Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Are cereal grasses a single genetic system?

Abstract

In 1993, a passionate and provocative call to arms urged cereal researchers to consider the taxon they study as a single genetic system and collaborate with each other. Since then, that group of scientists has seen their discipline blossom. In an attempt to understand what unity of genetic systems means and how the notion was borne out by later research, we survey the progress and prospects of cereal genomics: sequence assemblies, population-scale sequencing, resistance gene cloning and domestication genetics. Gene order may not be as extraordinarily well conserved in the grasses as once thought. Still, several recurring themes have emerged. The same ancestral molecular pathways defining plant architecture have been co-opted in the evolution of different cereal crops. Such genetic convergence as much as cross-fertilization of ideas between cereal geneticists has led to a rich harvest of genes that, it is hoped, will lead to improved varieties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simplified tree of the family Poaceae.
Fig. 2: Gene collinearity in the grasses: concept and visualizations.
Fig. 3: Timeline of cereal genomics.

Similar content being viewed by others

References

  1. Bennetzen, J. L. & Freeling, M. Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends Genet. 9, 259–261 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Shantz, H. L. The place of grasslands in the Earth’s cover. Ecology 35, 143–145 (1954).

    Article  Google Scholar 

  3. O’Mara, F. P. The role of grasslands in food security and climate change. Ann. Bot. 110, 1263–1270 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Suttie, J. M., Reynolds, S. G. & Batello, C. Grasslands of the World Vol. 34 (Food and Agriculture Organization, 2005).

  5. Christenhusz, M. J. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).

    Article  Google Scholar 

  6. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blaive, F. Le rituel romain des ‘Robigalia’ et le sacrifice du chien dans le monde indo-européen. Latomus 54, 279–289 (1995).

    Google Scholar 

  8. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article  CAS  Google Scholar 

  9. Cabral, L., Pandey, P. & Xu, X. Epic narratives of the Green Revolution in Brazil, China, and India. Agric. Hum. Values 39, 249–267 (2022).

    Article  Google Scholar 

  10. Ganetzky, B. & Hawley, R. S. The centenary of GENETICS: bridges to the future. Genetics 202, 15–23 (2015).

    Article  PubMed Central  Google Scholar 

  11. Crow, J. F. 90 years ago: the beginning of hybrid maize. Genetics 148, 923–928 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Przewieslik-Allen, A. M. et al. The role of gene flow and chromosomal instability in shaping the bread wheat genome. Nat. Plants 7, 172–183 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, H. et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368, eaba5435 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Santra, M., Wang, H., Seifert, S. & Haley, S. Doubled haploid laboratory protocol for wheat using wheat–maize wide hybridization. Methods Mol. Biol. 1679, 235–249 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Risk, J. M. et al. The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnol. J. 11, 847–854 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Milne, R. J. et al. The wheat Lr67 gene from the sugar transport protein 13 family confers multipathogen resistance in barley. Plant Physiol. 179, 1285–1297 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ahn, S. & Tanksley, S. D. Comparative linkage maps of the rice and maize genomes. Proc. Natl Acad. Sci. USA 90, 7980–7984 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kurata, N. et al. Conservation of genome structure between rice and wheat. Bio/Technol. 12, 276–278 (1994).

    Article  CAS  Google Scholar 

  19. Hulbert, S. H., Richter, T. E., Axtell, J. D. & Bennetzen, J. L. Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc. Natl Acad. Sci. USA 87, 4251–4255 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, W. et al. A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C4 photosynthesis. Mol. Plant 15, 755–777 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Moore, G., Devos, K. M., Wang, Z. & Gale, M. D. Cereal genome evolution: grasses, line up and form a circle. Curr. Biol. 5, 737–739 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Kamal, N. et al. The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature 606, 113–119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martis, M. M. et al. Reticulate evolution of the rye genome. Plant Cell 25, 3685–3698 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bennetzen, J. L. Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell 12, 1021–1029 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sorrells, M. E. et al. Comparative DNA sequence analysis of wheat and rice genomes. Genome Res. 13, 1818–1827 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feuillet, C. & Keller, B. High gene density is conserved at syntenic loci of small and large grass genomes. Proc. Natl Acad. Sci. USA 96, 8265–8270 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brueggeman, R. et al. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl Acad. Sci. USA 99, 9328–9333 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mayer, K. F. X. et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345, 1251788 (2014).

    Article  Google Scholar 

  29. Mayer, K. F. X. et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23, 1249–1263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sasaki, T. & International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).

    Article  Google Scholar 

  31. Shang, L. et al. A complete assembly of the rice Nipponbare reference genome. Mol. Plant 16, 1232–1236 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Vogel, J. P. et al. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763–768 (2010).

    Article  CAS  Google Scholar 

  34. Schulte, D. et al. The International Barley Sequencing Consortium—at the threshold of efficient access to the barley genome. Plant Physiol. 149, 142–147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gill, B. S. et al. A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 168, 1087–1096 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Metzker, M. L. Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Coster, W., Weissensteiner, M. H. & Sedlazeck, F. J. Towards population-scale long-read sequencing. Nat. Rev. Genet. 22, 572–587 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mascher, M. et al. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J. 76, 718–727 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ariyadasa, R. et al. A sequence-ready physical map of barley anchored genetically by two million single-nucleotide polymorphisms. Plant Physiol. 164, 412–423 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. van Oeveren, J. et al. Sequence-based physical mapping of complex genomes by whole genome profiling. Genome Res. 21, 618–625 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Eizenga, J. M. et al. Pangenome graphs. Annu. Rev. Genomics Hum. Genet. 21, 139–162 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaplan, N. & Dekker, J. High-throughput genome scaffolding from in vivo DNA interaction frequency. Nat. Biotechnol. 31, 1143–1147 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Navrátilová, P. et al. Prospects of telomere-to-telomere assembly in barley: analysis of sequence gaps in the MorexV3 reference genome. Plant Biotechnol. J. 20, 1373–1386 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mascher, M. et al. Long-read sequence assembly: a technical evaluation in barley. Plant Cell 33, 1888–1906 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sato, K. et al. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder’. DNA Res. 28, dsab008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kale, S. M. et al. A catalogue of resistance gene homologs and a chromosome-scale reference sequence support resistance gene mapping in winter wheat. Plant Biotechnol. J. 20, 1730–1742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Athiyannan, N. et al. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat. Genet. 54, 227–231 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lang, D. et al. Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. GigaScience 9, giaa123 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gale, M. D. & Devos, K. M. Plant comparative genetics after 10 years. Science 282, 656–659 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Mascher, M. et al. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat. Genet. 51, 1076–1081 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. McCouch, S. R., McNally, K. L., Wang, W. & Sackville Hamilton, R. Genomics of gene banks: a case study in rice. Am. J. Bot. 99, 407–423 (2012).

    Article  PubMed  Google Scholar 

  57. Elshire, R. J. et al. A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. De Beukelaer, H., Davenport, G. F. & Fack, V. Core Hunter 3: flexible core subset selection. BMC Bioinform. 19, 203 (2018).

    Article  Google Scholar 

  59. Romay, M. C. et al. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 14, R55 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Morris, G. P. et al. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Natl Acad. Sci. USA 110, 453–458 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Milner, S. G. et al. Genebank genomics highlights the diversity of a global barley collection. Nat. Genet. 51, 319–326 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Sansaloni, C. et al. Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nat. Commun. 11, 4572 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, W. et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43–49 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mayer, M. et al. Genetic diversity of European maize landraces: dataset on the molecular and phenotypic variation of derived doubled-haploid populations. Data Brief. 42, 108164 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barton, N. H., Etheridge, A. M. & Véber, A. The infinitesimal model: definition, derivation, and implications. Theor. Popul. Biol. 118, 50–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Meuwissen, T. H., Hayes, B. J. & Goddard, M. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Juliana, P. et al. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat. Genet. 51, 1530–1539 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Schulthess, A. W. et al. Genomics-informed prebreeding unlocks the diversity in genebanks for wheat improvement. Nat. Genet. 54, 1544–1552 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Gonzalez, M. Y. et al. Genomic prediction models trained with historical records enable populating the German ex situ genebank bio-digital resource center of barley (Hordeum sp.) with information on resistances to soilborne barley mosaic viruses. Theor. Appl. Genet. 134, 2181–2196 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Romero Navarro, J. A. et al. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat. Genet. 49, 476–480 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Yu, X. et al. Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat. Plants 2, 16150 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Xu, S., Zhu, D. & Zhang, Q. Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proc. Natl Acad. Sci. USA 111, 12456–12461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. El Hanafi, S. et al. Genomic predictions to leverage phenotypic data across genebanks. Front. Plant Sci. 14, 1227656 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J.-L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme Genotyping-by-Sequencing approach. PLoS ONE 7, e32253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mascher, M. et al. Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J. 76, 494–505 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Steuernagel, B. et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34, 652–655 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Sánchez-Martín, J. et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 17, 221 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jayakodi, M., Schreiber, M., Stein, N. & Mascher, M. Building pan-genome infrastructures for crop plants and their use in association genetics. DNA Res. 28, dsaa030 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hufford, M. B. et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655–662 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Walkowiak, S. et al. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277–283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jayakodi, M. et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588, 284–289 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sella, G. & Hirsh, A. E. The application of statistical physics to evolutionary biology. Proc. Natl Acad. Sci. USA 102, 9541–9546 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, L. et al. The interplay of demography and selection during maize domestication and expansion. Genome Biol. 18, 215 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gutaker, R. M. et al. Genomic history and ecology of the geographic spread of rice. Nat. Plants 6, 492–502 (2020).

    Article  PubMed  Google Scholar 

  86. Zhao, X. et al. Population genomics unravels the Holocene history of bread wheat and its relatives. Nat. Plants 9, 403–419 (2023).

    Article  PubMed  Google Scholar 

  87. Smith, O. et al. A domestication history of dynamic adaptation and genomic deterioration in Sorghum. Nat. Plants 5, 369–379 (2019).

    Article  PubMed  Google Scholar 

  88. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Feldman, M. et al. Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia. Nat. Commun. 10, 1218 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Swarts, K. et al. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science 357, 512–515 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Kistler, L. et al. Archaeological Central American maize genomes suggest ancient gene flow from South America. Proc. Natl Acad. Sci. USA 117, 33124–33129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mascher, M. et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat. Genet. 48, 1089–1093 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Scott, M. F. et al. A 3,000-year-old Egyptian emmer wheat genome reveals dispersal and domestication history. Nat. Plants 5, 1120–1128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Barnes, A. C. et al. An adaptive teosinte mexicana introgression modulates phosphatidylcholine levels and is associated with maize flowering time. Proc. Natl Acad. Sci. USA 119, e2100036119 (2022).

  97. Guo, Y., Himmelbach, A., Weiss, E., Stein, N. & Mascher, M. Six-rowed wild-growing barleys are hybrids of diverse origins. Plant J. 111, 849–858 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, H., Vieira, F. G., Crawford, J. E., Chu, C. & Nielsen, R. Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice. Genome Res. 27, 1029–1038 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Levy, A. A. & Feldman, M. Evolution and origin of bread wheat. Plant Cell 34, 2549–2567 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Borrill, P., Harrington, S. A. & Uauy, C. Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat. Plant J. 97, 56–72 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Ramírez-González, R. H. et al. The transcriptional landscape of polyploid wheat. Science 361, eaar6089 (2018).

    Article  PubMed  Google Scholar 

  102. Dubcovsky, J. & Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. The International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191 (2018).

    Article  Google Scholar 

  104. Avni, R. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93–97 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Luo, M. C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tamborski, J. & Krasileva, K. V. Evolution of plant NLRs: from natural history to precise modifications. Annu. Rev. Plant Biol. 71, 355–378 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Hafeez, A. N. et al. Creation and judicious application of a wheat resistance gene atlas. Mol. Plant 14, 1053–1070 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Adamski, N. M. et al. A roadmap for gene functional characterisation in crops with large genomes: lessons from polyploid wheat. eLife 9, e55646 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Gaurav, K. et al. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat. Biotechnol. 40, 422–431 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Yu, G. et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat. Commun. 13, 1607 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Arora, S. et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37, 139–143 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Collins, F. S. & McKusick, V. A. Implications of the Human Genome Project for medical science. JAMA 285, 540–544 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Barragan, A. C. & Weigel, D. Plant NLR diversity: the known unknowns of pan-NLRomes. Plant Cell 33, 814–831 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Michelmore, R. W. & Meyers, B. C. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8, 1113–1130 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Bennetzen, J. L. & Ma, J. The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr. Opin. Plant Biol. 6, 128–133 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Jupe, F. et al. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 76, 530–544 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Van de Weyer, A. L. et al. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178, 1260–1272.e14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Marone, M. P., Singh, H. C., Pozniak, C. J. & Mascher, M. A technical guide to TRITEX, a computational pipeline for chromosome-scale sequence assembly of plant genomes. Plant Methods 18, 128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li, Y. et al. Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69. Plant Commun. 5, 100646 (2024).

    Article  CAS  PubMed  Google Scholar 

  120. Moore, J. W. et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 47, 1494–1498 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Krattinger, S. G. et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360–1363 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Sallam, A. H. et al. Genome-wide association mapping of stem rust resistance in Hordeum vulgare subsp. spontaneum. G3 (Bethesda) 7, 3491–3507 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Dinh, H. X. et al. The barley leaf rust resistance gene Rph3 encodes a predicted membrane protein and is induced upon infection by avirulent pathotypes of Puccinia hordei. Nat. Commun. 13, 2386 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hewitt, T. et al. A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis. N. Phytol. 229, 2812–2826 (2021).

    Article  CAS  Google Scholar 

  125. Huang, R. et al. Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci. 18, 218–226 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Ashikari, M. et al. Cytokinin oxidase regulates rice grain production. Science 309, 741–745 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Mao, H. et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc. Natl Acad. Sci. USA 107, 19579–19584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu, J. et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat. Plants 3, 17043 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Sano, Y. Differential regulation of waxy gene expression in rice endosperm. Theor. Appl. Genet. 68, 467–473 (1984).

    Article  CAS  PubMed  Google Scholar 

  130. Huang, X. et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41, 494–497 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A. & Dubcovsky, J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314, 1298–1301 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Simons, K. J. et al. Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547–555 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Taketa, S. et al. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl Acad. Sci. USA 105, 4062–4067 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ramsay, L. et al. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat. Genet. 43, 169–172 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Vavilova, V., Konopatskaia, I., Kuznetsova, A. E., Blinov, A. & Goncharov, N. P. DEP1 gene in wheat species with normal, compactoid and compact spikes. BMC Genet. 18, 106 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wing, R. A., Purugganan, M. D. & Zhang, Q. The rice genome revolution: from an ancient grain to Green Super Rice. Nat. Rev. Genet. 19, 505–517 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Jackson, S. A. Rice: the first crop genome. Rice 9, 14 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Fuller, D. Q. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann. Bot. 100, 903–924 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Abbo, S. et al. Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci. 19, 351–360 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Kellogg, E. A. Genetic control of branching patterns in grass inflorescences. Plant Cell 34, 2518–2533 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Beadle, G. W. The ancestry of corn. Sci. Am. 242, 112–119 (1980).

    Article  Google Scholar 

  143. Doebley, J. Mapping the genes that made maize. Trends Genet. 8, 302–307 (1992).

    Article  CAS  PubMed  Google Scholar 

  144. Doebley, J., Stec, A. & Hubbard, L. The evolution of apical dominance in maize. Nature 386, 485–488 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43, 1160–1163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jiao, Y. et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Sreenivasulu, N. & Schnurbusch, T. A genetic playground for enhancing grain number in cereals. Trends Plant Sci. 17, 91–101 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Sakuma, S. & Schnurbusch, T. Of floral fortune: tinkering with the grain yield potential of cereal crops. N. Phytol. 225, 1873–1882 (2020).

    Article  Google Scholar 

  149. Komatsuda, T. et al. Six-rowed barley originated from a mutation in a homeodomain–leucine zipper I–class homeobox gene. Proc. Natl Acad. Sci. USA 104, 1424–1429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sakuma, S. et al. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc. Natl Acad. Sci. USA 116, 5182–5187 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Koppolu, R. et al. Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proc. Natl Acad. Sci. USA 110, 13198–13203 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. van Esse, G. W. et al. Six-Rowed Spike3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley. Plant Physiol. 174, 2397–2408 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Bull, H. et al. Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility. Nat. Commun. 8, 936 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Youssef, H. M. et al. VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat. Genet. 49, 157–161 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Fuller, D. Q. & Allaby, R. in Annual Plant Reviews: Fruit Development and Seed Dispersal Vol. 38 (ed. Østergaard, L.) 238–295 (Blackwell, 2009).

  156. Morrell, P. L. & Clegg, M. T. Genetic evidence for a second domestication of barley Hordeum vulgare east of the Fertile Crescent. Proc. Natl Acad. Sci. USA 104, 3289–3294 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zeng, X. et al. The brittle rachis trait in species belonging to the Triticeae and its controlling genes Btr1 and Btr2. Front. Plant Sci. 11, 1000 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Nave, M. et al. The independent domestication of Timopheev’s wheat: insights from haplotype analysis of the Brittle rachis 1 (BTR1-A) gene. Genes 12, 338 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Nave, M. et al. Wheat domestication in light of haplotype analyses of the Brittle rachis 1 genes (BTR1-A and BTR1-B). Plant Sci. 285, 193–199 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Konishi, S. et al. An SNP caused loss of seed shattering during rice domestication. Science 312, 1392–1396 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Ishikawa, R. et al. Allelic interaction at seed-shattering loci in the genetic backgrounds of wild and cultivated rice species. Genes Genet. Syst. 85, 265–271 (2010).

    Article  PubMed  Google Scholar 

  162. Htun, T. M., Inoue, C., Chhourn, O., Ishii, T. & Ishikawa, R. Effect of quantitative trait loci for seed shattering on abscission layer formation in Asian wild rice Oryza rufipogon. Breed. Sci. 64, 199–205 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Inoue, C. et al. Inhibition of abscission layer formation by an interaction of two seed-shattering loci, sh4 and qSH3, in rice. Genes Genet. Syst. 90, 1–9 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Lin, Z. et al. Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 44, 720–724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liu, H. et al. Transposon insertion drove the loss of natural seed shattering during foxtail millet domestication. Mol. Biol. Evol. 39, msac078 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Poncet, V. et al. Comparative analysis of QTLs affecting domestication traits between two domesticated × wild pearl millet (Pennisetum glaucum L., Poaceae) crosses. Theor. Appl. Genet. 104, 965–975 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Ishikawa, R. et al. A stepwise route to domesticate rice by controlling seed shattering and panicle shape. Proc. Natl Acad. Sci. USA 119, e2121692119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Paterson, A. H. et al. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269, 1714–1718 (1995).

    Article  CAS  PubMed  Google Scholar 

  169. Gabaldón, T. & Koonin, E. V. Functional and evolutionary implications of gene orthology. Nat. Rev. Genet. 14, 360–366 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Brenchley, R. et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491, 705–710 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–716 (2012).

    Article  Google Scholar 

  173. Beier, S. et al. Multiplex sequencing of bacterial artificial chromosomes for assembling complex plant genomes. Plant Biotechnol. J. 14, 1511–1522 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chen, J. et al. A complete telomere-to-telomere assembly of the maize genome. Nat. Genet. 55, 1221–1231 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Morgante, M. et al. Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat. Genet. 37, 997–1002 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. SanMiguel, P., Gaut, B. S., Tikhonov, A., Nakajima, Y. & Bennetzen, J. L. The paleontology of intergene retrotransposons of maize. Nat. Genet. 20, 43–45 (1998).

    Article  CAS  PubMed  Google Scholar 

  177. Wicker, T. et al. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J. 26, 307–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Chen, M. et al. Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc. Natl Acad. Sci. USA 94, 3431–3435 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Stein, J. C. et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat. Genet. 50, 285–296 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gozashti, L. & Hoekstra, H. E. Accounting for diverse transposable element landscapes is key to developing and evaluating accurate de novo annotation strategies. Genome Biol. 25, 4 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Soyk, S., Benoit, M. & Lippman, Z. B. New horizons for dissecting epistasis in crop quantitative trait variation. Annu. Rev. Genet. 54, 287–307 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Marand, A. P., Eveland, A. L., Kaufmann, K. & Springer, N. M. cis-Regulatory elements in plant development, adaptation, and evolution. Annu. Rev. Plant Biol. 74, 111–137 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zhao, L. et al. Integrative analysis of reference epigenomes in 20 rice varieties. Nat. Commun. 11, 2658 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Marand, A. P., Chen, Z., Gallavotti, A. & Schmitz, R. J. A cis-regulatory atlas in maize at single-cell resolution. Cell 184, 3041–3055.e3021 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Jiao, Y. et al. A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat. Genet. 41, 258–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Stelpflug, S. C. et al. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome https://doi.org/10.3835/plantgenome2015.04.0025 (2016).

  188. Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. The Darwin Tree of Life Project Consortiumet al. Sequence locally, think globally: the Darwin Tree of Life Project. Proc. Natl Acad. Sci. USA 119, e2115642118 (2022).

  192. Olmstead, R. G. & Bohs, L. A summary of molecular systematic research in Solanaceae: 1982–2006. In VI International Solanaceae Conference: Genomics Meets Biodiversity (eds Spooner, D. M. et al.) 255–268 (ISHS, 2007).

  193. Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mammal. 99, 1–14 (2018).

    Article  Google Scholar 

  194. McSteen, P. & Kellogg, E. A. Molecular, cellular, and developmental foundations of grass diversity. Science 377, 599–602 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Linquist, S., Doolittle, W. F. & Palazzo, A. F. Getting clear about the F-word in genomics. PLoS Genet. 16, e1008702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Dixon, L. E. et al. TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). Plant Cell 30, 563–581 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Bennett, T. & Dixon, L. E. Asymmetric expansions of FT and TFL1 lineages characterize differential evolution of the EuPEBP family in the major angiosperm lineages. BMC Biol. 19, 181 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yan, L. et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl Acad. Sci. USA 103, 19581–19586 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Putterill, J. & Varkonyi-Gasic, E. FT and florigen long-distance flowering control in plants. Curr. Opin. Plant Biol. 33, 77–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).

    Article  CAS  PubMed  Google Scholar 

  201. Bowman, J. L. The origin of a land flora. Nat. Plants 8, 1352–1369 (2022).

    Article  PubMed  Google Scholar 

  202. Blake, V. C. et al. The Triticeae Toolbox: combining phenotype and genotype data to advance small‐grains breeding. Plant Genome https://doi.org/10.3835/plantgenome2014.12.0099 (2016).

  203. Yao, E. et al. GrainGenes: a data-rich repository for small grains genetics and genomics. Database 2022, baac034 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Ko, S. et al. GWAS of longitudinal trajectories at biobank scale. Am. J. Hum. Genet 109, 433–445 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kawahara, Y. et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (N. Y.) 6, 4 (2013).

    Article  PubMed  Google Scholar 

  206. McCormick, R. F. et al. The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J. 93, 338–354 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345, 1251788 (2014).

    Article  Google Scholar 

  208. Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).

    Article  CAS  PubMed  Google Scholar 

  209. Monat, C. et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 20, 284 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Schnable, P. S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).

    Article  CAS  PubMed  Google Scholar 

  211. Cannarozzi, G. et al. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genomics 15, 581 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  212. VanBuren, R. et al. Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. Nat. Commun. 11, 884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Bauer, E. et al. Towards a whole-genome sequence for rye (Secale cereale L.). Plant J. 89, 853–869 (2017).

    Article  CAS  PubMed  Google Scholar 

  214. Rabanus-Wallace, M. T. et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat. Genet. 53, 564–573 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Li, G. et al. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat. Genet. 53, 574–584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Soreng, R. J. et al. A worldwide phylogenetic classification of the Poaceae (Gramineae) III: an update. J. Syst. Evol. 60, 476–521 (2022).

    Article  Google Scholar 

  217. Gallaher, T. J. et al. Grasses through space and time: an overview of the biogeographical and macroevolutionary history of Poaceae. J. Syst. Evol. 60, 522–569 (2022).

    Article  Google Scholar 

  218. Lovell, J. T. et al. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife 11, e78526 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Brunner, S., Fengler, K., Morgante, M., Tingey, S. & Rafalski, A. Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17, 343–360 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Liu, J. et al. Gapless assembly of maize chromosomes using long-read technologies. Genome Biol. 21, 121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Zhang, Y. et al. The telomere-to-telomere gap-free genome of four rice parents reveals SV and PAV patterns in hybrid rice breeding. Plant Biotechnol. J. 20, 1642–1644 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Tulpová, Z. et al. Fine structure and transcription dynamics of bread wheat ribosomal DNA loci deciphered by a multi-omics approach. Plant Genome 15, e20191 (2022).

    Article  PubMed  Google Scholar 

  226. Kapustová, V. et al. The dark matter of large cereal genomes: long tandem repeats. Int. J. Mol. Sci. 20, 2483 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Ahmed, H. I. et al. Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature 620, 830–838 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Barley genomic research in the labs of N.S. and M.M. is supported by a grant from the German Federal Ministry of Education and Research (BMBF, SHAPE-P3, 031B1302A). M.M.’s work on barley wild relatives is funded by the European Research Council (Starting Grant TRANSFER, action number 949873).

Author information

Authors and Affiliations

Authors

Contributions

M.M. drafted the manuscript. M.P.M., M.S. and N.S. designed the display items. All authors edited the final manuscript.

Corresponding authors

Correspondence to Martin Mascher or Nils Stein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mascher, M., Marone, M.P., Schreiber, M. et al. Are cereal grasses a single genetic system?. Nat. Plants 10, 719–731 (2024). https://doi.org/10.1038/s41477-024-01674-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-024-01674-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing