Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: Critical comment on the assumptions leading to 24-chain microfibrils in wood

The Original Article was published on 20 May 2024

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three different models for fitting wood SAXS data.
Fig. 2: Three-phase model fitting of wood SAXS data.
Fig. 3: SAXS simulation results.

Data availability

The raw experimental and simulation data are available from the corresponding author upon reasonable request.

References

  1. Jakob, H., Fratzl, P. & Tschegg, S. Size and arrangement of elementary cellulose fibrils in wood cells: a small-angle X-ray scattering study of Picea abies. J. Struct. Biol. 113, 13–22 (1994).

    Article  Google Scholar 

  2. Suzuki, H. & Kamiyama, T. Structure of cellulose microfibrils and the hydration effect in Cryptomeria japonica: a small-angle X-ray scattering study. J. Wood Sci. 50, 351–357 (2004).

    Article  CAS  Google Scholar 

  3. Viljanen, M., Ahvenainen, P., Penttilä, P., Help, H. & Svedstrm, K. Ultrastructural X-ray scattering studies of tropical and temperate hardwoods used as tonewoods. IAWA J. 41, 301–319 (2020).

    Article  Google Scholar 

  4. Jakob, H., Tschegg, S. & Fratzl, P. Hydration dependence of the wood-cell wall structure in Picea abies: a small-angle X-ray scattering study. Macromolecules 29, 8435–8440 (1996).

    Article  CAS  Google Scholar 

  5. Guo, J., Rennhofer, H., Yin, Y. & Lichtenegger, H. C. The influence of thermo-hygro-mechanical treatment on the micro- and nanoscale architecture of wood cell walls using small- and wide-angle X-ray scattering. Cellulose 23, 2325–2340 (2016).

    Article  CAS  Google Scholar 

  6. Tai, H. C. et al. Wood cellulose microfibrils have a 24-chain core–shell nanostructure in seed plants. Nat. Plants 9, 1154–1168 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Penttilä, P. A. & Paajanen, A. Critical comment on the assumptions leading to 24-chain microfibrils in wood. Nat. Plants https://doi.org/10.1038/s41477-024-01689-w (2024).

  8. Martínez-Sanz, M., Pettolino, F., Flanagan, B., Gidley, M. J. & Gilbert, E. P. Structure of cellulose microfibrils in mature cotton fibres. Carbohydr. Polym. 175, 450–463 (2017).

    Article  PubMed  Google Scholar 

  9. Martinez-Sanz, M., Mikkelsen, D., Flanagan, B., Gidley, M. J. & Gilbert, E. P. Multi-scale model for the hierarchical architecture of native cellulose hydrogels. Carbohydr. Polym. 147, 542–555 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Martinez-Sanz, M., Gidley, M. J. & Gilbert, E. P. Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: a review. Carbohydr. Polym. 125, 120–134 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Martínez-Sanz, M., Lopez-Sanchez, P., Gidley, M. J. & Gilbert, E. P. Evidence for differential interaction mechanism of plant cell wall matrix polysaccharides in hierarchically-structured bacterial cellulose. Cellulose 22, 1541–1563 (2015).

    Article  Google Scholar 

  12. Xu, P., Donaldson, L. A., Gergely, Z. R. & Staehelin, L. A. Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci. Tehcnol. 41, 101–116 (2007).

    Article  CAS  Google Scholar 

  13. Oehme, D. P. et al. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations. Plant Physiol. 168, 3–17 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jakob, H., Fengel, D., Tschegg, S. & Fratzl, P. The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28, 8782–8787 (1995).

    Article  CAS  Google Scholar 

  15. Müller, M. et al. Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle X-ray scattering. Macromolecules 31, 3953–3957 (1998).

    Article  Google Scholar 

  16. Haigler, C. H. & Roberts, A. W. Structure/function relationships in the rosette cellulose synthesis complex illuminated by an evolutionary perspective. Cellulose 26, 227–247 (2019).

    Article  CAS  Google Scholar 

  17. Mueller, S. C. & Brown, R. M. Jr Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J. Cell Biol. 84, 315–326 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Hill, J. L. Jr, Hammudi, M. B. & Tien, M. The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry. Plant Cell 26, 4834–4842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Purushotham, P., Ho, R. Y. & Zimmer, J. Architecture of a catalytically active homotrimeric plant cellulose synthase complex. Science 369, 1089–1094 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Nixon, B. T. et al. Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. Sci. Rep. 6, 28696 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.-H.L. was involved in the formal analysis. C.-S.T. and H.-C.T. were involved in the formal analysis and writing.

Corresponding author

Correspondence to Hwan-Ching Tai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks James Kubicki and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tai, HC., Tsao, CS. & Lin, JH. Reply to: Critical comment on the assumptions leading to 24-chain microfibrils in wood. Nat. Plants (2024). https://doi.org/10.1038/s41477-024-01727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41477-024-01727-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing