Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two-step regulation of centromere distribution by condensin II and the nuclear envelope proteins

Abstract

The arrangement of centromeres within the nucleus differs among species and cell types. However, neither the mechanisms determining centromere distribution nor its biological significance are currently well understood. In this study, we demonstrate the importance of centromere distribution for the maintenance of genome integrity through the cytogenic and molecular analysis of mutants defective in centromere distribution. We propose a two-step regulatory mechanism that shapes the non-Rabl-like centromere distribution in Arabidopsis thaliana through condensin II and the linker of the nucleoskeleton and cytoskeleton (LINC) complex. Condensin II is enriched at centromeres and, in cooperation with the LINC complex, induces the scattering of centromeres around the nuclear periphery during late anaphase/telophase. After entering interphase, the positions of the scattered centromeres are then stabilized by nuclear lamina proteins of the CROWDED NUCLEI (CRWN) family. We also found that, despite their strong impact on centromere distribution, condensin II and CRWN proteins have little effect on chromatin organization involved in the control of gene expression, indicating a robustness of chromatin organization regardless of the type of centromere distribution.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Condensin II is enriched at centromeres from late G2 to early G1 phase.
Fig. 2: Condensin II is required to form the scattered distribution of centromeres.
Fig. 3: LINC complexes are involved in the formation of scattered centromere distribution in cooperation with condensin II.
Fig. 4: CRWNs stabilize centromere position during interphase.
Fig. 5: CII–LINC and CRWNs contribute independently to the regulation of centromere distribution.
Fig. 6: Comparison of chromatin organization between the wild type and mutants affecting condensin II and CRWNs.
Fig. 7: Mutants showing abnormal centromere distribution show perturbation in genome stability.

Data availability

The microarray data (GEO ID: GSE179466) are available on the GEO website (https://www.ncbi.nlm.nih.gov/geo/). The Hi-C (DRA013016), RNA-seq (DRA014243), BS-seq (DRA014250) data are available on the DDBJ website (https://www.ddbj.nig.ac.jp/index-e.html). We used a modified version of Araport11 downloaded from https://plants.ensembl.org for RNA-seq data analysis and a TAIR10 genome downloaded from https://www.arabidopsis.org/index.jsp for Hi-C and BS-seq data analysis. Source data are provided with this paper.

Code availability

R scripts for Hi-C, BS-seq analysis (https://doi.org/10.5281/zenodo.6631550) and RNA-seq analysis (https://doi.org/10.5281/zenodo.6637416) are available on Zenodo.

References

  1. Matsunaga, S. et al. New insights into the dynamics of plant cell nuclei and chromosomes. Int. Rev. Cell Mol. Biol. 305, 253–301 (2013).

    CAS  PubMed  Google Scholar 

  2. Muller, H., Gil, J. & Drinnenberg, I. A. The impact of centromeres on spatial genome architecture. Trends Genet. 35, 565–578 (2019).

    CAS  PubMed  Google Scholar 

  3. Schubert, I. & Shaw, P. Organization and dynamics of plant interphase chromosomes. Trends Plant Sci. 16, 273–281 (2011).

    CAS  PubMed  Google Scholar 

  4. Vanrobays, E., Thomas, M. & Tatout, C. Heterochromatin positioning and nuclear architecture. Annu. Plant Rev. 46, 157–190 (2017).

    Google Scholar 

  5. Dong, F. & Jiang, J. Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res. 6, 551–558 (1998).

    CAS  PubMed  Google Scholar 

  6. Oko, Y., Ito, N. & Sakamoto, T. The mechanisms and significance of the positional control of centromeres and telomeres in plants. J. Plant Res. 133, 471–478 (2020).

    CAS  PubMed  Google Scholar 

  7. Bauer, C. R., Hartl, T. A. & Bosco, G. Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes. PLoS Genet. 8, e1002873 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoencamp, C. et al. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science 372, 984–989 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fang, Y. & Spector, D. L. Centromere positioning and dynamics in living Arabidopsis plants. Mol. Biol. Cell 16, 5710–5718 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Roberts, N. Y., Osman, K. & Armstrong, S. J. Telomere distribution and dynamics in somatic and meiotic nuclei of Arabidopsis thaliana. Cytogenet. Genome Res. 124, 193–201 (2009).

    CAS  PubMed  Google Scholar 

  11. Sakamoto, T., Sugiyama, T., Yamashita, T. & Matsunaga, S. Plant condensin II is required for the correct spatial relationship between centromeres and rDNA arrays. Nucleus 10, 116–125 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schubert, V., Lermontova, I. & Schubert, I. The Arabidopsis CAP-D proteins are required for correct chromatin organisation, growth and fertility. Chromosoma 122, 517–533 (2013).

    CAS  PubMed  Google Scholar 

  13. Municio, C. et al. The Arabidopsis condensin CAP-D subunits arrange interphase chromatin. New Phytol. 230, 972–987 (2021).

    CAS  PubMed  Google Scholar 

  14. Sakamoto, Y. et al. Subnuclear gene positioning through lamina association affects copper tolerance. Nat. Commun. 11, 5914 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dittmer, T. A., Stacey, N. J., Sugimoto-Shirasu, K. & Richards, E. J. LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. Plant Cell 19, 2793–2803 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Poulet, A. et al. The LINC complex contributes to heterochromatin organisation and transcriptional gene silencing in plants. J. Cell Sci. 130, 590–601 (2017).

    CAS  PubMed  Google Scholar 

  17. Wang, H., Dittmer, T. A. & Richards, E. J. Arabidopsis CROWDED NUCLEI (CRWN) proteins are required for nuclear size control and heterochromatin organization. BMC Plant Biol. 13, 200 (2013).

    PubMed  PubMed Central  Google Scholar 

  18. Hu, B. et al. Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery. Genome Biol. 20, 87 (2019).

    PubMed  PubMed Central  Google Scholar 

  19. Sakamoto, T. et al. Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis. Plant Cell 23, 3533–3546 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yin, K. et al. A dual-color marker system for in vivo visualization of cell cycle progression in Arabidopsis. Plant J. 80, 541–552 (2014).

    CAS  PubMed  Google Scholar 

  21. Shibuta, M. K. et al. A live imaging system to analyze spatiotemporal dynamics of RNA polymerase II modification in Arabidopsis thaliana. Commun. Biol. 4, 580 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Collette, K. S., Petty, E. L., Golenberg, N., Bembenek, J. N. & Csankovszki, G. Different roles for Aurora B in condensin targeting during mitosis and meiosis. J. Cell Sci. 124, 3684–3694 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujiwara, T., Tanaka, K., Kuroiwa, T. & Hirano, T. Spatiotemporal dynamics of condensins I and II: evolutionary insights from the primitive red alga Cyanidioschyzon merolae. Mol. Biol. Cell 24, 2515–2527 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Oda, Y. & Fukuda, H. Dynamics of Arabidopsis SUN proteins during mitosis and their involvement in nuclear shaping. Plant J. 66, 629–641 (2011).

    CAS  PubMed  Google Scholar 

  25. Surovtseva, Y. V. et al. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol. Cell 36, 207–218 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pontvianne, F. et al. Identification of nucleolus-associated chromatin domains reveals a role for the nucleolus in 3D organization of the A. thaliana genome. Cell Rep. 16, 1574–1587 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Masuda, K., Haruyama, S. & Fujino, K. Assembly and disassembly of the peripheral architecture of the plant cell nucleus during mitosis. Planta 210, 165–167 (1999).

    CAS  PubMed  Google Scholar 

  28. Meier, I., Richards, E. J. & Evans, D. E. Cell biology of the plant nucleus. Annu. Rev. Plant Biol. 68, 139–172 (2017).

    CAS  PubMed  Google Scholar 

  29. Sakamoto, Y. Nuclear lamina CRWN proteins regulate chromatin organization, gene expression, and nuclear body formation in plants. J. Plant Res. 133, 457–462 (2020).

    CAS  PubMed  Google Scholar 

  30. Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).

    CAS  PubMed  Google Scholar 

  31. Grob, S., Schmid, M. W. & Grossniklaus, U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol. Cell 55, 678–693 (2014).

    CAS  PubMed  Google Scholar 

  32. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hirakawa, T. & Matsunaga, S. Characterization of DNA repair foci in root cells of Arabidopsis in response to DNA damage. Front. Plant Sci. 10, 990 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Wang, Q. et al. Roles of CRWN-family proteins in protecting genomic DNA against oxidative damage. J. Plant Physiol. 233, 20–30 (2019).

    CAS  PubMed  Google Scholar 

  35. Pecinka, A. et al. Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113, 258–269 (2004).

    CAS  PubMed  Google Scholar 

  36. Andrey, P. et al. Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Comput. Biol. 6, e1000853 (2010).

    PubMed  PubMed Central  Google Scholar 

  37. Arpòn, J., Sakai, K., Gaudin, V. & Andrey, P. Spatial modeling of biological patterns shows multiscale organization of Arabidopsis thaliana heterochromatin. Sci. Rep. 11, 323 (2021).

    PubMed  PubMed Central  Google Scholar 

  38. Graumann, K. Evidence for LINC1–SUN associations at the plant nuclear periphery. PLoS ONE 9, e93406 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Bi, X. et al. Nonrandom domain organization of the Arabidopsis genome at the nuclear periphery. Genome Res. 27, 1162–1173 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mermet, S. et al. Evolutionary conserved protein motifs drive attachment of the plant nucleoskeleton at nuclear pores. Preprint at bioRxiv https://doi.org/10.1101/2021.03.20.435662 (2021).

  41. Tang, Y., Huang, A. & Gu, Y. Global profiling of plant nuclear membrane proteome in Arabidopsis. Nat. Plants 6, 838–847 (2020).

    CAS  PubMed  Google Scholar 

  42. Jin, Q. W., Fuchs, J. & Loidl, J. Centromere clustering is a major determinant of yeast interphase nuclear organization. J. Cell Sci. 113, 1903–1912 (2000).

    CAS  PubMed  Google Scholar 

  43. Tjong, H., Gong, K., Chen, L. & Alber, F. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Res. 22, 1295–1305 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hou, C., Li, L., Qin, Z. S. & Corces, V. G. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell 48, 471–484 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    CAS  PubMed  Google Scholar 

  46. Tjong, H. et al. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization. Proc. Natl Acad. Sci. USA 113, E1663–E1672 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mekhail, K., Seebacher, J., Gygi, S. P. & Moazed, D. Role for perinuclear chromosome tethering in maintenance of genome stability. Nature 456, 667–670 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Peng, J. C. & Karpen, G. H. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat. Cell Biol. 9, 25–35 (2007).

    CAS  PubMed  Google Scholar 

  49. Padeken, J. et al. The nucleoplasmin homolog NLP mediates centromere clustering and anchoring to the nucleolus. Mol. Cell 50, 236–249 (2013).

    CAS  PubMed  Google Scholar 

  50. Barra, V. & Fachinetti, D. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat. Commun. 9, 4340 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou, X. & Meier, I. Efficient plant male fertility depends on vegetative nuclear movement mediated by two families of plant outer nuclear membrane proteins. Proc. Natl Acad. Sci. USA 111, 11900–11905 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Varas, J. et al. Absence of SUN1 and SUN2 proteins in Arabidopsis thaliana leads to a delay in meiotic progression and defects in synapsis and recombination. Plant J. 81, 329–346 (2015).

    CAS  PubMed  Google Scholar 

  53. Graumann, K. et al. Characterization of two distinct subfamilies of SUN-domain proteins in Arabidopsis and their interactions with the novel KASH-domain protein AtTIK. J. Exp. Bot. 65, 6499–6512 (2014).

    CAS  PubMed  Google Scholar 

  54. Tamura, K. et al. Myosin XI-I links the nuclear membrane to the cytoskeleton to control nuclear movement and shape in Arabidopsis. Curr. Biol. 23, 1776–1781 (2013).

    CAS  PubMed  Google Scholar 

  55. Zhou, X., Graumann, K., Wirthmueller, L., Jones, J. D. G. & Meier, I. Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants. J. Cell Biol. 205, 677–692 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sakamoto, Y. & Takagi, S. LITTLE NUCLEI 1 and 4 regulate nuclear morphology in Arabidopsis thaliana. Plant Cell Physiol. 54, 622–633 (2013).

    CAS  PubMed  Google Scholar 

  57. Curtis, M. D. & Grossniklaus, U. A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462–469 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kurihara, D., Matsunaga, S., Uchiyama, S. & Fukui, K. Live cell imaging reveals plant AURORA kinase has dual roles during mitosis. Plant Cell Physiol. 49, 1256–1261 (2008).

    CAS  PubMed  Google Scholar 

  59. Maruyama, D. et al. Independent control by each female gamete prevents the attraction of multiple pollen tubes. Dev. Cell 25, 317–323 (2013).

    CAS  PubMed  Google Scholar 

  60. Sotta, N., Sakamoto, T., Matsunaga, S. & Fujiwara, T. Abnormal leaf development of rpt5a mutant under zinc deficiency reveals important role of DNA damage alleviation for normal leaf development. Sci. Rep. 9, 9369 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. Grob, S. & Grossniklaus, U. Chromatin conformation capture-based analysis of nuclear architecture. Methods Mol. Biol. 1456, 15–32 (2017).

    CAS  PubMed  Google Scholar 

  62. Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).

    PubMed  PubMed Central  Google Scholar 

  63. Schmid, M. W., Grob, S. & Grossniklaus, U. HiCdat: a fast and easy-to-use Hi-C data analysis tool. BMC Bioinformatics 16, 277 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Matsui, A. et al. Novel stress-inducible antisense RNAs of protein-coding loci are synthesized by RNA-dependent RNA polymerase. Plant Physiol. 175, 457–472 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

  67. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  69. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS  PubMed  Google Scholar 

  70. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Akalin, A. et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 13, R87 (2012).

    PubMed  PubMed Central  Google Scholar 

  73. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Mibu, Y. Asako (Tokyo University of Science, Japan) and Y. Inui (University of Tokyo, Japan) for substantial technical assistance. This research was supported by grants from Takeda Science Foundation and Tokyo University of Science Grant for International Joint Research to T. Sakamoto, grant from Chube Ito Foundation and MXT/JSPS KAKENHI (21K06247) to Y.S., grants from MXT/JSPS KAKENHI (26291067, 15H05955, 15H05962, 15K21750, 19H03259, 20H05911, 20H03297 and 22H00415) and JST CREST (grant number JPMJCR20S6) to S.M., as well as the University of Zurich and a grant from the European Research Council (ERC AdG number 243996) to U.G.

Author information

Authors and Affiliations

Authors

Contributions

T. Sakamoto, Y.S. and S.M. designed the experiments. T. Sakamoto, Y.S., S.G. and S.M. wrote the manuscript. T. Sakamoto, Y.S., T.Y., N.I., Y.O., T. Sugiyama and T.H. performed the experiments and analysed the data. T. Suzuki performed the sequencing. D.S. analysed the RNA-seq data. S.G. analysed the Hi-C and BS-seq data. M.T. performed the microarray experiments, and A.M. analysed the microarray data. S.H., M.S., U.G. and S.M. supervised the study. T. Sakamoto, U.G. and S.M. raised funding. All authors contributed through discussions and reviewed the manuscript.

Corresponding authors

Correspondence to Takuya Sakamoto or Sachihiro Matsunaga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Katja Graumann, Chang Liu, Frederic Pontvianne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–12.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–3.

Supplementary Data 1

Microarray data for Col-0, cap-h2-2 and crwn1/4 grown under normal conditions.

Supplementary Data 2

RNA-seq data for Col-0, cap-h2-2, crwn1/4, and cap-h2-2 crwn1/4 treated with zeocin for 0, 3 and 48 h.

Supplementary Data 3

Enriched GO terms in the DEGs of cap-h2-2 crwn1/4 treated with zeocin.

Supplementary Data 4

Statistical source data for supplementary figures.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Unprocessed blots.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Unprocessed blots.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sakamoto, T., Sakamoto, Y., Grob, S. et al. Two-step regulation of centromere distribution by condensin II and the nuclear envelope proteins. Nat. Plants 8, 940–953 (2022). https://doi.org/10.1038/s41477-022-01200-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-022-01200-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing