Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping of the plant SnRK1 kinase signalling network reveals a key regulatory role for the class II T6P synthase-like proteins

Abstract

The central metabolic regulator SnRK1 controls plant growth and survival upon activation by energy depletion, but detailed molecular insight into its regulation and downstream targets is limited. Here we used phosphoproteomics to infer the sucrose-dependent processes targeted upon starvation by kinases as SnRK1, corroborating the relation of SnRK1 with metabolic enzymes and transcriptional regulators, while also pointing to SnRK1 control of intracellular trafficking. Next, we integrated affinity purification, proximity labelling and crosslinking mass spectrometry to map the protein interaction landscape, composition and structure of the SnRK1 heterotrimer, providing insight in its plant-specific regulation. At the intersection of this multi-dimensional interactome, we discovered a strong association of SnRK1 with class II T6P synthase (TPS)-like proteins. Biochemical and cellular assays show that TPS-like proteins function as negative regulators of SnRK1. Next to stable interactions with the TPS-like proteins, similar intricate connections were found with known regulators, suggesting that plants utilize an extended kinase complex to fine-tune SnRK1 activity for optimal responses to metabolic stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sucrose repletion to sucrose-starved cells induces a wave of dephosphorylation of SnRK1 substrates.
Fig. 2: SnRK1 protein interactome mapping.
Fig. 3: Network visualization of the integrated SnRK1 interactome.
Fig. 4: Composition, stoichiometry and structure of the core SnRK1 complex.
Fig. 5: Functional characterization of the relationship between TPS II proteins and SnRK1.

Similar content being viewed by others

Data availability

The AP–MS and PL MS data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifiers PXD029833 (AP–MS) and PXD030048 (PL). The protein interactions from this publication have been submitted to the IMEx (http://www.imexconsortium.org) consortium through IntAct97 and assigned the identifier IM-29283. All structure-related data files related to integrative modelling are deposited in the Zenodo repository (10.5281/zenodo.5552311). The data supporting the findings of this study are available at the Figshare digital repository (https://doi.org/10.6084/m9.figshare.20732371)98. Source data are provided with this paper.

References

  1. Broeckx, T., Hulsmans, S. & Rolland, F. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. J. Exp. Bot. 67, 6215–6252 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Baena-González, E. & Hanson, J. Shaping plant development through the SnRK1–TOR metabolic regulators. Curr. Opin. Plant Biol. 35, 152–157 (2017).

    Article  PubMed  Google Scholar 

  3. Rodriguez, M., Parola, R., Andreola, S., Pereyra, C. & Martínez-Noël, G. TOR and SnRK1 signaling pathways in plant response to abiotic stresses: do they always act according to the “yin-yang” model? Plant Sci. 288, 110220 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Tsai, A. Y.-L. & Gazzarrini, S. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front. Plant Sci. 5, 119 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Paul, M. J., Oszvald, M., Jesus, C., Rajulu, C. & Griffiths, C. A. Increasing crop yield and resilience with trehalose 6-phosphate: targeting a feast–famine mechanism in cereals for better source–sink optimization. J. Exp. Bot. 68, 4455–4462 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Fichtner, F. & Lunn, J. E. The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development. Annu. Rev. Plant Biol. 72, 737–760 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Crepin, N. & Rolland, F. SnRK1 activation, signaling, and networking for energy homeostasis. Curr. Opin. Plant Biol. 51, 29–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Emanuelle, S. et al. SnRK1 from Arabidopsis thaliana is an atypical AMPK. Plant J. 82, 183–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Ramon, M. et al. The hybrid four-CBS-domain KINβγ subunit functions as the canonical gamma subunit of the plant energy sensor SnRK1. Plant J. 75, 11–25 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baena-González, E., Rolland, F., Thevelein, J. M. & Sheen, J. A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938–942 (2007).

    Article  PubMed  Google Scholar 

  11. Zhang, Y. et al. Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol. 149, 1860–1871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baena-González, E. & Lunn, J. E. SnRK1 and trehalose 6-phosphate—two ancient pathways converge to regulate plant metabolism and growth. Curr. Opin. Plant Biol. 55, 52–59 (2020).

    Article  PubMed  Google Scholar 

  13. Jamsheer K, M., Kumar, M. & Srivastava, V. SNF1-related protein kinase 1: the many-faced signaling hub regulating developmental plasticity in plants. J. Exp. Bot. 72, 6042–6065 (2021).

    Article  PubMed  Google Scholar 

  14. Nukarinen, E. et al. Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Sci. Rep. 6, 31697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cho, H.-Y., Wen, T.-N., Wang, Y.-T. & Shih, M.-C. Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence. J. Exp. Bot. 67, 2745–2760 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jamsheer K, M., Jindal, S. & Laxmi, A. Evolution of TOR–SnRK dynamics in green plants and its integration with phytohormone signaling networks. J. Exp. Bot. 70, 2239–2259 (2019).

    Article  PubMed  Google Scholar 

  17. Lin, C.-R. et al. SnRK1A-interacting negative regulators modulate the nutrient starvation signaling sensor SnRK1 in source–sink communication in cereal seedlings under abiotic stress. Plant Cell 26, 808–827 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Leene, J. et al. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat. Plants 5, 316–327 (2019).

    Article  PubMed  Google Scholar 

  19. Mair, A. et al. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants. eLife 4, e05828 (2015).

    Article  PubMed Central  Google Scholar 

  20. Dröge-Laser, W. & Weiste, C. The C/S1 bZIP network: a regulatory hub orchestrating plant energy homeostasis. Trends Plant Sci. 23, 422–433 (2018).

    Article  PubMed  Google Scholar 

  21. Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chou, M. F. & Schwartz, D. Biological sequence motif discovery using motif-x. Curr. Protoc. Bioinformatics 35, 13.15.11–13.15.24 (2011).

    Google Scholar 

  23. Ramon, M. et al. Default activation and nuclear translocation of the plant cellular energy sensor SnRK1 regulate metabolic stress responses and development. Plant Cell 31, 1614–1632 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morita, R., Sugino, M., Hatanaka, T., Misoo, S. & Fukayama, H. CO2-responsive CONSTANS, CONSTANS-like, and time of chlorophyll a/b binding protein expression1 protein is a positive regulator of starch synthesis in vegetative organs of rice. Plant Physiol. 167, 1321–1331 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Block-Schmidt, A. S., Dukowic-Schulze, S., Wanieck, K., Reidt, W. & Puchta, H. BRCC36A is epistatic to BRCA1 in DNA crosslink repair and homologous recombination in Arabidopsis thaliana. Nucleic Acids Res. 39, 146–154 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Banko, M. R. et al. Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis. Mol. Cell 44, 878–892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arabidopsis Interactome Mapping Consortium. Evidence for network evolution in an Arabidopsis interactome map. Science 333, 601–607 (2011).

    Article  PubMed Central  Google Scholar 

  28. Rao, X. S. et al. AMPK-mediated phosphorylation enhances the auto-inhibition of TBC1D17 to promote Rab5-dependent glucose uptake. Cell Death Differ. 28, 3214–3234 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Ducommun, S. et al. Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cell Signal 57, 45–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Rahmani, S., Defferrari, M. S., Wakarchuk, W. W. & Antonescu, C. N. Energetic adaptations: metabolic control of endocytic membrane traffic. Traffic 20, 912–931 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Chauhan, A. S., Zhuang, L. & Gan, B. Spatial control of AMPK signaling at subcellular compartments. Crit. Rev. Biochem. Mol. Biol. 55, 17–32 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arora, D. et al. Establishment of proximity-dependent biotinylation approaches in different plant model systems. Plant Cell 32, 3388–3407 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van Leene, J. et al. An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of cprotein complexes. Nat. Protoc. 10, 169–187 (2015).

    Article  PubMed  Google Scholar 

  34. Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 13, 2513–2526 (2014).

    Article  CAS  Google Scholar 

  35. Liu, X., Salokas, K., Weldatsadik, R. G., Gawriyski, L. & Varjosalo, M. Combined proximity labeling and affinity purification-mass spectrometry workflow for mapping and visualizing protein interaction networks. Nat. Protoc. 15, 3182–3211 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Lunn, J. E. Gene families and evolution of trehalose metabolism in plants. Funct. Plant Biol. 34, 550–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Harthill, J. E. et al. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J. 47, 211–223 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Ramon, M. et al. Extensive expression regulation and lack of heterologous enzymatic activity of the class II trehalose metabolism proteins from Arabidopsis thaliana. Plant Cell Environ. 32, 1015–1032 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Xiao, S., Jiang, L., Wang, C. & Ow, D. W. SnRK1 regulates chromatin-associated OXS3 family proteins localization through phosphorylation in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 533, 526–532 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Fu, X., Yang, H., Pangestu, F. & Nikolau, B. J. Failure to maintain acetate homeostasis by acetate-activating enzymes impacts plant development. Plant Physiol. 182, 1256–1271 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Bassel, G. W. et al. Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proc. Natl Acad. Sci. USA 108, 9709–9714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gissot, L. et al. AKINβγ contributes to SnRK1 heterotrimeric complexes and interacts with two proteins implicated in plant pathogen resistance through its KIS/GBD sequence. Plant Physiol. 142, 931–944 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Avila, J. et al. The β-subunit of the SnRK1 complex is phosphorylated by the plant cell death suppressor Adi3. Plant Physiol. 159, 1277–1290 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crozet, P. et al. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Front. Plant Sci. 5, 190 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shin, J. et al. The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner. Plant Cell Environ. 40, 997–1008 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Bruns, A. N., Li, S., Mohannath, G. & Bisaro, D. M. Phosphorylation of Arabidopsis eIF4E and eIFiso4E by SnRK1 inhibits translation. FEBS J. 286, 3778–3796 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, C. K. et al. A single-repeat MYB transcription repressor, MYBH, participates in regulation of leaf senescence in Arabidopsis. Plant Mol. Biol. 88, 269–286 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Lu, D., Wang, T., Persson, S., Mueller-Roeber, B. & Schippers, J. H. Transcriptional control of ROS homeostasis by KUODA1 regulates cell expansion during leaf development. Nat. Commun. 5, 3767 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Pedrotti, L. et al. Snf1-RELATED KINASE1-controlled C/S1-bZIP signaling activates alternative mitochondrial metabolic pathways to ensure plant survival in extended darkness. Plant Cell 30, 495–509 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Isner, J.-C. et al. Actin filament reorganisation controlled by the SCAR/WAVE complex mediates stomatal response to darkness. N. Phytol. 215, 1059–1067 (2017).

    Article  CAS  Google Scholar 

  51. Wang, P., Richardson, C., Hawes, C. & Hussey, P. J. Arabidopsis NAP1 regulates the formation of autophagosomes. Curr. Biol. 26, 2060–2069 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Obayashi, T., Aoki, Y., Tadaka, S., Kagaya, Y. & Kinoshita, K. ATTED-II in 2018: a plant coexpression database based on investigation of the statistical property of the mutual rank index. Plant Cell Physiol. 59, e3 (2018).

    Article  PubMed  Google Scholar 

  53. Tominaga, M. & Nakano, A. Plant-specific myosin XI, a molecular perspective. Front. Plant Sci. 3, 211 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Smits, A. H., Jansen, P. W. C., Poser, I., Hyman, A. A. & Vermeulen, M. Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics. Nucleic Acids Res. 41, e28 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, Y. et al. AKINβ1, a subunit of SnRK1, regulates organic acid metabolism and acts as a global modulator of genes involved in carbon, lipid, and nitrogen metabolism. J. Exp. Bot. 71, 1010–1028 (2020).

    CAS  PubMed  Google Scholar 

  56. Pierre, M. et al. N-myristoylation regulates the SnRK1 pathway in Arabidopsis. Plant Cell 19, 2804–2821 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Polge, C., Jossier, M., Crozet, P., Gissot, L. & Thomas, M. β-subunits of the SnRK1 complexes share a common ancestral function together with expression and function specificities; physical interaction with nitrate reductase specifically occurs via AKINβ1-subunit. Plant Physiol. 148, 1570–1582 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Russel, D. et al. Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol. 10, e1001244 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yperman, K. et al. Molecular architecture of the endocytic TPLATE complex. Sci. Adv. 7, eabe7999 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, Z.-L. et al. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat. Commun. 10, 3404 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Viswanath, S., Chemmama, I. E., Cimermancic, P. & Sali, A. Assessing exhaustiveness of stochastic sampling for integrative modeling of macromolecular structures. Biophys. J. 113, 2344–2353 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, X. et al. Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res. 25, 50–66 (2015).

    Article  PubMed  Google Scholar 

  64. Scholz, R. et al. Homo-oligomerization and activation of AMP-activated protein kinase are mediated by the kinase domain αG-helix. J. Biol. Chem. 284, 27425–27437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reyes, F. et al. The nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP-glucose into the endoplasmic reticulum, are essential for pollen development and are needed for embryo sac progress in Arabidopsis thaliana. Plant J. 61, 423–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Klein, M.-C. et al. AXER is an ATP/ADP exchanger in the membrane of the endoplasmic reticulum. Nat. Commun. 9, 3489 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jamsheer, K. M. et al. FCS-like zinc finger 6 and 10 repress SnRK1 signalling in Arabidopsis. Plant J. 94, 232–245 (2018).

    Article  Google Scholar 

  68. Deroover, S., Ghillebert, R., Broeckx, T., Winderickx, J. & Rolland, F. Trehalose-6-phosphate synthesis controls yeast gluconeogenesis downstream and independent of SNF1. FEMS Yeast Res. 16, fow036 (2016).

    Article  PubMed  Google Scholar 

  69. Muralidhara, P. et al. Perturbations in plant energy homeostasis prime lateral root initiation via SnRK1-bZIP63-ARF19 signaling. Proc. Natl Acad. Sci. USA 118, e2106961118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sanagi, M. et al. Low nitrogen conditions accelerate flowering by modulating the phosphorylation state of FLOWERING BHLH 4 in Arabidopsis. Proc. Natl Acad. Sci. USA 118, e2022942118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tian, L. et al. The trehalose-6-phosphate synthase TPS5 negatively regulates ABA signaling in Arabidopsis thaliana. Plant Cell Rep. 38, 869–882 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Nelson, B. K., Cai, X. & Nebenführ, A. A multicolored set of deorganelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Bitrian, M., Roodbarkelari, F., Horvath, M. & Koncz, C. BAC-recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits. Plant J. 65, 829–842 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Blanco, N. E., Liebsch, D., Guinea Díaz, M., Strand, Å. & Whelan, J. Dual and dynamic intracellular localization of Arabidopsis thaliana SnRK1.1. J. Exp. Bot. 70, 2325–2338 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Belda-Palazón, B., Costa, M., Beeckman, T., Rolland, F. & Baena-González, E. ABA represses TOR and root meristem activity through nuclear exit of the SnRK1 kinase. Proc. Natl Acad. Sci. USA 119, e2204862119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Forzani, C. et al. Mutations of the AtYAK1 kinase suppress TOR deficiency in Arabidopsis. Cell Rep. 27, 3696–3708 e3695 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Ling, N. X. Y. et al. mTORC1 directly inhibits AMPK to promote cell proliferation under nutrient stress. Nat. Metab. 2, 41–49 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yoon, J., Cho, L. H., Tun, W., Jeon, J. S. & An, G. Sucrose signaling in higher plants. Plant Sci. 302, 110703 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Rodrigues, A. et al. ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis. Plant Cell 25, 3871–3884 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tsutsui, T., Nakano, A. & Ueda, T. The plant-specific RAB5 GTPase ARA6 is required for starch and sugar homeostasis in Arabidopsis thaliana. Plant Cell Physiol. 56, 1073–1083 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Han, C. et al. TOR and SnRK1 fine tune SPEECHLESS transcription and protein stability to optimize stomatal development in response to exogenously supplied sugar. N. Phytol. 234, 107–121 (2022).

    Article  CAS  Google Scholar 

  82. Han, C. et al. TOR promotes guard cell starch degradation by regulating the activity of beta-AMYLASE1 in Arabidopsis. Plant Cell 34, 1038–1053 (2022).

    Article  PubMed  Google Scholar 

  83. Zacharaki, V. et al. Impaired KIN10 function restores developmental defects in the Arabidopsis trehalose 6-phosphate synthase1 (tps1) mutant. New Phytol. 235, 220–233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhai, Z. et al. Trehalose 6-phosphate positively regulates fatty acid synthesis by stabilizing WRINKLED1. Plant Cell 30, 2616–2627 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Crozet, P. et al. Cross-phosphorylation between Arabidopsis thaliana sucrose nonfermenting 1-related protein kinase 1 (AtSnRK1) and its activating kinase (AtSnAK) determines their catalytic activities. J. Biol. Chem. 285, 12071–12077 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Van Leene, J. et al. Isolation of transcription factor complexes from Arabidopsis cell suspension cultures by tandem affinity purification. Methods Mol. Biol. 754, 195–218 (2011).

    Article  PubMed  Google Scholar 

  87. Lampropoulos, A. et al. GreenGate—a novel, versatile, and efficient cloning system for plant transgenesis. PLoS ONE 8, e83043 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Decaestecker, W. et al. CRISPR-TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis. Plant Cell 31, 2868–2887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vanden Bossche, R., Demedts, B., Vanderhaeghen, R. & Goossens, A. Transient expression assays in tobacco protoplasts. Methods Mol. Biol. 1011, 227–239 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Vandesteene, L. et al. Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis. Plant Physiol. 160, 884–896 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Knight, J. D. R. et al. ProHits-viz: a suite of web tools for visualizing interaction proteomics data. Nat. Methods 14, 645–646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Grimm, M., Zimniak, T., Kahraman, A. & Herzog, F. xVis: a web server for the schematic visualization and interpretation of crosslink-derived spatial restraints. Nucleic Acids Res. 43, W362–W369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Gadeyne, A. et al. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell 156, 691–704 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Orchard, S. et al. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–D363 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Van Leene, J., Eeckhout, D. & De Jaeger, G. Mapping of the plant SnRK1 kinase signaling network reveals a key regulatory role for the class II T6P synthase-like proteins. figshare https://doi.org/10.6084/m9.figshare.20732371 (2022).

Download references

Acknowledgements

This work was funded by a research grant of the Research Foundation—Flanders (FWO) (G011720N) to G.D.J. and F.R. We acknowledge the VIB Proteomics core facility for LC–MS/MS analyses, A. Bleys for help in preparing the manuscript, M. Teige and Be. Würzinger for providing bacterial strains encoding SnAK1 and SnRK1α1 K48M, and T. Beeckman for providing the TPP-A Gateway entry clone.

Author information

Authors and Affiliations

Authors

Contributions

J.V.L. wrote the manuscript. J.V.L., D.E., A.G., C.H., D.V.D., F.R. and G.D.J. conceived the research. J.V.L., A.G., C.M., C.H., N.D.W., G.P., E.V.D.S., F.P., T.M., W.S., N.C. and E.B. performed experiments. D.E. and J.V.L. analysed the MS data. R.P. performed the structural analysis.

Corresponding author

Correspondence to Geert De Jaeger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Justin Walley, Markus Teige and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sucrose-dependent phosphoproteome analysis.

a, Hierarchical cluster analysis of the sucrose-dependent phosphosites like in Fig. 1c, showing both the sucrose- and TOR-dependent phosphosite intensity fold changes (FC). b, Comparison of phosphopeptide and protein fold changes (Log2FC) for 37 out of the 109 sucrose-dependent phosphorproteins that were identified in a shotgun proteome analysis on the sucrose-starved (t0) and sucrose-replenished (t20) samples. Blue, Log2FC(Proteome), red, Log2FC(Phosphoproteome). For every protein, the corresponding phosphosites are shown between brackets in order of appearance (from left to right). c, (left panel) Bar chart showing the percentage of sites from the sucrose down-, sucrose up-, or TOR-regulated phosphosites in which the central phosphorylated residue is conserved in a given plant species. (right panel) Bar chart showing the fraction of phosphosites for which the ratio of the blosum score of the sequence window over the global blosum score of the whole protein sequence is higher than one.

Extended Data Fig. 2 In vitro kinase assay results.

Full autoradiograms (1 h exposure) and Coomassie stained gel pictures of the kinase assays shown in Fig. 1e. The lower panel shows the absence of phosphorylation with the catalytically inactive SnRK1α1 K48M mutant. In the first lane, the sample from the negative control without substrate was loaded together with the protein ladder. Molecular weights (MW) of the recombinant HisMBP fusions are shown. The experiment was three times independently repeated with similar results.

Extended Data Fig. 3 Dot plot matrix of the 31 bait-specific SnRK1 interactors found in more than one experimental condition.

Dot plot representation is like in Fig. 2b.

Extended Data Fig. 4 Stoichiometry analysis of the remaining SnRK1 subunits.

Results obtained with SnRK1α1, SnRK1β2 or SnRK1β3 as bait proteins are shown like in Fig. 4a.

Extended Data Fig. 5 SnRK1 domain architecture.

a, Structures of the different SnRK1 subunits taken from the Alphafold Structure Database are shown in the ribbon representation. High confident regions are in purple, and low confident regions are in green. α-CTD, C-terminal domain of SnRK1α1; β-CTD, C-terminal domain of SnRK1β2; CBS, cystathionine-synthetase motif; C-term, C-terminus; KD, kinase domain; N-term, N-terminus. b, Three-dimensional multiscale structural representation of the SnRK1 subunits. The individual domains were represented by beads of varying sizes (1 to 20 amino acid residues per bead), arranged into either a rigid body or a flexible string of beads. Numbers in brackets represent a position in the protein sequence.

Extended Data Fig. 6 Convergence, ensemble precision and sampling exhaustiveness of the integrative structure of the heterotrimer composed of SnRK1α1, SnRK1β2 and SnRK1βγ.

a, Convergence of the model score calculated for 9,026 good-scoring models (mean ± SD; n = 10). The scoring did not improve after the addition of more independent models. The red line depicts a lower bound on the total score. b, The sampling precision as defined by three criteria; first, the p-value calculated using the χ2- test for homogeneity of proportions (red dots); second, the effect size for the χ2-test is quantified by the Cramer’s V value (blue squares); third, sufficiently large clusters (containing at least ten models) visualized as green triangles. The vertical dotted gray line indicates the root mean square displacement (RMSD) clustering threshold at which three criteria are satisfied (p-value > 0.05, Cramer’s V < 0.10, and the population of clustered models > 0.80). The sampling precision is thus 30 Å. c, Good-scoring models were split into two populations. Using the sampling precision 30 Å as the threshold, populations of samples 1 (light red) and 2 (blue) form three clusters. 98% of the models belong to cluster 1, which has a precision of 23 Å. d, Localization density maps for sample 1 and sample 2 of cluster 1, visualized here at a threshold equal to one-tenth of the maximum. The cross-correlation of the localization density maps of the two samples is 0.987, indicating that the position of SnRK1 subunits in the two samples is effectively identical at the model precision of 23 Å.

Extended Data Fig. 7 Structural analysis of the core SnRK1 complex composed of SnRK1α2, SnRK1β2 and SnRK1βγ.

a, Convergence of the model score calculated for 15,016 good-scoring models (mean ± SD; n = 10). The scoring did not improve after the addition of more independent models. The red line depicts a lower bound on the total score. b, The sampling precision as defined by three criteria; first, the p-value calculated using the χ2- test for homogeneity of proportions (red dots); second, the effect size for the χ2-test is quantified by the Cramer’s V value (blue squares); third, sufficiently large clusters (containing at least ten models) visualized as green triangles. The vertical dotted gray line indicates the root mean square displacement (RMSD) clustering threshold at which three criteria are satisfied (p-value > 0.05, Cramer’s V < 0.10, and the population of clustered models > 0.80). The sampling precision is thus 25 Å. c, Good-scoring models were split into two populations. Using the sampling precision 25 Å as the threshold, populations of samples 1 (light red) and 2 (blue) form four clusters. 82% of the models belong to cluster 1, which has a precision of 20 Å. d, Localization density maps for sample 1 and sample 2 of cluster 1, visualized here at a threshold equal to one-tenth of the maximum. The cross-correlation of the localization density maps of the two samples is 0.958, indicating that the position of SnRK1 subunits in the two samples is effectively identical at the model precision of 20 Å. e, Structure of the core SnRK1 complex as obtained by the integrative modeling approach. The structure presents a multiscale centroid structure, that is the structure with the minimal sum of root mean square deviations from all the good-scoring models in the dominant cluster 1. f, Input cross-links (gray dashed lines) mapped on the centroid structure. g, SnRK1 domains mapped on the centroid structure. CBM, carbohydrate-binding module; α-CTD, C-terminal domain of SnRK1α2; β-CTD, C-terminal domain of SnRK1β2; CBS, cystathionine-synthetase motif; KD, kinase domain. h, Distance distribution of obtained chemical cross-links in the centroid structure. The dotted red line represents the threshold for the consistent cross-links. i, The residue contact frequency map, calculated over ten best-scoring models, is depicted by colors ranging from white (0, low frequency) to blue (1, high frequency). A contact between a pair of amino acid residues is defined by the distance between bead surfaces below 35 Å. Cross-links are plotted as green dots (consistent cross-links - XLs) or orange dots (inconsistent XLs).

Extended Data Fig. 8 Comparison of the human AMPK and plant SnRK1 structures.

a, Comparison of the arrangements of the AMPK and SnRK1 domains mapped on the centroid structures. b, Multiple sequence alignment of the αG-helix from yeast, mammalian and Arabidopsis SNF1/AMPK/SnRK1 catalytic subunits. The cross-linked tryptic peptide that connects both SnRK1 α-subunits and the cross-linked lysine residues are indicated. The proximal hydrophobic residues that are involved in the dimerization of the catalytic subunits are marked by a blue rectangular. Protein sequences were extracted from the UNIPROT database and aligned in Jalview.

Supplementary information

Supplementary Information

Supplementary Note and references.

Reporting Summary

Supplementary Table

Supplementary Tables 1–8.

Source data

Source Data Fig. 1

Unprocessed immunoblots related to Fig. 1f.

Source Data Fig. 5

Stain-free loading controls and unprocessed immunoblots related to Fig. 5b–d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Leene, J., Eeckhout, D., Gadeyne, A. et al. Mapping of the plant SnRK1 kinase signalling network reveals a key regulatory role for the class II T6P synthase-like proteins. Nat. Plants 8, 1245–1261 (2022). https://doi.org/10.1038/s41477-022-01269-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-022-01269-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing