Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppressing ASPARTIC PROTEASE 1 prolongs photosynthesis and increases wheat grain weight

Abstract

The elongation of photosynthesis, or functional staygreen, represents a feasible strategy to propel metabolite flux towards cereal kernels. However, achieving this goal remains a challenge in food crops. Here we report the cloning of wheat CO2 assimilation and kernel enhanced 2 (cake2), the mechanism underlying the photosynthesis advantages and natural alleles amenable to breeding elite varieties. A premature stop mutation in the A-genome copy of the ASPARTIC PROTEASE 1 (APP-A1) gene increased the photosynthesis rate and yield. APP1 bound and degraded PsbO, the protective extrinsic member of photosystem II critical for increasing photosynthesis and yield. Furthermore, a natural polymorphism of the APP-A1 gene in common wheat reduced APP-A1’s activity and promoted photosynthesis and grain size and weight. This work demonstrates that the modification of APP1 increases photosynthesis, grain size and yield potentials. The genetic resources could propel photosynthesis and high-yield potentials in elite varieties of tetraploid and hexaploid wheat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The phenotype and molecular cloning of cake2.
Fig. 2: Genetic validation of loss of function of APP1 enhancing CO2 assimilation and grain agricultural traits.
Fig. 3: APP1 OE accelerated leaf senescence and complemented cake2.
Fig. 4: APP1 bound and degraded a protective extrinsic PS II member, PsbO.
Fig. 5: The contribution of PsbO-A1 to the functional staygreen phenotype in the cake2 mutant.
Fig. 6: A natural variation of APP-A1 mimicked the app1 mutant and enhanced CO2 assimilation and grain.

Similar content being viewed by others

Data availability

We deposited the raw sequencing data in the Gene Expression Omnibus Database under the accession code PRJNA861409. Correspondence and requests for other related information or materials should be addressed to the corresponding author. Source data are provided with this paper.

References

  1. Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D. & Schroeder, J. I. Genetic strategies for improving crop yields. Nature 575, 109–118 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Batista-Silva, W. et al. Engineering improved photosynthesis in the era of synthetic biology. Plant Commun. 1, 100032 (2020).

    PubMed  PubMed Central  Google Scholar 

  3. Singh, J. et al. Enhancing C3 photosynthesis: an outlook on feasible interventions for crop improvement. Plant Biotechnol. J. 12, 1217–1230 (2014).

    CAS  PubMed  Google Scholar 

  4. Ort, D. R. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl Acad. Sci. USA 112, 8529–8536 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Slattery, R. A. & Ort, D. R. Perspectives on improving light distribution and light use efficiency in crop canopies. Plant Physiol. 185, 34–48 (2021).

    CAS  PubMed  Google Scholar 

  6. Cavanagh, A. P., South, P. F., Bernacchi, C. J. & Ort, D. R. Alternative pathway to photorespiration protects growth and productivity at elevated temperatures in a model crop. Plant Biotechnol. J. 20, 711–721 (2022).

    CAS  PubMed  Google Scholar 

  7. Murchie, E. H. & Niyogi, K. K. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol. 155, 86–92 (2011).

    CAS  PubMed  Google Scholar 

  8. Sokolov, V. A. On a possible way to increase the efficiency of photosynthesis. Dokl. Biochem. Biophys. 491, 98–100 (2020).

    CAS  PubMed  Google Scholar 

  9. Taylor, S. H. et al. Faster than expected Rubisco deactivation in shade reduces cowpea photosynthetic potential in variable light conditions. Nat. Plants 8, 118–124 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoon, D.-K. et al. Transgenic rice overproducing Rubisco exhibits increased yields with improved nitrogen-use efficiency in an experimental paddy field. Nat. Food 1, 134–139 (2020).

    CAS  PubMed  Google Scholar 

  11. Chen, J. et al. Genotypic variation in the grain photosynthetic contribution to grain filling in rice. J. Plant Physiol. 253, 153269 (2020).

    CAS  PubMed  Google Scholar 

  12. Sanchez-Bragado, R. et al. New avenues for increasing yield and stability in C3 cereals: exploring ear photosynthesis. Curr. Opin. Plant Biol. 56, 223–234 (2020).

    PubMed  Google Scholar 

  13. Balazadeh, S. Stay-green not always stays green. Mol. Plant 7, 1264–1266 (2014).

    CAS  PubMed  Google Scholar 

  14. Khan, H. A., Nakamura, Y., Furbank, R. T. & Evans, J. R. Effect of leaf temperature on the estimation of photosynthetic and other traits of wheat leaves from hyperspectral reflectance. J. Exp. Bot. 72, 1271–1281 (2021).

    CAS  PubMed  Google Scholar 

  15. Joshi, S. et al. Improved wheat growth and yield by delayed leaf senescence using developmentally regulated expression of a cytokinin biosynthesis gene. Front. Plant Sci. 10, 1285 (2019).

    PubMed  PubMed Central  Google Scholar 

  16. Lucht, J. M. Public acceptance of plant biotechnology and GM crops. Viruses 7, 4254–4281 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Stirbet, A., Lazár, D., Guo, Y. & Govindjee, G. Photosynthesis: basics, history and modelling. Ann. Bot. 126, 511–537 (2020).

    CAS  PubMed  Google Scholar 

  18. Kuchel, H., Williams, K. J., Langridge, P., Eagles, H. A. & Jefferies, S. P. Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theor. Appl. Genet. 115, 1029–1041 (2007).

    CAS  PubMed  Google Scholar 

  19. Wang, C. Y. et al. Isolation of wheat mutants with higher grain phenolics to enhance anti-oxidant potential. Food Chem. 303, 125363 (2020).

    CAS  PubMed  Google Scholar 

  20. Ramírez-González, R. H. et al. The transcriptional landscape of polyploid wheat. Science 361, eaar6089 (2018).

    PubMed  Google Scholar 

  21. Krasileva, K. V. et al. Uncovering hidden variation in polyploid wheat. Proc. Natl Acad. Sci. USA 114, E913–E921 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pigolev, A. V. & Klimov, V. V. The green alga Chlamydomonas reinhardtii as a tool for in vivo study of site-directed mutations in PsbO protein of photosystem II. Biochem. (Mosc.) 80, 662–673 (2015).

    CAS  Google Scholar 

  23. Wang, S. et al. YR36/WKS1-mediated phosphorylation of PsbO, an extrinsic member of photosystem II, inhibits photosynthesis and confers stripe rust resistance in wheat. Mol. Plant 12, 1639–1650 (2019).

    CAS  PubMed  Google Scholar 

  24. Lupton, F. G. H. Translocation of photosynthetic assimilates in wheat. Ann. Appl. Biol. 57, 355–364 (1966).

    Google Scholar 

  25. Nass, H. G. & Reister, B. Grain filling period and grain yield relationships in spring wheat. Can. J. Plant Sci. 55, 673–678 (1975).

    Google Scholar 

  26. Gebeyehou, G., Knott, D. R. & Baker, R. J. Rate and duration of grain filling in durum wheat cultivars. Crop Sci. 22, 337–340 (1982).

    Google Scholar 

  27. Talbert, L. E., Lanning, S. P., Murphy, R. L. & Martin, J. M. Grain fill duration in twelve hard red spring wheat crosses. Crop Sci. 41, 1390–1395 (2001).

    Google Scholar 

  28. Cook, J. P. et al. Genetic analysis of stay-green, yield, and agronomic traits in spring wheat. Crop Sci. 61, 383–395 (2021).

    CAS  Google Scholar 

  29. Chapman, E. A., Orford, S., Lage, J. & Griffiths, S. Delaying or delivering: identification of novel NAM-1 alleles that delay senescence to extend wheat grain fill duration. J. Exp. Bot. 72, 7710–7728 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Araus, J. L., Sanchez-Bragado, R. & Vicente, R. Improving crop yield and resilience through optimization of photosynthesis: panacea or pipe dream. J. Exp. Bot. 72, 3936–3955 (2021).

    CAS  PubMed  Google Scholar 

  31. Neghliz, H., Cochard, H., Brunel, N. & Martre, P. Ear rachis xylem occlusion and associated loss in hydraulic conductance coincide with the end of grain filling for wheat. Front. Plant Sci. 7, 920 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191 (2018).

    Google Scholar 

  33. Pont, C. et al. Tracing the ancestry of modern bread wheats. Nat. Genet. 51, 905–911 (2019).

    CAS  PubMed  Google Scholar 

  34. Horton, P., Long, S. P., Smith, P., Banwart, S. A. & Beerling, D. J. Technologies to deliver food and climate security through agriculture. Nat. Plants 7, 250–255 (2021).

    CAS  PubMed  Google Scholar 

  35. Stitt, M. Progress in understanding and engineering primary plant metabolism. Curr. Opin. Biotechnol. 24, 229–238 (2013).

    CAS  PubMed  Google Scholar 

  36. Tanaka, M. et al. Photosynthetic enhancement, lifespan extension, and leaf area enlargement in flag leaves increased the yield of transgenic rice plants overproducing Rubisco under sufficient N fertilization. Rice 15, 10 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, X. et al. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science 376, 180–183 (2022).

    CAS  PubMed  Google Scholar 

  38. Maccaferri, M. et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51, 885–895 (2019).

    CAS  PubMed  Google Scholar 

  39. Liu, J. et al. Shaping polyploid wheat for success: origins, domestication, and the genetic improvement of agronomic traits. J. Integr. Plant Biol. 64, 536–563 (2022).

    PubMed  Google Scholar 

  40. Uauy, C. et al. A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol. 9, 115 (2009).

    PubMed  PubMed Central  Google Scholar 

  41. Guo, W. et al. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat. Commun. 11, 5085 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, W. et al. SnpHub: an easy-to-set-up web server framework for exploring large-scale genomic variation data in the post-genomic era with applications in wheat. Gigascience 9, giaa060 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. Zhou, Y. et al. Triticum population sequencing provides insights into wheat adaptation. Nat. Genet. 52, 1412–1422 (2020).

    CAS  PubMed  Google Scholar 

  44. Hao, C. et al. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol. Plant 13, 1733–1751 (2020).

    CAS  PubMed  Google Scholar 

  45. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, L., Feng, Z., Wang, X. & Zhang, X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138 (2010).

    PubMed  Google Scholar 

  47. Gou, J. Y., Yu, X. H. & Liu, C. J. A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis. Proc. Natl Acad. Sci. USA 106, 18855–18860 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Moyet, L., Salvi, D., Tomizioli, M., Seigneurin-Berny, D. & Rolland, N. Preparation of membrane fractions (envelope, thylakoids, grana, and stroma lamellae) from Arabidopsis chloroplasts for quantitative proteomic investigations and other studies. Methods Mol. Biol. 1696, 117–136 (2018).

    CAS  PubMed  Google Scholar 

  49. Curtis, M. D. & Grossniklaus, U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462–469 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gou, J. Y. et al. Wheat stripe rust resistance protein WKS1 reduces the ability of the thylakoid-associated ascorbate peroxidase to detoxify reactive oxygen species. Plant Cell 27, 1755–1770 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fujikawa, Y. & Kato, N. Split luciferase complementation assay to study protein–protein interactions in Arabidopsis protoplasts. Plant J. 52, 185–195 (2007).

    CAS  PubMed  Google Scholar 

  52. Lou, Y., Schwender, J. & Shanklin, J. FAD2 and FAD3 desaturases form heterodimers that facilitate metabolic channeling in vivo. J. Biol. Chem. 289, 17996–18007 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (grant no. 2022YFF1002902) and the National Natural Science Foundation of China (grant no. 31972350). We thank C. Hao, X. Zhang at the Chinese Academy of Agricultural Sciences and Y. Jiao at Peking University for sharing the hexaploid wheat varieties. We thank J. Dubcovsky at the University of California, Davis, for constructive suggestions.

Author information

Authors and Affiliations

Authors

Contributions

J.-Y.G. designed the research, interpreted the data and wrote the manuscript. K.-X.N. performed most of the experiments with help from C.-Y.C., M.-Q.Z., Y.-T.G., Y.Y., H.-J.S., G.-L.Z., X.-M.L., Y.-L.G., C.-H.D. and M.-L.W. Z.N. and Q.S. contributed to the discussion and analysis of the data.

Corresponding author

Correspondence to Jin-Ying Gou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Lin Li and Thorsten Schnurbusch for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The phylogenetic analysis and expression patterns of wheat APP gene family.

Note that we extracted the data from GSE12508 in NCBI.

Source data

Extended Data Fig. 2 Genotype of the app-B1 mutant and its effect on translation.

a,b, Sequence of the app-B1 gene at the mutation site and its effect on the coding sequence.

Extended Data Fig. 3 The phenotype and agricultural traits of psbo-A1 mutant.

a. Comparison of the endogenous PsbO protein levels in the dysfunction mutants. b, c. Grain sizes of WT and psbo-A1 mutant. Bars= 1 cm. d–f. Phenotypic data of grains from WT and psbo-A1 mutants, including grain length (n = 10), grain width (n = 10), grain thickness (n = 20), 1000-grain weight (n = 15), Grain roundness (n = 4), and Tons/HA (n = 3). Data represented mean ± SD; the two-tailed unpaired Student’s t-test indicates p-values.

Source data

Extended Data Fig. 4 The specific enzymatic activity of APP1.

The specific enzymatic activity of APP1 on a synthetic substrate and PsbO. a. The specific enzymatic activity of APP1 on an artificial substrate. n = 4, Data represented mean ± SD, and the two-tailed unpaired Student’s t-test indicates p-values. b. The specific enzymatic activity of APP1 on PsbO.

Source data

Extended Data Fig. 5 The gene ontology analysis of differentially expressed genes in app-A1.

a. Venn diagram representation of up-regulated expression genes between the app-A1 backcrossed mutant and WT. b. Venn diagram representation of down-regulated expression genes between the app-A1 backcrossed mutant and WT. c. The APP-A1 expression in app-A1 mutant and WT through RNA-seq. n = 3, Data represented mean ± SD, and the two-tailed unpaired Student’s t-test indicates p-values. d. The PsbO-A1 expression in app-A1 mutant and WT through RNA-seq. n = 3, Data represented mean ± SD, and the two-tailed unpaired Student’s t-test indicates p-values. GO (e) and KEGG (f) analysis in the app-A1 mutant. n = 3.

Source data

Extended Data Table 1 The agricultural traits of app-A1, app-B1, and app1 knockout mutants in June 2021
Extended Data Table 2 The agricultural traits of app-A1, app-B1, and app1 knockout mutants in June 2022

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Data 1 and 2.

Reporting Summary

Source data

Fig. 2

Unprocessed films for Fig. 2.

Fig. 3

Unprocessed films for Fig. 3.

Fig. 4

Unprocessed films for Fig. 4.

Fig. 6

Unprocessed films for Fig. 6.

Extended Data Fig. 3

Unprocessed films for Extended Data Fig. 3.

Extended Data Fig. 4

Unprocessed films for Extended Data Fig. 4.

Fig. 1

Statistical data for Fig. 1.

Fig. 2

Statistical data for Fig. 2.

Fig. 3

Statistical data for Fig. 3.

Fig. 5

Statistical data for Fig. 5.

Fig. 6

Statistical data for Fig. 6.

Extended Data Fig. 1

Statistical data for Extended Data Fig. 1.

Extended Data Fig. 3

Statistical data for Extended Data Fig. 3.

Extended Data Fig. 4

Statistical data for Extended Data Fig. 4.

Extended Data Fig. 5

Statistical data for Extended Data Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, KX., Chang, CY., Zhang, MQ. et al. Suppressing ASPARTIC PROTEASE 1 prolongs photosynthesis and increases wheat grain weight. Nat. Plants 9, 965–977 (2023). https://doi.org/10.1038/s41477-023-01432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01432-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing