composition
We used the RNA-seq data to compare cell-type distribution
among the AD, MCI, and CN samples. CIBERSORT29 estimated the
relative proportions (as TPM) of 12 major types of immune cells
(see Methods) in each sample. Statistically significant differences
in cell-type proportions among the three phenotypes were
assessed with the Jonckheere–Terpstra trend test. Of the 12
immune-cell types, four showed statistically significant differences
among the three phenotypes at a false discovery rate (FDR) < 0.05.
The proportions of plasma cells, γδ T cells, and neutrophils
were significantly increased in AD progression (plasma cells, 0.026;
γδ T cells, 0.034; neutrophils, 0.0024; Fig. 1) and the proportion of
B cells was significantly decreased in AD progression (B cells,
0.0048; Fig. 1). We also examined the differential composition of
immune-cell type among the three phenotypes by using MCP-
counter30, but CIBERSORT detected more significant immune-cell
types than MCP-counter (T cells, 0.002; B lineage, 0.016;
Supplementary Fig. 1).

Clonal diversity of T-cell receptor and B-cell receptor
repertoires
The adaptive immune system is organized into two classes of
specialized lymphocytes, T cells and B cells, which generate
repertoires of T-cell receptors (TCRs) and B-cell receptors (BCRs)
with sufficient diversity to recognize the universe of potential
pathogens. We investigated if there were differences in propor-
tions and diversities of TCR and BCR repertoires both at older ages
and with AD progression. TRUST4 software28 estimated the
proportions and diversities of 4 TCR (TRA, TRB, TRG, and TRD)
and 3 BCR (IGH, IGK, and IGL) repertoires from bulk RNA-seq in
each sample (see Methods). A linear regression model was used to
identify statistically significant increases or decreases in the

Table 1. Statistical summary of mapping resultsa.

Characteristic AD MCI CN

Raw reads, n 42,851,964 ± 11,727,451 42,755,728 ± 12,595,261 44,883,385 ± 10,635,281

Q20, % 99.60 ± 0.47 99.53 ± 0.58 99.62 ± 0.44

Cleaned raw reads, n 42,378,025 ± 11,785,689 42,442,969 ± 12,532,294 44,241,452 ± 10,721,761

Unique mapped reads, % 82.54 ± 3.95 82.51 ± 3.85 82.77 ± 3.79

Multiple mapped reads, % 13.90 ± 3.68 14.05 ± 3.38 13.38 ± 3.49

AD Alzheimer’s disease, MCI mild cognitive impairment, CN cognitively normal.
aAll values are mean ± SD.

Fig. 1 Proportions of the 12 major immune-cell types among samples from patients in each group (AD, MCI, and CN). Comparison of cell
types among samples from patients with Alzheimer’s disease (AD), mild cognitive impairment (MCI), and normal cognition (CN) (*FDR < 0.05,
Jonckheere–Terpstra trend test). Data are represented as box and whisker plots, depicting minimum, lower quartile (Q1), median (Q2), upper
quartile (Q3), and maximum values.
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proportion and clonal diversity of TCR and BCR repertoires among
ages and among phenotypes. Although no statistically significant
differences were seen in the proportions of the TCR and BCR
repertoires at older ages (Fig. 2a) or with AD progression (Fig. 2b),
statistically significant decreases were observed in the diversities
of their repertoires both at older ages (Fig. 3a) and with AD
progression (Fig. 4a). The diversities of TCR repertories were
significantly smaller at older ages in both sexes (Fig. 3b), whereas
those of BCR repertories were significantly smaller at older ages
only in male subjects at an FDR < 0.05 (IGH, 0.01; IGK, 5 × 10−4; IGL,
0.02; Fig. 3c). These results indicated that age and sex were
associated with the diversities of TCR and BCR repertoires.
Therefore, when assessing the associations of the diversities of
their repertoires in patients with AD, we used a linear regression
with adjustment for age and sex, and we found that the diversities
of IGH, IGK, and TRA were statistically significantly smaller in those
with AD progression at an FDR < 0.05 (IGH, 0.006; IGK, 0.016; TRA,
0.003; Fig. 4b, c).

Identification of differentially expressed genes
Of the 432 MCI patients whose samples were used in RNA-seq
analysis, 145 were followed for at least 6 months and up to
6 years (mean ± SD, 896.0 ± 468.2 days), during which time 52
(35.86%) converted to AD (i.e., were classified as MCI-C), and the
remaining 93 MCI patients (64.14%) were classified as MCI-NC.
The average ages of the MCI-C and MCI-NC subjects were 76.4
years (SD= 5.6 years) and 76.9 years (SD= 6.3 years), and the
percentages of male subjects were 37 and 42, respectively (Table
2). To identify biomarker candidates for early AD diagnosis, we
examined DEGs between MCI-C and MCI-NC samples from
19,702 genes with a threshold of counts per million reads
mapped (CPM) > 1 in more than one-fourth of all sequenced
samples using the ‘exactTest’ function in edgeR. Although no
DEGs were statistically different between groups (i.e., FDR < 0.05
and fold change > 1.2), we focused on two candidate genes, with
Entrez Gene IDs, showing suggestive associations (i.e., FDR < 0.2
and fold change > 1.2: SPCS1, FC= 1.28, P= 1.43 × 10−5, FDR=
0.11; WDR37, FC= 1.30, P= 9.56 × 10−5, FDR= 0.11). The expres-
sion of these candidate genes was then validated in brain tissues
as well as peripheral blood mononuclear cells from the Human
Protein Atlas database31, which provides quantitative transcrip-
tomics at the tissue and organ level and is publicly accessible at
http://www.proteinatlas.org (Fig. 5a). We also examined the
differential composition of immune-cell type and clonal diversity
of TCR and BCR between MCI-C and MCI-NC samples, but no
statistically significant differences were observed between the

groups in the composition of immune-cell types and clonal
diversity of TCRs and BCRs at a false discovery rate (FDR) < 0.05
(Supplementary Table 1).
To validate our RNA-seq results, we used quantitative RT-PCR

(qRT-PCR) analysis and evaluated the candidate genes detected
(SPCS1 and WDR37) by comparing the expression of 10 randomly
selected MCI-C samples to those of 10 randomly selected MCI-NC
samples. The SPCS1 gene was not validated by the qRT-PCR
(Welch’s t-test P= 0.75), whereas qRT-PCR showed a modest
association for the WDR37 gene (Welch’s t-test P= 0.063, Fig. 5b).
Because WDR37 may play a key role in cholesterol biosynthesis32,
we investigated high-density lipoprotein (HDL) cholesterol, low-
density lipoprotein cholesterol, non-HDL cholesterol, total choles-
terol, and triglycerides measured in routine blood tests, but no
statistically significant differences in these markers were found
between MCI-C and MCI-NC samples (Fig. 5c). We further assessed
associations between genetic variants on the WDR37 gene
(chr10:1102325 to 1178312) and MCI-to-AD conversion by using
whole-genome sequencing data of 10 MCI-C and 17 MCI-NC
samples, downloaded from the National Center for Geriatrics and
Gerontology (NCGG) Biobank database. Statistically significant
differences in the 271 genetic variants detected, 245 single
nucleotide variants (SNVs) and 26 insertions/deletions (indels)
between MCI-C and MCI-NC samples were assessed with the
Fisher’s exact test, but no statistically significant associations were
observed between MCI-C and MCI-NC samples in the genetic
variants (Supplementary Table 2).

Prognosis prediction model construction
We examined blood-based biomarker candidates for early AD
diagnosis through immune-cell composition, immune repertoire,
and DEG analyses. In order to detect potential biomarkers from
the candidates, we attempted to establish prognosis prediction
models using clinical information (age, sex, and APOE ε4 genotype)
and a combination of candidate markers (i.e., plasma cells, γδ
T cells, neutrophils, and B cells from immune-cell compositional
analyses; IGH, IGK, and TRA from the immune repertoire analyses;
and WDR37 from the DEG analyses). Prognosis prediction models
were applied to a discovery cohort of 73 subjects (26 MCI-C and 47
MCI-NC). Four-fifths of the entire discovery cohort data was used
for the model construction with a Cox proportional hazard model.
The remaining fifth of the entire discovery cohort was used for the
evaluation of the adjusted model. We used the average C-index to
detect potential biomarkers. The highest C-index was observed in
the fivefold cross-validation of the discovery cohort when three
candidates (IGK, TRA, and WDR37) were used. Our final prognosis

Fig. 2 Proportion of TCR and BCR repertoires among ages and among phenotypes. Radar chart showing the proportions of the TCR and
BCR repertories among ages (a) and among phenotypes (b).
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prediction model was constructed from these three potential
biomarkers and clinical information using the entire discovery
cohort. The adjusted model was then evaluated on a validation
cohort of 72 subjects (26 MCI-C and 46 MCI-NC), which was
completely independent from the discovery cohort. Our final
model achieved a C-index of 0.694 in the discovery cohort and of
0.643 in the validation cohort (Fig. 6).
We further calculated a prognostic index assigned to each

patient by applying the three potential biomarkers and clinical
information to our prognosis prediction model. Based on the
prognostic index, we divided samples of the discovery cohort into
high- and low-risk groups. The optimal cutoff value was detected
by using the minimum log-rank trend test P-value and comparing
the differences in MCI-to-AD conversion–free survival as deter-
mined by Kaplan-Meier curves (optimal cutoff= -0.0969, mini-
mum P= 1.94 × 10−4, Fig. 6a). This adjusted model was then able
to successfully classify MCI patients in the validation cohort into
low and high groups in terms of risk of MCI-to-AD conversion (log-
rank test P= 2.57 × 10−3, Fig. 6b).

DISCUSSION
Although blood-based biomarkers for early diagnosis have been
examined in many diseases, including AD33–35, there have been no
robust and reliable blood biomarkers discovered that are used in
routine clinical practice for AD so far. As a powerful approach to
detect blood-based biomarkers, next-generation RNA-seq in
human peripheral blood mononuclear cells allows a comprehen-
sive analysis of the entire transcriptome, but many of the previous
studies used only a small number of samples, especially for AD.
Most MCI patients convert to AD within 5 years of diagnosis

(MCI-C)5,6; however, some MCI patients remain stable or convert
back to being cognitively normal (MCI-NC)7. If accurate biomarkers
that can classify MCI patients into low and high risk of MCI-to-AD
conversion exist, it would enable early and targeted interventions
for MCI-C patients, which could lead to a reduction in MCI patients

at high risk for converting to AD. To detect potential blood-based
biomarkers that could be used for early AD diagnosis, we
performed comprehensive RNA-seq analysis with a large number
of samples. We investigated the differences in immune-cell type
composition and clonal diversity of TCR and BCR repertoires
through bulk RNA-seq data from patients with AD, MCI, and CN. Of
12 major immune-cell types, four (B cells, plasma cells, γδ T cells,
and neutrophils) had a significantly higher or lower cell-type
proportion among the three phenotypes. It has been reported
that neutrophils contribute to AD pathogenesis and cognitive
impairment19,20, and the proportion of neutrophils might have the
potential to be a blood biomarker of early AD diagnosis. However,
the proportions of the remaining three cell types were very low in
all samples, making it difficult to determine whether they were
truly associated with the AD progression.
Age has been associated with a decrease in diversity of the TCR

and BCR repertoires36,37, and our RNA-seq data analyses
confirmed this. However, our data further showed that the
diversity of BCR repertories was significantly lower at older ages
only in males, whereas that of TCR repertoires showed statistically
significant decreases at older ages in both sexes. In addition, we
found that the diversity of IGH, IGK, and TRA was significantly
lower in those diagnosed with AD, and a DEG (WDR37) showed a
suggestive difference between MCI-C and MCI-NC samples. These
results support the idea that the immune system could be used
effectively for early prediction of AD diagnosis.
To identify potential biomarkers from the candidate immune-

related biomarkers, we attempted to establish prognosis predic-
tion models by using clinical information and a combination of the
candidates described above. Our final prognosis prediction model
achieved the highest C-index of 0.643 in the validation cohort
(completely independent from the discovery cohort) when three
candidates (IGK, TRA, and WDR37) were used.
Our study provides new information on the changes in BCR

diversity associated with AD. Xu et al. previously reported that the
diversity of TCR repertoires was significantly lower in samples from

Fig. 3 Clonal diversity of TCR and BCR repertoires among ages. (a) Radar chart showing a difference in clonal diversity of the TCR and BCR
repertories among ages. (b, c) Differences in clonal diversity of the TCR (b) and BCR (c) repertoires among ages. A linear regression model was
used to identify statistically significant increases or decreases in the clonal diversity of TCR and BCR repertoires among ages for each sex. The
diversities of TCR repertories were significantly smaller at older ages in both sexes (b), whereas those of BCR repertories were significantly
smaller at older ages only in male subjects at an adjusted P < 0.05 (c). Pearson correlation coefficient is represented by R.
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AD patients than in samples from CN individuals, as analyzed with
single-cell RNA-seq26. The remaining potential biomarker, the
WDR37 gene, encodes a member of the WD40-repeat protein
family and is broadly expressed in neurons of adult brains. Recent
studies have shown that WDR37 might underlie a syndromic
neurological disorder38. Reis et al. have reported that WDR37 may
play a key role in cholesterol biosynthesis32, and pervasive
abnormality in this system is associated with AD39. These results
provide compelling evidence that our findings could be potential
biomarkers for early detection of MCI-to-AD conversion.
We proposed an MCI-to-AD conversion prediction model based

on a Cox proportional hazard method through immune landscape
analysis. Although our prediction model using only biomarkers
identified in this study might be insufficient to early diagnosis of
AD, our findings can serve as potential biomarkers for predicting

disease prognosis. In previous studies, we reported that 24 miR-
eQTLs (the relationship between SNPs and miRNA expression) and
three clinical factors (age, sex, and APOE4 alleles) successfully
classified MCI patients into low and high risk of MCI-to-AD
conversion13. Moreover, recent survival analyses have showed that
plasma phosphorylated tau (i.e. P-tau181 and P-tau217) and
neurofilament light (NfL) could be effective biomarkers for
separating MCI patients who converted to AD from those that
did not40–42, though the AUCs were modest (P-tau181= 0.77,
NfL = 0.62)43. Therefore, we believe that omics analyses, using
additional data including genetic variations (single nucleotide
polymorphisms: SNPs, and insertions and deletions: indels) and
mRNA and miRNA expressions, plasma P-tau and NfL, as well as
immune-cell type composition and immune clonal diversity
detected in this immune landscape analysis, will contribute to
further improvement of the prognosis prediction model. As these
biomarkers might also enable prediction of not only MCI-to-AD
conversion, but also Amyloid/Tau/Neurodegeneration (ATN)
pathology group, proposed as a means of evidencing the
biological state of AD, further investigation using a larger number
of samples will be required.
The main limitation of the current analyses is that it is difficult

to collect many MCI-C and MCI-NC, so that our prediction model
based on immune repertoires was constructed using a limited
sample size. In the future, we will perform further investigations
with a larger sample size and will validate the effectiveness of
this classifier.
Our final prediction model based on immune repertoires

successfully classified MCI patients as having low or high risk of
MCI-to-AD conversion and achieved a high C-index on an
independent validation cohort. Our findings showed that changes
in the immune system, and specifically the immune repertoires
associated with AD, could contribute to early prediction of

Fig. 4 Clonal diversity of TCR and BCR repertories among phenotypes. (a) Radar chart showing a difference in clonal diversity of the TCR
and BCR repertories among phenotypes. Difference in clonal diversity of the TCR (b) and BCR (c) repertoires among phenotypes. A linear
regression model with adjustment for age and sex was used to identify statistically significant increases or decreases in the clonal diversity of
TCR and BCR repertoires among phenotypes. The diversities of IGH, IGK, and TRA were statistically significantly smaller in those with AD
progression at an adjusted P < 0.05 (b, c). Data are represented as box and whisker plots, depicting minimum, lower quartile (Q1), median (Q2),
upper quartile (Q3), and maximum values (b, c).

Table 2. Summary of sample characteristics for MCI-C and MCI-NC.

Characteristic MCI-C MCI-NC All

Number of
samples

52 93 145

Male, % (n) 37 (19) 42 (39) 40 (58)

Age, y, mean ± SD 76.4 ± 5.6 76.9 ± 6.3 76.7 ± 6.1

APOE ε4
genotypes, n (No.
of patients)

0 (29), 1 (20), 2
(3)

0 (65), 1 (26), 2
(2)

0 (94), 1 (46), 2
(5)

Follow-up,
mean ± SD

913.5 ± 433.4 886.3 ± 488.6 896.0 ± 468.2

APOE apolipoprotein E, MCI, mild cognitive impairment, MCI-C converter
from MCI to Alzheimer’s disease, MCI-NC nonconverter from MCI to
Alzheimer’s disease.

D. Shigemizu et al.

5

Published in partnership with the Japanese Society of Anti-Aging Medicine npj Aging (2022)    15 



conversion to AD. Accurate prediction of MCI-to-AD conversion
would enable earlier intervention for MCI patients at high risk,
potentially reducing conversion to AD.

METHODS
Ethics approval and consent to participate
This study protocol was approved by the ethics committee of the
NCGG and was done following the guidelines from the Helsinki
Declaration. The design and performance of the current study
involving human subjects were clearly described in a research
protocol. All participation in the Biobank is voluntary, and all
donors completed informed consent in writing before registering
with the NCGG Biobank, and no direct or indirect identifiers have
been used in reporting this manuscript.

Sample collection
We obtained 856 blood samples with measured mRNA expres-
sion and their associated clinical data from the NCGG Biobank.
Of the samples, 317 were from patients with AD, 432 were from
patients with MCI, and 107 were from CN donors. Of the 432
patients with MCI, 145 were followed for more than half a year,
and 52 of these 145 patients converted to AD (i.e., were MCI-C),
and the remaining 93 patients remained stable with MCI (i.e.,
were MCI-NC). The patients from whom the AD and MCI samples
were obtained were diagnosed with probable or possible AD by
using the criteria of the National Institute on Aging Alzheimer’s
Association workgroups1,2. Only samples from patients with
probable AD were used as AD samples in this study. The CN
samples were obtained from patients who had subjective

cognitive complaints but normal cognition on a neuropsycho-
logical assessment. The diagnosis of all samples was conducted
based on medical history, physical examination and diagnostic
tests, neurological examination, neuropsychological tests and
brain imaging with magnetic resonance imaging or computer-
ized tomography by experts including neurologists, psychia-
trists, geriatricians or a neurosurgeon, all of which are experts in
dementia and familiar with its diagnostic criteria. Comprehen-
sive neuropsychological tests included Mini-Mental State
Examination (MMSE), Alzheimer’s Disease Assessment Scale
Cognitive Component Japanese version, Logical Memory I and
II from the Wechsler Memory Scale–Revised, frontal assessment
battery, Raven’s colored progressive matrices and Geriatric
Depression Scale. All samples were from men and women who
were ≥60 years old at the time of testing. All CN samples had a
MMSE score of >23.

cDNA library preparation and RNA sequencing
Buffy coat samples were isolated from whole blood following the
standard operating procedure of the NCGG Biobank44. Only high-
quality samples with an RNA Integrity Number (RIN) ≥ 6.0 were
used to construct the sequencing library. Sequencing libraries
were prepared with 500 μg of total RNA for each sample by using
Illumina TruSeq Stranded Total RNA with Ribo-Zero Globin and IDT
for Illumina TruSeq UD Indexes in accordance with the manu-
facturer’s instructions (Illumina, San Diego, CA). The libraries were
subsequently sequenced by using the Illumina NovaSeq6000
platform with paired-end reads of 151 bp in accordance with the
manufacturer’s instructions.

Fig. 5 Genes differentially expressed between MCI-C and MCI-NC. (a) The expression of two DEGs in brain tissues was validated in the
Human Protein Atlas database. The x-axis represents the consensus normalized expression (nTPM) values. (b) DEGs were validated by using
qRT-PCR (n= 20; 10 MCI-C and 10 MCI-NC). (c) High-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, non-HDL
cholesterol, total cholesterol (T-CHO), and triglycerides (TG) were measured in routine blood tests. Their differences were examined between
MCI-C and MCI-NC samples (n= 145; 52 MCI-C and 93 MCI-NC). Welch’s t-test was used to identify statistically significant difference between
MCI-C and MCI-NC samples in the two DEGs and five items measured in routine blood tests (b, c). Data are represented as box and whisker
plots, depicting minimum, lower quartile (Q1), median (Q2), upper quartile (Q3), and maximum values (b, c).
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RNA-sequencing data analysis
All RNA-seq data were downloaded from the NCGG Biobank
database. The quality of the read sequences (fastq files) was
assessed with FastQC (ver. 0.11.7) and Cutadapt (ver. 1.16)20. The
remaining clean, sequenced reads were mapped to the human
reference genome (GRCh37) with STAR45 (ver. 2.5.2b). Read counts
for each gene were calculated with the featureCounts program46

from the subread package (ver. 1.6.6) to generate expression
levels. The read counts from each sample were combined into a
count file, on which differential expression analysis was
performed with edgeR47 (ver. 3.18.1). The ‘caclNormFactors’
function in edgeR was used to obtain TMM (trimmed mean of
M-values) normalization factors to account for library sizes. The
‘exactTest’ function in edgeR was applied to obtain DEGs between
MCI-C and MCI-NC samples.

Proportion of immune-cell types
Cell-type quantification methods can be conceptually distinguished
into deconvolution-based approaches and marker-gene-based
approaches. We used CIBERSORT29 from the deconvolution-based
approaches and MCP-counter30 from the marker-gene-based
approaches. After we used STAR45 to align the RNA-seq reads to
the human reference genome, quantification in transcripts per
million (TPM) was performed with RSEM48 (ver. 1.3.0). The TPMs
were suitable for use with the CIBERSORT (ver. 1.0.1) and MCP-
counter (ver. 1.2.0). CIBERSORT estimated the proportions of 22
immune-cell types, and we further categorized the 22 cell types into
12 major cell types20 by summing the proportions. MCP-counter
allowed robust quantification of the absolute abundance of 10
immune and stromal cell populations.

Detection of immune receptor repertoires
Immune receptor repertoires in T cells and B cells from RNA-seq
data were detected using TRUST4 software28 (v1.0.5), in which the
inferred CDR3 clonotypes included αβ/γδ TCRs (TRA, TRB, TRG, and
TRD) and BCRs (IGH, IGK, and IGL). The clonal diversity of TCRs and
BCRs was estimated by using an inverse Simpson index and was
calculated by using VDJtools49 (v1.2.1). A linear regression model
was used to identify statistically significant increases or decreases

in the proportion and clonal diversity of TCR and BCR repertoires
among ages and among phenotypes.

Prognosis prediction model construction
All data were strictly separated into a discovery cohort and a
validation cohort. Four-fifths of the entire discovery cohort was
used to construct a prognosis prediction model based on a Cox
proportional hazard model by using a combination of candidate
biomarkers and clinical information (age, sex, and APOE ε4
genotypes). The adjusted model was then evaluated using the
remaining fifth of the discovery cohort. This process was repeated
five times (5-fold cross validation). On the basis of the average
concordance index (C-index), we determined the optimal combi-
nation of candidate biomarkers for model construction. The final
model was constructed with the entire discovery cohort.
Using a combination of candidate biomarkers and clinical

information, we calculated a prognostic index for each sample
using the discovery cohort. We classified the samples into two
groups (high and low risk) according to an optimal cutoff value
of the prognostic index50. The optimal cutoff value was defined
as the minimum log-rank trend test P-value when differences
between high- and low-risk groups were compared in the
discovery cohort. The optimal cutoff value was used for the
validation of our prognosis prediction model. Kaplan–Meier
curves were constructed to illustrate differences in MCI-to-AD
conversion–free survival. The log-rank test was used to compare
the different conditions. A P-value of 0.05 or less was considered
statistically significant.

Verification of quantitative RT-PCR assay
cDNA was synthesized by using a PrimeScript II 1st Strand cDNA
Synthesis Kit (Takara Bio, Shiga, Japan). qRT-PCR analysis was
performed by using TB Green Premix Ex Taq II (Takara Bio, Shiga,
Japan) and the Quantstudio7 Flex Real-Time PCR System (Thermo
Fisher, Waltham, MA). The following commercially available PCR
primers (forward and reverse, 5ʹ to 3ʹ) were used for gene expression
analysis: SPCS1 (CCAGGCTGCTGACACTTCCT, GAGCATTAGGTGGTTTT
AGCTCTTATCTG), and WDR37 (CTGCATCAGCCGATCACACG, CGTAT
CTCCAGATATGAGCAGTCTG). Human beta-2-microglobulin (hB2M)

Fig. 6 Kaplan–Meier curves of survival without conversion to AD produced by the prediction models.We calculated a prognostic index for
each subject by applying three biomarkers (IGK, TRA, and WDR37) and clinical factors to our prognosis prediction model. (a) Based on the
prognostic index, we divided the samples of the discovery cohort into high- (red) and low-risk (blue) groups. The optimal cutoff values were
detected by using the minimum P-value from the log-rank test and comparing the differences in survival without MCI-to-AD conversion as
determined by Kaplan-Meier curves (optimal cutoff= –0.0969, minimum P= 1.94 × 10−4). (b) The adjusted model was then evaluated on the
validation cohort (log-rank test P= 2.57 × 10−3).
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was preselected as a reference gene for normalization of target gene
expression levels. Gene expression levels from qRT-PCR were
calculated relative to hB2M by using the semiquantitative method51.
Gene expression levels were obtained for 10 MCI-C and 10 MCI-NC
randomly selected samples. This experiment was independently
performed three times for each gene.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available from NBDC (National
Bioscience Database Center) website under controlled access (https://
humandbs.biosciencedbc.jp/en/). The NBDC number is hum0215, and the JGA
(Japanese Genotype-phenotype Archive) accession number is JGAS000532.
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