Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transition of survival strategies under global climate shifts in the grape family

Abstract

Faced with environmental changes, plants may either move to track their ancestral niches or evolve to adapt to new niches. Vitaceae, the grape family, has evolved diverse adaptive traits facilitating a global expansion in wide-ranging habitats, making it ideal for investigating transition between move and evolve strategies and exploring the underlying mechanisms. Here we inferred the patterns of biogeographic diversification and trait evolution in Vitaceae based on a robust phylogeny with dense sampling including 495 species (~52% of Vitaceae species). Vitaceae probably originated from Asia—the diversity centre of extant genera and the major source of dispersals. Boundaries of the Eocene, Oligocene and Miocene were identified as turning points in shifting strategies. A significant decrease in move strategy was identified during the Oligocene, followed by increases in move and evolve. After the Miocene, evolve began to dominate, during which increased niche opportunities and key trait innovations played important roles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major habitats and global distributions of the grape family.
Fig. 2: Biogeographic history reconstruction of the grape family.
Fig. 3: Biogeographic diversification patterns of the grape family.
Fig. 4: Niche shifts and dispersal events in the grape family.

Similar content being viewed by others

Data availability

The newly generated short reads for phylogeny reconstruction have been deposited in NCBI BioProject PRJNA1051838. Voucher information and accession numbers for all of the sampled species are provided in Supplementary Table 1. The phylogenetic tree and time tree are available via GitHub at https://github.com/logysnail/Vitaceae-global-diversification. The assembled fossil records are available in Supplementary Table 2 and information on biogeographic regions, niches and traits for all of the sampled species is provided in Supplementary Table 5.

Code availability

All of the codes and scripts used in the analyses are available via GitHub at https://github.com/logysnail/Vitaceae-global-diversification.

References

  1. Lavin, M. et al. Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. Phil. Trans. R. Soc. B Biol. Sci. 359, 1509–1522 (2004).

    Article  CAS  Google Scholar 

  2. Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644 (2004).

    Article  PubMed  Google Scholar 

  3. Donoghue, M. J. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl Acad. Sci. USA 105, 11549–11555 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crisp, M. D. et al. Phylogenetic biome conservatism on a global scale. Nature 458, 754–756 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Edwards, E. J. & Donoghue, M. J. Is it easy to move and easy to evolve? Evolutionary accessibility and adaptation. J. Exp. Bot. 64, 4047–4052 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Donoghue, M. J. & Edwards, E. J. Biome shifts and niche evolution in plants. Annu. Rev. Ecol. Evol. Syst. 45, 547–572 (2014).

    Article  Google Scholar 

  7. Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).

    Article  PubMed  Google Scholar 

  8. Gagnon, E., Ringelberg, J. J., Bruneau, A., Lewis, G. P. & Hughes, C. E. Global Succulent Biome phylogenetic conservatism across the pantropical Caesalpinia group (Leguminosae). New Phytol. 222, 1994–2008 (2019).

    Article  PubMed  Google Scholar 

  9. Maurin, O. et al. Drift in the tropics: phylogenetics and biogeographical patterns in Combretaceae. Glob. Ecol. Biogeogr. 32, 1790–1802 (2023).

    Article  Google Scholar 

  10. Hawkins, B. A., Rueda, M., Rangel, T. F., Field, R. & Diniz-Filho, J. A. F. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests. J. Biogeogr. 41, 23–38 (2014).

    Article  PubMed  Google Scholar 

  11. Simon, M. F. et al. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl Acad. Sci. USA 106, 20359–20364 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weeks, A. et al. To move or to evolve: contrasting patterns of intercontinental connectivity and climatic niche evolution in “Terebinthaceae” (Anacardiaceae and Burseraceae). Front. Genet. 5, 409 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cardillo, M. et al. The phylogeny and biogeography of Hakea (Proteaceae) reveals the role of biome shifts in a continental plant radiation. Evolution 71, 1928–1943 (2017).

    Article  PubMed  Google Scholar 

  14. Zizka, A. et al. Transitions between biomes are common and directional in Bombacoideae (Malvaceae). J. Biogeogr. 47, 1310–1321 (2020).

    Article  Google Scholar 

  15. Wen, J. et al. A new phylogenetic tribal classification of the grape family (Vitaceae). J. Syst. Evol. 56, 262–272 (2018).

    Article  Google Scholar 

  16. Jackes, B. R. & Trias-blasi, A. Apocissus Jackes & Trias-Blasi, a new genus in the Vitaceae. Austrobaileya 13, 94–104 (2023).

    Google Scholar 

  17. Wen, J. in Families and Genera of Flowering Plants: Eudicots (ed. Kubitzki, K.) Vol. IX 467–479 (Springer, 2007).

  18. Magallón, S. & Castillo, A. Angiosperm diversification through time. Am. J. Bot. 96, 349–365 (2009).

    Article  PubMed  Google Scholar 

  19. Manchester, S. R., Kapgate, D. K. & Wen, J. Oldest fruits of the grape family (Vitaceae) from the Late Cretaceous Deccan cherts of India. Am. J. Bot. 100, 1849–1859 (2013).

    Article  PubMed  Google Scholar 

  20. Johnson, K. R. Megaflora of the Hell Creek and lower Fort Union Formations in the western Dakotas: vegetational response to climate change, the Cretaceous–Tertiary boundary event, and rapid marine transgression. Spec. Pap. Geol. Soc. Am. 361, 329–391 (2002).

    Google Scholar 

  21. Lu, L.-M., Ickert-Bond, S. & Wen, J. Recent advances in systematics and evolution of the grape family Vitaceae. J. Syst. Evol. 56, 259–261 (2018).

    Article  Google Scholar 

  22. Hearn, D. J., Evans, M., Wolf, B., McGinty, M. & Wen, J. Dispersal is associated with morphological innovation, but not increased diversification, in Cyphostemma (Vitaceae). J. Syst. Evol. 56, 340–359 (2018).

    Article  Google Scholar 

  23. Xin, H.-P. et al. A genome for Cissus illustrates features underlying the evolutionary success in dry savannas. Hortic. Res. 9, uhac208 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guo, C. et al. Phylogenomics and the flowering plant tree of life. J. Integr. Plant Biol. 65, 299–323 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Ma, Z.-Y. et al. Phylogenomic relationships and character evolution of the grape family (Vitaceae). Mol. Phylogenet. Evol. 154, 106948 (2021).

    Article  PubMed  Google Scholar 

  26. Lu, L.-M. et al. Optimal data partitioning, multispecies coalescent and Bayesian concordance analyses resolve early divergences of the grape family (Vitaceae). Cladistics 34, 57–77 (2018).

    Article  PubMed  Google Scholar 

  27. Rabarijaona, R. N. et al. Phylogeny and taxonomy of Afrocayratia, a new genus of Vitaceae from continental Africa and Madagascar. J. Syst. Evol. 58, 1090–1107 (2020).

    Article  Google Scholar 

  28. Soltis, P. S., Folk, R. A. & Soltis, D. E. Darwin review: angiosperm phylogeny and evolutionary radiations. Proc. R. Soc. B Biol. Sci. 286, 20190099 (2019).

    Article  Google Scholar 

  29. Xing, Y.-W. & Ree, R. H. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl Acad. Sci. USA 114, E3444–E3451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carruthers, T. et al. Repeated upslope biome shifts in Saxifraga during late-Cenozoic climate cooling. Nat. Commun. 15, 1100 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bansal, M. et al. Southeast Asian Dipterocarp origin and diversification driven by Africa–India floristic interchange. Science 375, 455–460 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Hohmann, N., Wolf, E. M., Lysak, M. A. & Koch, M. A. A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell 27, 2770–2784 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, L.-H. et al. Phylogenomic analyses reveal an allopolyploid origin of core Didymocarpinae (Gesneriaceae) followed by rapid radiation. Syst. Biol. 72, 1064–1083 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuparinen, A., Katul, G., Nathan, R. & Schurr, F. M. Increases in air temperature can promote wind-driven dispersal and spread of plants. Proc. R. Soc. B Biol. Sci. 276, 3081–3087 (2009).

    Article  Google Scholar 

  36. Ali, J. R. & Aitchison, J. C. Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth Sci. Rev. 88, 145–166 (2008).

    Article  Google Scholar 

  37. Barbolini, N. et al. Cenozoic evolution of the steppe-desert biome in Central Asia. Sci. Adv. 6, eabb8227 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Davies, T. J. et al. Savanna tree evolutionary ages inform the reconstruction of the paleoenvironment of our hominin ancestors. Sci. Rep. 10, 12430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peng, D.-X. et al. Historical biogeography of Tetrastigma (Vitaceae): insights into floristic exchange patterns between Asia and Australia. Cladistics 37, 803–815 (2021).

    Article  PubMed  Google Scholar 

  40. Utescher, T. & Mosbrugger, V. Eocene vegetation patterns reconstructed from plant diversity—a global perspective. Palaeogeogr. Palaeoclimatol. Palaeoecol. 247, 243–271 (2007).

    Article  Google Scholar 

  41. Prothero, D. R. The late Eocene–Oligocene extinctions. Annu. Rev. Earth Planet. Sci. 22, 145–165 (1994).

    Article  Google Scholar 

  42. Senut, B., Pickford, M. & Ségalen, L. Neogene desertification of Africa. C. R. Geosci. 341, 591–602 (2009).

    Article  CAS  Google Scholar 

  43. Akgün, F., Kayseri, M. S. & Akkiraz, M. S. Palaeoclimatic evolution and vegetational changes during the Late Oligocene–Miocene period in Western and Central Anatolia (Turkey). Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 56–90 (2007).

    Article  Google Scholar 

  44. Deng, T., Wu, F.-X., Wang, S.-Q., Su, T. & Zhou, Z.-K. Major turnover of biotas across the Oligocene/Miocene boundary on the Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 567, 110241 (2021).

    Article  Google Scholar 

  45. Aguilée, R., Gascuel, F. & Lambert, A. Clade diversification dynamics and the biotic and abiotic controls of speciation and extinction rates. Nat. Commun. 9, 3013 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Antonelli, A. & Sanmartín, I. Why are there so many plant species in the Neotropics? Taxon 60, 403–414 (2011).

    Article  Google Scholar 

  47. Buerki, S., Devey, D. S., Callmander, M. W., Phillipson, P. B. & Forest, F. Spatio-temporal history of the endemic genera of Madagascar. Bot. J. Linn. Soc. 171, 304–329 (2013).

    Article  Google Scholar 

  48. Graham, A. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. Am. J. Bot. 98, 336–351 (2011).

    Article  PubMed  Google Scholar 

  49. Couvreur, T. L. P. et al. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol. Rev. 96, 16–51 (2021).

    Article  PubMed  Google Scholar 

  50. Morley, R. J. Interplate dispersal paths for megathermal angiosperms. Perspect. Plant Ecol. Evol. Syst. 6, 5–20 (2003).

    Article  Google Scholar 

  51. Cox, S. C., Prys-Jones, R. P., Habel, J. C., Amakobe, B. A. & Day, J. J. Niche divergence promotes rapid diversification of East African sky island white-eyes (Aves: Zosteropidae). Mol. Ecol. 23, 4103–4118 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Federman, S. et al. The biogeographic origin of a radiation of trees in Madagascar: implications for the assembly of a tropical forest biome. BMC Evol. Biol. 15, 216 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ding, W.-N., Ree, R. H., Spicer, R. A. & Xing, Y.-W. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 369, 578–581 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Nie, J.-S. et al. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nat. Geosci. 11, 944–948 (2018).

    Article  CAS  Google Scholar 

  55. Donoghue, M. J. & Sanderson, M. J. Confluence, synnovation, and depauperons in plant diversification. New Phytol. 207, 260–274 (2015).

    Article  PubMed  Google Scholar 

  56. Soltis, P. S. & Soltis, D. E. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 30, 159–165 (2016).

    Article  PubMed  Google Scholar 

  57. Gillespie, R. G. et al. Comparing adaptive radiations across space, time, and taxa. J. Hered. 111, 1–20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Käfer, J. et al. Dioecy is associated with higher diversification rates in flowering plants. J. Evol. Biol. 27, 1478–1490 (2014).

    Article  PubMed  Google Scholar 

  59. Käfer, J., Marais, G. A. B. & Pannell, J. R. On the rarity of dioecy in flowering plants. Mol. Ecol. 26, 1225–1241 (2017).

    Article  PubMed  Google Scholar 

  60. Gerrath, J., Posluszny, U. & Melville, L. in Taming the Wild Grape: Botany and Horticulture in the Vitaceae Ch. 3 (Springer International Publishing, 2015).

  61. Nie, Z.-L. et al. Climate‐influenced boreotropical survival and rampant introgressions explain the thriving of New World grapes in the north temperate zone. J. Integr. Plant Biol. 65, 1183–1203 (2023).

    Article  PubMed  Google Scholar 

  62. Blair, C. Organellar DNA continues to provide a rich source of information in the genomics era. Mol. Ecol. 32, 2144–2150 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jin, J.-J. et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Qu, X.-J., Moore, M. J., Li, D.-Z. & Yi, T.-S. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15, 50 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).

    CAS  PubMed  Google Scholar 

  71. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tao, Q., Tamura, K. & Kumar, S. The Molecular Evolutionary Clock: Theory and Practice (Springer, 2020).

  73. Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chen, I.-J. & Manchester, S. R. Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. Am. J. Bot. 94, 1534–1553 (2007).

    Article  PubMed  Google Scholar 

  75. Douglas, J., Zhang, R. & Bouckaert, R. Adaptive dating and fast proposals: revisiting the phylogenetic relaxed clock model. PLoS Comput. Biol. 17, e1008322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Heled, J. & Drummond, A. J. Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst. Biol. 61, 138–149 (2012).

    Article  PubMed  Google Scholar 

  77. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Tamura, K. et al. Estimating divergence times in large molecular phylogenies. Proc. Natl Acad. Sci. USA 109, 19333–19338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Abell, R. et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58, 403–414 (2008).

    Article  Google Scholar 

  82. Matzke, N. J. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).

    Article  Google Scholar 

  83. Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).

    Article  PubMed  Google Scholar 

  84. Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Killick, R., Fearnhead, P. & Eckley, I. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107, 1590–1598 (2012).

    Article  CAS  Google Scholar 

  86. Chakravarti, I. M., Laha, R. G. & Roy, J. Handbook of Methods of Applied Statistics Vol. I 392–394 (John Wiley and Sons, 1967).

  87. Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).

    Article  Google Scholar 

  89. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Fitzjohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).

    Article  Google Scholar 

  91. Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).

    Article  PubMed  Google Scholar 

  92. Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Liu, J. Ye, Z. Shan, C. Fu, P. Li, X. Zhou, L. Yuan, X. Zhu, M. Huang, C. Huang, Y. Liang, B. Jackes, D. Crayn, A. Trias-Blasi, V. H. Dang, V. D. Nguyen, J. Gerrath, Q. Luke, X. Ma, Y. Meng, T. Yang, M. Sun, B. Dao, F. Li, J. Guo, W. Xu and C. Zhao for field assistance and/or sample collection, G. Parmar for collecting morphological traits of the genus Causonis, J. Li and S. Manchester for helpful comments on an earlier version of the manuscript and the staff at the herbaria of A, BM, CAL, CANB, CNS, E, EA, G, HN, IBSC, K, KUN, L, LE, LISU, MEL, MO, NGB, NY, P, PE, PH, PRE, TAN, U and US for help and for the loan of or access to specimens. This work was supported by the National Natural Science Foundation of China (31870197, 32270230 and 32122009 to L.L. and 32060055 to Z.N.), National Key Research Development Program of China (2022YFC2601200 to L.L. and 2023YFF0805800 to Z.C.), International Partnership Program of the Chinese Academy of Sciences (CAS) (151853KYSB20190027 to Z.C.), Youth Innovation Promotion Association of CAS (2020080 to L.L.), Sino-Africa Joint Research Center and CAS International Research and Education Development Program (SAJC202101 to Z.C.). R.N.R was supported by the CAS-TWAS President’s Fellowship for International PhD Students. R.L.B. acknowledges support from the CAS President’s International Fellowship Initiative.

Author information

Authors and Affiliations

Authors

Contributions

L.L., J.W. and Z.C. conceived of the project and designed the research. Z.C., J.W., L.L., R.N.R., Y.L., R.L.B. and V.-C.D. conducted field collection. J.Y., Y.Y. and V.-C.D. performed DNA laboratory work and phylogenetic reconstruction. Y.Y., D.P., J.Y., Y.C and Z.N. conducted the biogeographic and diversification-related analyses. L.L., Y.Y. and R.N.R. collected trait data. Y.L. and Y.Z. assembled and cleaned the fossil data. J.Y., Y.Y. and L.L. drafted the paper. All authors revised and approved the paper.

Corresponding authors

Correspondence to Zhiduan Chen, Jun Wen or Limin Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Ryan Folk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Illustrations showing biogeographic events and survival strategies involved in this study.

a, A shift event characterized by the change of node states. b, Biogeographic events involved in this study, including dispersal, extinction, and in-situ diversification. Green blocks represent the distribution regions at a node. Multiple biogeographic events can occur in the same lineage. c, The ‘move’ and ‘evolve’ strategies characterized by niche shifts and biogeographic events.

Extended Data Fig. 2 Spatial and temporal distribution of Vitaceae fossils.

a, The global distribution of all types of fossils. Different symbols represent fossils from different geological periods. The border between North America and South America and that between Asia and Australasia are indicated by dashed lines. b, Number of all types of fossils through geological time. c, Number of pollen/seed/fruit fossils through geological time. Map in a was created with cartopy version 0.20.2 (https://scitools.org.uk/cartopy).

Extended Data Fig. 3 Phylogeny of Vitaceae based on plastid and nuclear datasets.

a, Phylogram of Vitaceae based on the 505-taxa plastid dataset, using the maximum likelihood method. Internal branches with higher bootstrap support values were colored with brighter red, and those with support values below 80% were colored with grey. Tip branches are colored with grey. Vertical bars on the right of different colors indicate 16 genera of Vitaceae (Species of Pterisanthes were included in Ampelocissus, which deserve further taxonomic treatment), with the number of species in each genus denoted. b, Conflicts of intergeneric relationships in Vitaceae based on plastid and nuclear phylogenies, highlighted by blue boxes. The plastid phylogeny was constructed in this study and the nuclear topology was adapted from the tree of 346 nuclear sequences in Ma et al.25.

Extended Data Fig. 4 Plots of lineages with dispersal and in-situ diversification events through geological time.

a, Number of lineages with dispersal events through geological time, with different colors representing different dispersal sinks. b, Number of lineages with in-situ diversification events in each biogeographic region through time.

Extended Data Fig. 5 Accumulation of dispersal events to Australasia or Indian subcontinent through geological time.

a, Dispersals to Australasia. b, Dispersals to Indian subcontinent. Dots indicate the median heights of the ancestral nodes of lineages where dispersal events happened. Different colors show different dispersal source areas. Blue bars represent the 95% highest posterior density of node heights (tree replications: n = 1,000) in the treePL maximum clade credibility tree. Maps in a and b were created by the ODSN Plate Tectonic Reconstruction Service (http://www.odsn.de/odsn/services/paleomap/paleomap.html).

Extended Data Fig. 6 Emergence of different types of trait-state shifts through geological time.

The lines mark the number of lineages shifting to specific trait states.

Extended Data Fig. 7 Heatmap showing correlation among traits supported by Bayesian factor (BF).

Red boxes represent that the correlation between the trait-state transition and the state of other trait is substantially supported (log10(BF) > 0.5, marked by red dotted line above). Blue boxes represent that the independence between the trait-state transition and the state of other trait is substantially supported (log10(BF) < 0.5, marked by red dotted line below).

Extended Data Fig. 8 Niche states and niche shifts in each biogeographic region through geological time.

The lines indicate the proportions of lineages shifting to a specific niche (to forest, to savanna, or to desert or rocky area). The background colors show the proportions of lineages in different niche types (forest, savanna, and desert or rocky area) through geological time. Grey bars represent the time period of major climatic or geological events for each region (see Supplementary Table 9 for references). Europe-central Asia and Indian subcontinent were not shown as no niche shift has been detected for the two regions. Maps were created with cartopy version 0.20.2 (https://scitools.org.uk/cartopy).

Extended Data Fig. 9 Null model test for ‘move’ and ‘evolve’ patterns in Vitaceae.

a–b, The proportion of lineages with ‘move’ (dispersal, a) or ‘evolve’ (niche shift, b) events to the total lineages through geological time. The red line represents the observed pattern based on the median node heights of the treePL time tree, the yellow lines represent observed patterns from 100 empirical dated bootstrap trees, and the blue lines represent simulated patterns from random simulated data. c–d, The distributions of Pearson correlation coefficient for observed and simulated patterns of ‘move’ (c) and ‘evolve’ (d) events. The yellow bars represent the distributions of Pearson correlation coefficient between each pair of observed patterns, while green bars represent those between the observed and simulated patterns.

Extended Data Fig. 10 The seed/fruit fossil records of five Vitaceae tribes through geological time.

The bars represent the number of fossils within every two million years.

Supplementary information

Supplementary Information

Supplementary Sections 1–5 and Figs. 1–15.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–11.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Y., Yu, J., Nie, Z. et al. Transition of survival strategies under global climate shifts in the grape family. Nat. Plants 10, 1100–1111 (2024). https://doi.org/10.1038/s41477-024-01726-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-024-01726-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing