Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-Knock—a multi-targeted genome-scale CRISPR toolbox to overcome functional redundancy in plants

Abstract

Plant genomes are characterized by large and complex gene families that often result in similar and partially overlapping functions. This genetic redundancy severely hampers current efforts to uncover novel phenotypes, delaying basic genetic research and breeding programmes. Here we describe the development and validation of Multi-Knock, a genome-scale clustered regularly interspaced short palindromic repeat toolbox that overcomes functional redundancy in Arabidopsis by simultaneously targeting multiple gene-family members, thus identifying genetically hidden components. We computationally designed 59,129 optimal single-guide RNAs that each target two to ten genes within a family at once. Furthermore, partitioning the library into ten sublibraries directed towards a different functional group allows flexible and targeted genetic screens. From the 5,635 single-guide RNAs targeting the plant transportome, we generated over 3,500 independent Arabidopsis lines that allowed us to identify and characterize the first known cytokinin tonoplast-localized transporters in plants. With the ability to overcome functional redundancy in plants at the genome-scale level, the developed strategy can be readily deployed by scientists and breeders for basic research and to expedite breeding efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of Multi-Knock, the genome-scale, multi-targeted CRISPR platform.
Fig. 2: An overview of sgRNA design strategy for gene families.
Fig. 3: Multi-targeted genome-scale sgRNA design and construction.
Fig. 4: Transportome-specific Multi-Knock screen.
Fig. 5: PUP7, PUP8 and PUP21 redundantly regulate shoot growth and phyllotaxis.
Fig. 6: PUP7, PUP8 and PUP21 regulate cytokinin transport and shoot meristem.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available within the article and Supplementary Materials. Source data are provided with this paper.

Code availability

All source codes used to generate the library are available in GitHub (https://github.com/anatshafir1/sgRNA_filtering_procedure).

References

  1. Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003).

    Article  PubMed  Google Scholar 

  2. Hauser, F. et al. A genomic-scale artificial microRNA library as a tool to investigate the functionally redundant gene space in Arabidopsis. Plant Cell 25, 2848–2863 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henry, I. M. et al. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell 26, 1382–1397 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tal, I. et al. The Arabidopsis NPF3 protein is a GA transporter. Nat. Commun. 7, 11486 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang, X. et al. A single transcript CRISPR-Cas9 system for efficient genome editing in plants. Mol. Plant 9, 1088–1091 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, L. et al. Construction of a genomewide RNAi mutant library in rice. Plant Biotechnol. J. 11, 997–1005 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Y. et al. A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport. Nat. Commun. 9, 4204 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Panchy, N., Lehti-Shiu, M. & Shiu, S. H. Evolution of gene duplication in plants. Plant Physiol. 171, 2294–2316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, Z. et al. Gene duplicability of core genes is highly consistent across all angiosperms. Plant Cell 28, 326–344 (2015).

    Article  Google Scholar 

  10. Rensing, S. A. Gene duplication as a driver of plant morphogenetic evolution. Curr. Opin. Plant Biol. 17, 43–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Lu, X. et al. Gene-indexed mutations in maize. Mol. Plant 11, 496–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Gaillochet, C., Develtere, W. & Jacobs, T. B. CRISPR screens in plants: approaches, guidelines, and future prospects. Plant Cell 33, 794–813 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacobs, T. B., Zhang, N., Patel, D. & Martin, G. B. Generation of a collection of mutant tomato lines using pooled CRISPR libraries. Plant Physiol. 174, 2023–2037 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, K. et al. A FLASH pipeline for arrayed CRISPR library construction and the gene function discovery of rice receptor-like kinases. Mol. Plant 15, 243–257 (2021).

    Article  PubMed  Google Scholar 

  17. Liu, H. J. et al. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell 32, 1397–1413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu, Y. et al. Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system. Mol. Plant 10, 1242–1245 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Meng, X. et al. Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol. Plant 10, 1238–1241 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Bai, M. et al. Generation of a multiplex mutagenesis population via pooled CRISPR–Cas9 in soya bean. Plant Biotechnol. J. 18, 721–731 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Ramadan, M. et al. Efficient CRISPR/Cas9 mediated pooled-sgRNAs assembly accelerates targeting multiple genes related to male sterility in cotton. Plant Methods 17, 1–13 (2021).

    Article  Google Scholar 

  22. Lorenzo, C. D. et al. BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize. Plant Cell 35, 218–238 (2023).

    Article  PubMed  Google Scholar 

  23. Grützner, R. et al. High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns. Plant Commun. 2, 1–15 (2021).

    Article  Google Scholar 

  24. Proost, S. et al. PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Res. 43, D974–D981 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Hyams, G. et al. CRISPys: optimal sgRNA design for editing multiple members of a gene family using the CRISPR system. J. Mol. Biol. 430, 2184–2195 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kang, J. et al. Plant ABC transporters. Arabidopsis Book 9, e0153 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tsutsui, H. & Higashiyama, T. PKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana. Plant Cell Physiol. 58, 46–56 (2017).

    CAS  PubMed  Google Scholar 

  29. Sussholz, O., Pizarro, L., Schuster, S. & Avni, A. SlRLK-like is a malectin-like domain protein affecting localization and abundance of LeEIX2 receptor resulting in suppression of EIX-induced immune responses. Plant J. 104, 1369–1381 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Fauser, F., Schiml, S. & Puchta, H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79, 348–359 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Z. P. et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16, 1–12 (2015).

    Article  Google Scholar 

  32. LeBlanc, C. et al. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J. 93, 377–386 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Kubis, S. et al. Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell 16, 2059–2077 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Niittylä, T. et al. A previously unknown maltose transporter essential for starch degradation in leaves. Science 303, 87–89 (2004).

    Article  PubMed  Google Scholar 

  35. Takano, J. et al. Arabidopsis boron transporter for xylem loading. Nature 420, 337–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Kang, J., Lee, Y., Sakakibara, H. & Martinoia, E. Cytokinin transporters: GO and STOP in signaling. Trends Plant Sci. 22, 455–461 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Zürcher, E., Liu, J., Di Donato, M., Geisler, M. & Müller, B. Plant development regulated by cytokinin sinks. Science 353, 1027–1030 (2016).

    Article  PubMed  Google Scholar 

  38. Bürkle, L. et al. Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J. 34, 13–26 (2003).

    Article  PubMed  Google Scholar 

  39. Gillissen, B. et al. A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 12, 291–300 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiao, Y. et al. Endoplasmic reticulum-localized PURINE PERMEASE1 regulates plant height and grain weight by modulating cytokinin distribution in rice. Front. Plant Sci. 11, 618560 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xiao, Y. et al. Big Grain3, encoding a purine permease, regulates grain size via modulating cytokinin transport in rice. J. Integr. Plant Biol. 61, 581–597 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Perilli, S., Moubayidin, L. & Sabatini, S. The molecular basis of cytokinin function. Curr. Opin. Plant Biol. 13, 21–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Wybouw, B. & De Rybel, B. Cytokinin—a developing story. Trends Plant Sci. 24, 177–185 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K. & Tran, L. S. P. Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. 17, 172–179 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Sakakibara, H. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57, 431–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Besnard, F. et al. Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature 505, 417–421 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Nelson, B. K., Cai, X. & Nebenführ, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Bruno, M. & Jen, S. Cytokinin and auxin interplay in root stem-cell specification during early embryogenesis. Nature 4, 1094–1097 (2008).

    Google Scholar 

  49. O’Malley, R. C. & Ecker, J. R. Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J. 61, 928–940 (2010).

    Article  PubMed  Google Scholar 

  50. Park, R. J. et al. A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat. Genet. 49, 193–203 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Ursache, R., Fujita, S., Dénervaud, V. & Geldner, N. Combined fluorescent seed selection and multiplex CRISPR/Cas9 assembly for fast generation of multiple Arabidopsis mutants Robertas. Plant Methods 17, 111 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Caesar, K. et al. Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. J. Exp. Bot. 62, 5571–5580 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wulfetange, K. et al. The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol. 156, 1808–1818 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lomin, S. N., Yonekura-Sakakibara, K., Romanov, G. A. & Sakakibara, H. Ligand-binding properties and subcellular localization of maize cytokinin receptors. J. Exp. Bot. 62, 5149–5159 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ding, W. et al. Isolation, characterization and transcriptome analysis of a cytokinin receptor mutant osckt1 in rice. Front. Plant Sci. 8, 88 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Antoniadi, I. et al. Cell-surface receptors enable perception of extracellular cytokinins. Nat. Commun. 11, 4284 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kubiasová, K. et al. Cytokinin fluoroprobe reveals multiple sites of cytokinin perception at plasma membrane and endoplasmic reticulum. Nat. Commun. 11, 4285 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Carpaneto, A. et al. Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. J. Biol. Chem. 280, 21437–21443 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Léran, S. et al. Arabidopsis NRT1.1 is a bidirectional transporter involved in root-to-shoot nitrate translocation. Mol. Plant 6, 1984–1987 (2013).

    Article  PubMed  Google Scholar 

  61. Mussa Belew, Z. et al. Identification and characterization of phlorizin transporter from Arabidopsis thaliana and its application for phlorizin production in Saccharomyces cerevisiae. Preprint at bioRxiv https://doi.org/10.1101/2020.08.14.248047 (2020).

  62. Chen, L. Q. et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527–532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, J. et al. ABCB-mediated shootward auxin transport feeds into the root clock. EMBO Rep. https://doi.org/10.15252/embr.202256271 (2023).

  64. Zhang, Y. et al. ABA homeostasis and long-distance translocation are redundantly regulated by ABCG ABA importers. Sci. Adv. 7, 1–18 (2021).

    Article  Google Scholar 

  65. Develtere, W. et al. SMAP design: a multiplex PCR amplicon and gRNA design tool to screen for natural and CRISPR-induced genetic variation. Nucleic Acids Res. https://doi.org/10.1093/nar/gkad036 (2023).

  66. Ellison, E. E. et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat. Plants 6, 620–624 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, M. et al. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Mol. Plant 10, 1007–1010 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Martin-Ortigosa, S. et al. Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision. Plant Physiol. 164, 537–547 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Mitter, N. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Gronau, I. & Moran, S. Optimal implementations of UPGMA and other common clustering algorithms. Inf. Process. Lett. 104, 205–210 (2007).

    Article  Google Scholar 

  72. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nour-Eldin, H. H., Hansen, B. G., Nørholm, M. H. H., Jensen, J. K. & Halkier, B. A. Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res. 34, e122 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jørgensen, M., Crocoll, C., Halkier, B. & Nour-Eldin, H. Uptake assays in Xenopus laevis oocytes using liquid chromatography-mass spectrometry to detect transport activity. Bio Protoc. 7, e2581 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ionescu, I. A. et al. Transcriptome and metabolite changes during hydrogen cyanamide-induced floral bud break in sweet cherry. Front. Plant Sci. 8, 1233 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jarzyniak, K. et al. Early stages of legume–rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins. Nat. Plants 7, 428–436 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Dereeper, A. et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, 465–469 (2008).

    Article  Google Scholar 

  79. Prasad, K. et al. Arabidopsis PLETHORA transcription factors control phyllotaxis. Curr. Biol. 21, 1123–1128 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Müller (University of Zurich, Switzerland) for sharing TCS:VENUS seeds. Funding: this work was supported by grants from the Israel Science Foundation (2378/19 and 3419/20 to E.S.), the Human Frontier Science Program (HFSP—RGY0075/2015 and HFSP—LIY000540/2020 to E.S., H.H.N.-E. and Z.M.B.), Danmarks Grundforskningsfond (DNRF99 to H.H.N.-E.), the European Research Council (757683-RobustHormoneTrans to E.S.), the PBC postdoctoral fellowship (to Y.H.), PhD fellowship from the Edmond J. Safra Center for Bioinformatics at Tel Aviv University (to A.S.) and by the Swiss National Funds (31003A-165877/1 to M.G.).

Author information

Authors and Affiliations

Authors

Contributions

Y.H. and E.S. conceived and designed the study and wrote the manuscript. Y.H. performed the research. P.P. assisted in cloning the Multi-Knock libraries and with PUP genetics. O.P. cloned and characterized the PUP amiRNA and PUP reporter lines. A.S., G.H. and O.C. carried out the Multi-Knock sgRNA library bioinformatics design and analysis. Z.M.B. performed transport assays in the Xenopus oocytes. J.B. carried out the Multi-Knock sgRNA library deep-sequencing analysis. S.B.Y. cloned the OLE:CITRINE Cas9 vector. B.S. carried out the TCS:VENUS assays. L.C. performed the tobacco transport assays. C.C. performed the LC–MS analysis. Y.Z. assisted in the PUP gene discovery. M.T. assisted in the library screen. D.W. assisted in the Multi-Knock sgRNA library design. A.A. provided the UBI:Cas9 vector. H.H.N.-E., M.G., T.V. and I.M. designed and supervised the work and edited the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Itay Mayrose or Eilon Shani.

Ethics declarations

Competing interests

A US Provisional Patent Application (no. 63/329,506) on the Multi-Knock system described in this study has been filed. The authors declare that they have no competing interests.

Peer review

Peer review information

Nature Plants thanks Kevin Zhao, Thomas Jacobs and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Reporting Summary

Supplementary Data 1

sgRNA library all families.

Supplementary Data 2

Source data for supplementary figures.

Supplementary Data 3

Unprocessed gel image of Supplementary Fig. 7a.

Supplementary Tables 1–8

Supplementary Tables 1–8.

Source data

Source Data Fig. 3

NGS source data for Fig. 3e.

Source Data Fig. 4

NGS source data for Fig. 4a.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Patra, P., Pisanty, O. et al. Multi-Knock—a multi-targeted genome-scale CRISPR toolbox to overcome functional redundancy in plants. Nat. Plants 9, 572–587 (2023). https://doi.org/10.1038/s41477-023-01374-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01374-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing