Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulation of histone acetylation enables fully mechanized hybrid rice breeding

Abstract

Hybrid rice has achieved high grain yield and greatly contributes to food security, but the manual-labour-intensive hybrid seed production process limits fully mechanized hybrid rice breeding. For next-generation hybrid seed production, the use of small-grain male sterile lines to mechanically separate small hybrid seeds from mixed harvest is promising. However, it is difficult to find ideal grain-size genes for breeding ideal small-grain male sterile lines without penalties in the number of hybrid seeds and hybrid rice yield. Here we report that the use of small-grain alleles of the ideal grain-size gene GSE3 in male sterile lines enables fully mechanized hybrid seed production and dramatically increases hybrid seed number in three-line and two-line hybrid rice systems. The GSE3 gene encodes a histone acetyltransferase that binds histones and influences histone acetylation levels. GSE3 is recruited by the transcription factor GS2 to the promoters of their co-regulated grain-size genes and influences the histone acetylation status of their co-regulated genes. Field trials demonstrate that genome editing of GSE3 can be used to immediately improve current elite male sterile lines of hybrid rice for fully mechanized hybrid rice breeding, providing a new perspective for mechanized hybrid breeding in other crops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An ideal male sterile line (XQA) with small grains and a restorer line (DHZ) with large grains allow for fully mechanized hybrid rice breeding.
Fig. 2: GSE3 encodes an N-acetyltransferase-like protein that influences histone acetylation levels.
Fig. 3: GSE3 interacts physically and genetically with GS2 to control grain size and weight.
Fig. 4: GS2 recruits GSE3 to influence the histone status of target genes.
Fig. 5: Rapid generation of male sterile lines for mechanized production of hybrid seeds using genome editing technology in three-line and two-line systems.
Fig. 6: A strategy to rapidly improve current parental lines of hybrid rice for fully mechanized hybrid seed production.

Similar content being viewed by others

Data availability

All data and materials are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Li, S. Q., Yang, D. C. & Zhu, Y. G. Characterization and use of male sterility in hybrid rice breeding. J. Integr. Plant Biol. 49, 791–804 (2007).

    Article  CAS  Google Scholar 

  2. Cheung, F. Yield: the search for the rice of the future. Nature 514, S60–S61 (2014).

    Article  PubMed  Google Scholar 

  3. Virmani, S. S., Mao, C. X., Toledo, R. S., Hossain, M. A. & Janaiah, A. Hybrid rice seed production technology and its impact on seed industries and rural employment opportunities in Asia.FFTC Tech. Bull. 156, 1–13 (2002).

    Google Scholar 

  4. Xia, Y. et al. A method for mechanized hybrid rice seed production using female sterile rice. Rice 12, 39 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tan, Y. N. et al. The effects of mixed direct seeding of parental lines with different hull colors on the seed production of hybrid rice. Plant Prod. Sci. 24, 216–223 (2021).

    Article  CAS  Google Scholar 

  6. He, L. B., Cao, L. Y., Qian, Q. & Chen, S. H. The prospects of hybrid rice seed production by using rice chaff colour marker. Acta Agric. Zhejiang. 13, 357–360 (2001).

    Google Scholar 

  7. Zhang, J., Xu, Y., Wu, X. & Zhu, L. A bentazon and sulfonylurea sensitive mutant: breeding, genetics and potential application in seed production of hybrid rice. Theor. Appl. Genet. 105, 16–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Kim, S. S. et al. Use of herbicide-resistant genic male sterility in hybrid rice seed production. Euphytica 156, 297–303 (2007).

    Article  CAS  Google Scholar 

  9. Li, H. et al. A spontaneous thermo-sensitive female sterility mutation in rice enables fully mechanized hybrid breeding. Cell Res. 32, 931–945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu, X. D., Wang, Y. X., Ni, S. & Chen, H. Q. Hybrid rice seed production method. US patent US8889947B2 (2014).

  11. Li, N., Xu, R. & Li, Y. Molecular networks of seed size control in plants. Annu. Rev. Plant Biol. 70, 435–463 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Xu, R. et al. Control of grain size and weight by the OsMKKK10–OsMKK4–OsMAPK6 signaling pathway in rice. Mol. Plant 11, 860–873 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Mao, H. et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc. Natl Acad. Sci. USA 107, 19579–19584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang, Y. et al. XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice. Plant J. 70, 398–408 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Nakamura, A. et al. The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol. 140, 580–590 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morinaka, Y. et al. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol. 141, 924–931 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamamuro, C. et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12, 1591–1606 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duan, P. et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat. Plants 2, 15203 (2015).

    Article  PubMed  Google Scholar 

  19. Liu, L. C. et al. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc. Natl Acad. Sci. USA 112, 11102–11107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, S. et al. The OsmiR396c–OsGRF4–OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol. J. 14, 2134–2146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song, X. J., Huang, W., Shi, M., Zhu, M. Z. & Lin, H. X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39, 623–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, J. et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat. Plants 3, 17043 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Duan, P. et al. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol. Plant 10, 685–694 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Fan, C. et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Fan, C., Yu, S., Wang, C. & Xing, Y. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor. Appl. Genet. 118, 465–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Lyu, J. et al. Control of grain size and weight by the GSK2–LARGE1/OML4 pathway in rice. Plant Cell 32, 1905–1918 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huang, L. et al. The LARGE2–APO1/APO2 regulatory module controls panicle size and grain number in rice. Plant Cell 33, 1212–1228 (2021).

    Article  PubMed  Google Scholar 

  28. Xu, R. et al. A mitogen-activated protein kinase phosphatase influences grain size and weight in rice. Plant J. 95, 937–946 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Guo, T. et al. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10–OsMKK4–OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell 30, 871–888 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qi, P. et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res. 22, 1666–1680 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, X. et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc. Natl Acad. Sci. USA 109, 21534–21539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu, C. G., & Zou, J. S. Practice and thought on developing hybrid rice for super high yield by exploiting inter-subspecific heterosis. Rice Sci. 12, 1–6 (2005).

    CAS  Google Scholar 

  33. Su, N. et al. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol. 159, 227–238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gu, Z. et al. Structure and function of rice hybrid genomes reveal genetic basis and optimal performance of heterosis. Nat. Genet. 55, 1745–1756 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fang, N. et al. SMALL GRAIN 11 controls grain size, grain number and grain yield in rice. Rice 9, 64 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Huang, K. et al. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J. 91, 849–860 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Liao, C. J., Lai, Z. B., Lee, S., Yun, D. J. & Mengiste, T. Arabidopsis HOOKLESS1 regulates responses to pathogens and abscisic acid through interaction with MED18 and acetylation of WRKY33 and ABI5 chromatin. Plant Cell 28, 1662–1681 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, T. et al. GCN5 modulates trichome initiation in Arabidopsis by manipulating histone acetylation of core trichome initiation regulator genes. Plant Cell Rep. 38, 755–765 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Castroverde, C. D. M. The AREB1–ADA2b–GCN5 complex regulates gene expression during drought stress. Plant Cell 31, 559–560 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Benhamed, M., Bertrand, C., Servet, C. & Zhou, D. X. Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18, 2893–2903 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Song, X. J. et al. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proc. Natl Acad. Sci. USA 112, 76–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Hu, J. et al. A rare allele of GS2 enhances grain size and grain yield in rice. Mol. Plant 8, 1455–1465 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Li, S. et al. Modulating plant growth–metabolism coordination for sustainable agriculture. Nature 560, 595–600 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Basuyaux, J. P., Ferreira, E., Stéhelin, D. & Butticè, G. The Ets transcription factors interact with each other and with the c-Fos/c-Jun complex via distinct protein domains in a DNA-dependent and -independent manner. J. Biol. Chem. 272, 26188–26195 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Lu, Z. et al. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. Plant Cell 25, 3743–3759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, L. et al. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature 583, 277–281 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, J.-S. et al. Arabidopsis GROWTH-REGULATING FACTOR7 functions as a transcriptional repressor of abscisic acid– and osmotic stress–responsive genes, including DREB2A. Plant Cell 24, 3393–3405 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Omidbakhshfard, M. A. et al. GROWTH-REGULATING FACTOR 9 negatively regulates Arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia. PLoS Genet. 14, e1007484 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gao, Y. et al. MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice. Nat. Commun. 11, 5219 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. González-Grandío, E. & Cubas, P. in Plant Transcription Factors (ed. Gonzalez, D. H.) 139–151 (Academic Press, 2016).

  51. Liu, D. et al. Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice. Plant Physiol. 187, 2563–2576 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miao, J. et al. Mutation of RGG2, which encodes a type B heterotrimeric G protein gamma subunit, increases grain size and yield production in rice. Plant Biotechnol. J. 17, 650–664 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Guo, T. et al. ERECTA1 acts upstream of the OsMKKK10–OsMKK4–OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice. Plant Cell 32, 2763–2779 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, X. et al. OsmiR396/Growth Regulating Factor modulate rice grain size through direct regulation of embryo-specific miR408. Plant Physiol. 186, 519–533 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, A. H. et al. The PLATZ transcription factor GL6 affects grain length and number in rice. Plant Physiol. 180, 2077–2090 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Segami, S. et al. Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice. Rice 5, 4 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sun, S. et al. A G-protein pathway determines grain size in rice. Nat. Commun. 9, 851 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu, Q. et al. G-protein betagamma subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat. Commun. 9, 852 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Heang, D. & Sassa, H. Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. PLoS ONE 7, e31325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu, Y. et al. The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet. 12, e1006386 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhu, W. et al. Rice SEPALLATA genes OsMADS5 and OsMADS34 cooperate to limit inflorescence branching by repressing the TERMINAL FLOWER1-like gene RCN4. N. Phytol. 233, 1682–1700 (2022).

    Article  CAS  Google Scholar 

  62. Lu, S. J. et al. Overexpression of a transcription factor OsMADS15 modifies plant architecture and flowering time in rice (Oryza sativa L.). Plant Mol. Biol. Rep. 30, 1461–1469 (2012).

    Article  CAS  Google Scholar 

  63. Sun, H. et al. Dynamic analysis of gene expression in rice superior and inferior grains by RNA-seq. PLoS ONE 10, e0137168 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Verdone, L., Caserta, M. & Di Mauro, E. Role of histone acetylation in the control of gene expression. Biochem. Cell Biol. 83, 344–353 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Kumar, V., Thakur, J. K. & Prasad, M. Histone acetylation dynamics regulating plant development and stress responses. Cell. Mol. Life Sci. 78, 4467–4486 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shi, C. L. et al. A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway. Plant J. 103, 1174–1188 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Tang, Z. et al. Natural variation in OsGASR7 regulates grain length in rice. Plant Biotechnol. J. 19, 14–16 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Jin, H., Lin, J. & Zhu, Z. PIF4 and HOOKLESS1 impinge on common transcriptome and isoform regulation in thermomorphogenesis. Plant Commun. 1, 100034 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhou, S. L. et al. Rice homeodomain protein WOX11 recruits a histone acetyltransferase complex to establish programs of cell proliferation of crown root meristem. Plant Cell 29, 1088–1104 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun, Z. et al. Dissecting the genetic basis of heterosis in elite super-hybrid rice. Plant Physiol. 192, 307–325 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ma, G. H. & Yuan, L. P. Hybrid rice achievements, development and prospect in China. J. Integr. Agric. 14, 197–205 (2015).

    Article  Google Scholar 

  72. Ding, Y. et al. SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Plant Cell 19, 9–22 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu, B. et al. SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa). N. Phytol. 210, 577–588 (2016).

    Article  CAS  Google Scholar 

  74. Abramoff, M. D., Magelhaes, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).

    Google Scholar 

  75. Li, J. & Yuan, L. in Plant Breeding Reviews Vol. 17 (ed. Janick, J.) 15–158 (Wiley, 1999).

  76. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu, L. et al. A natural allele of OsMS1 responds to temperature changes and confers thermosensitive genic male sterility. Nat. Commun. 13, 2055 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, Y. et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7, 30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bartlett, A. et al. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat. Protoc. 12, 1659–1672 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, Y. et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Machanick, P. & Bailey, T. L. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27, 1696–1697 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhu, J. Y., Sun, Y. & Wang, Z. Y. Genome-wide identification of transcription factor-binding sites in plants using chromatin immunoprecipitation followed by microarray (ChIP-chip) or sequencing (ChIP-seq). Methods Mol. Biol. 876, 173–188 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Xiao for help in the CUT&Tag assay and Y. Pan for help in the CUT&Tag data analysis. This work is supported by grants from the National Key Research and Development Program of China (nos. 2022YFF1002903-YHL, 2021YFF1000202-YHL and 2022YFD1200101-HLW), the STI2030-Major Project (nos. 2023ZD04068-JQH and 2023ZD0406902-HLW), the Hainan Seed Industry Laboratory (no. B21HJ0220-YHL), the Key Research and Development Program of Hainan (no. ZDYF2021XDNY165-YHL) and the strategic priority research programme of the Chinese Academy of Sciences (nos. XDA24010101 and XDB27010102).

Author information

Authors and Affiliations

Authors

Contributions

Yunhai Li, K.H., Y.W. and X.Z. designed the project. Yunhai Li supervised and conceived the project. K.H., Y.W., Yingjie Li, L.L., P.D., R.X., G.Z., D.W., Y. Luo, C.W., N.G. and J.H. performed most of the experiments. B.Z. performed the rice genetic transformation. H.Z. and L.Z. analysed the RNA-seq data and CUT&Tag data. K.H. and Yunhai Li analysed the data. K.H. described the results. Yunhai Li and K.H. wrote the article.

Corresponding authors

Correspondence to Xudong Zhu or Yunhai Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The phenotype of parental lines of hybrid rice variety TYHZ (TFA X HZ) and XQHZ (XQA X DHZ).

a-b, Mature grains (a) and panicles (b) of the maintainer line TFB, the improved maintainer line XQB with small seeds, the restorer line HZ, and the improved restorer line DHZ with large seeds. c-f, The grain length (c), grain width (d), grain thickness (e), and 1,000 grain weight (f) of parental lines TFB, XQB, HZ, and DHZ. n = 60 (c-d), n = 40 (e), and n = 3 (f). g-h, The plant height (g) and panicle length (h) of parental lines TFB, XQB, HZ, and DHZ. n = 12 (g), n = 13 (TFB, XQB, HZ) and 10 (DHZ) in (h). Values in (c-h) are given as mean ± SD. **P < 0.01 compared with TFB or HZ by Student’s t-test. ns, not significant (Student’s unpaired t-test). Bars: 3 mm (a) and 5 cm (b).

Source data

Extended Data Fig. 2 Genetic complementation of ZH11-GSE3small grain.

a-b, The mature plants (a) and panicles (b) of ZH11, ZH11-GSE3small grain and genomic complementary lines ZH11-GSE3small grain,gGSE3. c-e, Tiller number (c), panicle length (d), and grain number per panicle (e) of ZH11, ZH11-GSE3small grain and genomic complementary lines ZH11-GSE3small grain,gGSE3. n = 11 (c) and n = 12 (d-e). Values in (c-e) are given as mean ± SD. **P < 0.01 compared with ZH11-GSE3small grain by Student’s t-test. Bars: 10 cm (a), 5 cm (b).

Source data

Extended Data Fig. 3 Loss-of-function mutations of GSE3 lead to small grains.

a, The target site in GSE3. Red letters represent the target sequence and blue letters represent the PAM sequence. The knockout line gse3-cri1 had a single base T insertion that caused a frame-shift, and gse3-cri2 had 30 bp base pair deletion. b, The knockout line gse3-cri1 was validated to have a single base T insertion in the second exon of GSE3 by sanger sequencing. c, The knockout line gse3-cri2 was validated to have the 30 bp deletion in the second exon of GSE3 by sanger sequencing. d, Mature rice grains of ZH11, gse3-cri1 and gse3-cri2. e-h, The grain length (e), grain width (f), grain thickness (g) and 1,000 grain weight (h) of ZH11, gse3-cri1 and gse3-cri2. n = 50 (e-f), n = 40 (g), and n = 3 (h). i-j, The tiller number (i) and grain number per plant (j) of ZH11, gse3-cri1 and gse3-cri2. n = 12 (i-j). Values in (e-j) are given as mean ± SD. **P < 0.01 compared with parental line (ZH11) by Student’s t-test. Bars: 3 mm (d).

Source data

Extended Data Fig. 4 The phenotypes of ideal m238.

a-c, Mature grains (a), plants (b), and panicles (c) of ZH11 and m238 mutant. d-g, The grain length (d), grain width (e), grain thickness (f), and 1,000 grain weight (g) of ZH11 and m238 mutant. n = 60 (d-e), n = 40 (f), and n = 3 (g). h-i, The tiller number (h) and grain number per panicle (i) of ZH11 and m238 mutant. n = 8 (h), and n = 12 (i). j, A single base substitution on the first exon of the GSE3 gene results in an amino acid change (Ser/Pro) in the m238. The red arrow indicates the location of the single base replacement. Values in (d-i) are given as mean ± SD. **P < 0.01 compared with ZH11 by Student’s t-test. Bars: 3 mm (a), 10 cm (b) and 5 cm (c).

Source data

Extended Data Fig. 5 GSE3 interacts with GS2 in yeast cells and rice protoplasts.

a, GSE3 was divided into three fragments including GSE3-N (1-84), GSE3-GNAT (85-177) and GSE3-C (178-414), GSE3-GNAT (85-177) and GSE3-C (178-414) interacted with GS2 in yeast cells. The yeast cells were cultured on –LW (a medium that lacked tryptophan and leucine) and –LWHA (a medium that lacked tryptophan, leucine, histidine, and adenine). AD (pGADT7) and BD (pGBKT7) are the prey and bait vectors, respectively. b, GS2 was divided into five segments, including GS2-N-QLQ (1-112), GS2-QLQ (50-112), GS2-WRC (113-181), GS2-C (169-394) and GS2-QLQ-WRC-C(50-394). Only the segments that contain the QLQ domain can interact with GSE3-C (178-414). c, GSE3 interacts with GS2 in rice protoplasts. The plasmids 35S:GFP-GSE3 and 35S:MYC-GS2 were introduced to the rice protoplasts by PEG-mediated protoplast transformation method and incubated at room temperature for 15 h. The total proteins were extracted and immunoprecipitated with GFP-Trap-Agarose (gta-200, Chromotek). The immunoprecipitated proteins were detected with anti-GFP and anti-MYC antibodies, respectively. MYC-GS2 was detected in the immunoprecipitated GFP-GSE3 complex. IB: immunoblot. IP: immunoprecipitated.

Source data

Extended Data Fig. 6 Simultaneous knockout of GRF3 and GRF4 forms small grains.

a, Sanger sequencing confirmed that the knockout lines grf3-cri1 grf4-cri2 and grf3-cri1 grf4-cri3 have a single T base insertion in the third exon of GRF3. The sequencing analysis also revealed a single T base deletion in the first exon of the GRF4 gene in the grf3-cri1 grf4-cri2 line, as well as a single C base deletion in the first exon of the GRF4 gene in the grf3-cri1 grf4-cri3 line. The gene structure of GRF3 and GS2/GRF4 and the target sites (red arrow) are shown. b, Mature rice grains of ZH11, knockout lines grf3-cri1 grf4-cri2 and grf3-cri1 grf4-cri3. c-e, Grain length (c), grain width (d), and 1,000 grain weight (e) of ZH11 and knockout lines grf3-cri1 grf4-cri2 and grf3-cri1 grf4-cri3. n = 50 (c-d) and n = 3 (e). f-g, The tiller number and grain number per panicle of ZH11, knockout lines grf3-cri1 grf4-cri2 and grf3-cri1 grf4-cri3. n = 10 (f-g). Values in (c-g) are given as mean ± SD. **P < 0.01 compared with parental line (ZH11) by Student’s t-test. Bars: 3 mm (b).

Source data

Extended Data Fig. 7 The histone H4Ac (pan-acetyl) level in the promoter region of GSE3 and GS2 co-regulated genes.

ChIP-qPCR analysis showed the relative enrichment of histone H4Ac (pan-acetyl) at the promoter region of various genes, such as XIAO, GW6, and OsBZR1 in both ZH11 and ZH11-GSE3small grain young panicles. Data are shown as assay-site relatively fold enrichment of the signal from immunoprecipitation over the background. ChIP–qPCR was performed with three replicates. Values are given as mean ± SD. **P < 0.01, *P < 0.05 compared with ZH11.

Source data

Extended Data Fig. 8 The phenotypes of TFB and TFBgse3-cri3.

a-c, The mature plants (a), panicles (b), and grains (c) of TFB and TFBgse3-cri3. d-g, The grain length (d), grain width (e), grain thickness (f), and 1,000 grain weight (g) of TFBgse3-cri3 compared with those of TFB. n = 60 (d-e), n = 40 (f), and n = 3 (g). h-i, The number of tillers per plant (h) and grain number per panicle (i) of TFB and TFBgse3-cri3. n = 13 (h), and n = 10 (i). j-m, The plant height (j), leaf length (k), leaf width (l), and panicle length (m) of TFB and TFBgse3-cri3. n = 13 (j-l), and n = 10 (m). n, The grain yield per plant of TFB and TFBgse3-cri3. n = 22. Values in (d-n) are given as mean ± SD. **P < 0.01 compared with TFB by Student’s t-test. ns, not significant (Student’s unpaired t-test). Bars: 10 cm (a), 5 cm (b), and 3 mm (c).

Source data

Extended Data Fig. 9 The phenotypes of Y58S and Y58Sgse3-cri4.

a-b, The mature plants (a) and panicles (b) of Y58S and Y58Sgse3-cri4. c-d, The tiller number (c) and the grain number per panicle (d) of Y58S and Y58Sgse3-cri4. n = 12 (c), n = 9 (Y58S) and 10 (Y58Sgse3-cri4) in (d). e-h, The plant height (e), leaf length (f), leaf width (g), and panicle length (h) of Y58S and Y58Sgse3-cri4. n = 12 (e-g) and n = 10 (h). i, The grain yield per plant of Y58S and Y58Sgse3-cri4. n = 20. Values in (c-i) are given as mean ± SD. **P < 0.01, *P < 0.05 compared with Y58S by Student’s t-test. ns, not significant (Student’s unpaired t-test). Bars: 10 cm (a), 5 cm (b).

Source data

Extended Data Fig. 10 The comparison of panicles and rice grain size between F1 hybrids plants YLY900 and YLY900 (gse3-cri4).

a, Mature panicles of the F1 hybrids plants YLY900 and YLY900 (gse3-cri4). b, Mature rice grains of the F1 hybrids plants YLY900 and YLY900 (gse3-cri4). c-f, Panicle length (c), number of primary branches (d), number of secondary branches (e) and grain number per panicle (f) of the F1 hybrids plants YLY900 and YLY900 (gse3-cri4). n = 12. g-j, Grain length (g), grain width (h), grain thickness (i) and 1,000 grain weight (j) of the F1 hybrids plants YLY900 and YLY900 (gse3-cri4). n = 60 (g-h), n = 40 (i), and n = 3 (j). Values in (c-j) are given as mean ± SD. **P < 0.01 compared with parental line by Student’s t-test. ns, not significant (Student’s unpaired t-test). Bars: 5 cm (a), 3 mm (b).

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–32 and Tables 1–4.

Reporting Summary

Supplementary Data 1

Co-upregulated and co-downregulated genes in ZH11-GSE3small grain and grf3-cri1grf4-cri2.

Supplementary Data 2

Differentially expressed genes in ZH11-GSE3small grain versus ZH11.

Supplementary Data 3

Overlapping genes of the CUT&Tag data from GS2 and RNA-seq data from GSE3.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data and unprocessed western blots.

Source Data Fig. 3

Statistical source data and unprocessed western blots.

Source Data Fig. 4

Statistical source data and unprocessed western blots.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Unprocessed western blots.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 10

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Wang, Y., Li, Y. et al. Modulation of histone acetylation enables fully mechanized hybrid rice breeding. Nat. Plants 10, 954–970 (2024). https://doi.org/10.1038/s41477-024-01720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-024-01720-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing