Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatially expressed WIP genes control Arabidopsis embryonic root development

Abstract

Development of plant organs is a highly organized process. In Arabidopsis, proper root development requires that distinct cell types and tissue layers are specified and formed in a restricted manner in space and over time. Despite its importance, genetic controls underlying such regularity remain elusive. Here we found that WIP genes expressed in the embryo and suspensor functionally oppose those expressed in the surrounding maternal tissues to orchestrate cell division orientation and cell fate specification in the embryonic root, thereby promoting regular root formation. The maternal WIPs act non-cell autonomously to repress root cell fate specification through SIMILAR TO RADICAL-INDUCED CELL DEATH ONE (SRO) family members. When losing all WIPs, root cells divide irregularly in the early embryo, but this barely alters their fate specification and the morphology of post-embryonic roots. Our results reveal cross-communication between the embryonic and maternal WIPs in controlling root development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: WIP genes regulate root cell division orientation.
Fig. 2: WIP1, WIP3 and/or WIP6 act non-cell autonomously to repress root cell specification.
Fig. 3: SRO family members are required for the WIP-mediated growth arrest and embryonic root development.
Fig. 4: Maternal WIPs act through SRO family members to inhibit root formation.
Fig. 5: Schematic model.

Similar content being viewed by others

Data availability

The RNA-seq data of wild-type and wip123456 primary root meristems have been deposited to Sequence Read Archive (PRJNA774717). All data supporting the findings of this study are available in this Article and its Supplementary Information, or from A. Bendahmane upon reasonable request. Source data are provided with this paper.

References

  1. Scheres, B. & Benfey, P. N. Asymmetric cell division in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 505–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Abrash, E. B. & Bergmann, D. C. Asymmetric cell divisions: a view from plant development. Dev. Cell 16, 783–796 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. De Smet, I. & Beeckman, T. Asymmetric cell division in land plants and algae: the driving force for differentiation. Nat. Rev. Mol. Cell Biol. 12, 177–188 (2011).

    Article  PubMed  CAS  Google Scholar 

  4. Petricka, J. J., Van Norman, J. M. & Benfey, P. N. Symmetry breaking in plants: molecular mechanisms regulating asymmetric cell divisions in Arabidopsis. Cold Spring Harb. Perspect. Biol. 1, a000497 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pillitteri, L. J., Guo, X. & Dong, J. Asymmetric cell division in plants: mechanisms of symmetry breaking and cell fate determination. Cell. Mol. Life Sci. 73, 4213–4229 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heidstra, R. Asymmetric cell division in plant development. Prog. Mol. Subcell. Biol. 45, 1–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Scheres, B. et al. Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120, 2475–2487 (1994).

    Article  CAS  Google Scholar 

  8. Capron, A., Chatfield, S., Provart, N. & Berleth, T. Embryogenesis: pattern formation from a single cell. Arabidopsis Book 7, e0126 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jenik, P. D., Gillmor, C. S. & Lukowitz, W. Embryonic patterning in Arabidopsis thaliana. Annu. Rev. Cell Dev. Biol. 23, 207–236 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Lau, S., Slane, D., Herud, O., Kong, J. & Jurgens, G. Early embryogenesis in flowering plants: setting up the basic body pattern. Annu. Rev. Plant Biol. 63, 483–506 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. ten Hove, C. A., Lu, K. J. & Weijers, D. Building a plant: cell fate specification in the early Arabidopsis embryo. Development 142, 420–430 (2015).

    Article  PubMed  CAS  Google Scholar 

  12. Palovaara, J., de Zeeuw, T. & Weijers, D. Tissue and organ initiation in the plant embryo: a first time for everything. Annu. Rev. Cell Dev. Biol. 32, 47–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Crawford, B. C. W. et al. Genetic control of distal stem cell fate within root and embryonic meristems. Science 347, 655–659 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Jones, V. A. & Dolan, L. MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha. Development 144, 1472–1476 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Englbrecht, C. C., Schoof, H. & Bohm, S. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5, 39 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Marsch-Martinez, N. et al. The NTT transcription factor promotes replum development in Arabidopsis fruits. Plant J. 80, 69–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Crawford, B. C. W., Ditta, G. & Yanofsky, M. F. The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Curr. Biol. 17, 1101–1108 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Petricka, J. J., Clay, N. K. & Nelson, T. M. Vein patterning screens and the defectively organized tributaries mutants in Arabidopsis thaliana. Plant J. 56, 251–263 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Martin, A. et al. A transposon-induced epigenetic change leads to sex determination in melon. Nature 461, 1135–1138 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Sagasser, M., Lu, G. H., Hahlbrock, K. & Weisshaar, B. A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev. 16, 138–149 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Coen, O. et al. A TRANSPARENT TESTA transcriptional module regulates endothelium polarity. Front. Plant Sci. 10, 1801 (2019).

    Article  PubMed  Google Scholar 

  22. Appelhagen, I. et al. Weird fingers: functional analysis of WIP domain proteins. FEBS Lett. 584, 3116–3122 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Roldan, M. V. G. et al. Integrative genome-wide analysis reveals the role of WIP proteins in inhibition of growth and development. Commun. Biol. 3, 239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Appelhagen, I. et al. TRANSPARENT TESTA1 interacts with R2R3-MYB factors and affects early and late steps of flavonoid biosynthesis in the endothelium of Arabidopsis thaliana seeds. Plant J. 67, 406–419 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Wieschaus, E. Positional information and cell fate determination in the early Drosophila embryo. Curr. Top. Dev. Biol. 117, 567–579 (2016).

    Article  PubMed  Google Scholar 

  26. Lynch, J. A. Evolution of maternal control of axial patterning in insects. Curr. Opin. Insect Sci. 31, 37–42 (2019).

    Article  PubMed  Google Scholar 

  27. Kölle, S., Hughes, B. & Steele, H. Early embryo-maternal communication in the oviduct: a review. Mol. Reprod. Dev. 87, 650–662 (2020).

    Article  PubMed  CAS  Google Scholar 

  28. Fazeli, A. Maternal communication with gametes and embryos. Theriogenology 70, 1182–1187 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Idelevich, A. & Vilella, F. Mother and embryo cross-communication. Genes https://doi.org/10.3390/genes11040376 (2020).

  30. Ray, S., Golden, T. & Ray, A. Maternal effects of the short integument mutation on embryo development in Arabidopsis. Dev. Biol. 180, 365–369 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Costa, L. M. et al. Central cell-derived peptides regulate early embryo patterning in flowering plants. Science 344, 168–172 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Prigge, M. J. & Wagner, D. R. The Arabidopsis serrate gene encodes a zinc-finger protein required for normal shoot development. Plant Cell 13, 1263–1279 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ottenschlager, I. et al. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl Acad. Sci USA 100, 2987–2991 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811–814 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Willemsen, V. et al. The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells. Dev. Cell 15, 913–922 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Petricka, J. J., Winter, C. M. & Benfey, P. N. Control of Arabidopsis root development. Annu. Rev. Plant Biol. 63, 563–590 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scheres, B. Stem-cell niches: nursery rhymes across kingdoms. Nat. Rev. Mol. Cell Biol. 8, 345–354 (2007).

  39. Craft, J. et al. New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J. 41, 899–918 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Belles-Boix, E., Babiychuk, E., Van Montagu, M., Inze, D. & Kushnir, S. CEO1, a new protein from Arabidopsis thaliana, protects yeast against oxidative damage. FEBS Lett. 482, 19–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Jaspers, P. et al. Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. Plant J. 60, 268–279 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Teotia, S. & Lamb, R. S. The paralogous genes RADICAL-INDUCED CELL DEATH1 and SIMILAR TO RCD ONE1 have partially redundant functions during Arabidopsis development. Plant Physiol. 151, 180–198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Teotia, S. & Lamb, R. S. RCD1 and SRO1 are necessary to maintain meristematic fate in Arabidopsis thaliana. J. Exp. Bot. 62, 1271–1284 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Christensen, L. F. & Staby, L. Evolutionary conservation of the intrinsic disorder-based Radical-Induced Cell Death1 hub interactome. Sci. Rep. 9, 18927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jaspers, P. et al. The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants. BMC Genomics 11, 170 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Aravind, L. The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends Biochem. Sci. 26, 273–275 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Rissel, D. & Peiter, E. Poly(ADP-Ribose) polymerases in plants and their human counterparts: parallels and peculiarities. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20071638 (2019).

  48. Wirthmueller, L. et al. Arabidopsis downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICAL-INDUCED CELL DEATH1. New Phytol. 220, 232–248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bugge, K. et al. Structure of radical-induced cell death1 hub domain reveals a common αα-scaffold for disorder in transcriptional networks. Structure 26, 734–746.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Stadler, R., Lauterbach, C. & Sauer, N. Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains in Arabidopsis seeds and embryos. Plant Physiol. 139, 701–712 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kawashima, T. & Goldberg, R. B. The suspensor: not just suspending the embryo. Trends Plant Sci. 15, 23–30 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Yeung, E. C. Embryogeny of Phaseolus: the role of the suspensor. Z. Pflanzenphysiol. 96, 17–28 (1980).

    Article  Google Scholar 

  53. Schulz, P. & Jensen, W. A. Capsella embryogenesis: the suspensor and the basal cell. Protoplasma 67, 139–163 (1969).

    Article  Google Scholar 

  54. Robert, H. S. et al. Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nat. Plants 4, 548–553 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nagl, W. Translocation of putrescine in the ovule, suspensor and embryo of Phaseolus coccineus. J. Plant Physiol. 136, 587–591 (1990).

    Article  CAS  Google Scholar 

  56. Ahlfors, R. et al. Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell 16, 1925–1937 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brosche, M. et al. Transcriptomics and functional genomics of ROS-induced cell death regulation by RADICAL-INDUCED CELL DEATH1. PLoS Genet. 10, e1004112 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Potters, G., Pasternak, T. P., Guisez, Y. & Jansen, M. A. Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ. 32, 158–169 (2009).

    Article  PubMed  Google Scholar 

  59. Blomster, T. et al. Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. Plant Physiol. 157, 1866–1883 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Karimi, M., De Meyer, B. & Hilson, P. Modular cloning in plant cells. Trends Plant Sci. 10, 103–105 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Blilou, I. et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Siligato, R. et al. MultiSite gateway-compatible cell type-specific gene-inducible system for plants. Plant Physiol. 170, 627–641 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Musielak, T. J., Schenkel, L., Kolb, M., Henschen, A. & Bayer, M. A simple and versatile cell wall staining protocol to study plant reproduction. Plant Reprod. 28, 161–169 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bougourd, S., Marrison, J. & Haseloff, J. Technical advance: an aniline blue staining procedure for confocal microscopy and 3D imaging of normal and perturbed cellular phenotypes in mature Arabidopsis embryos. Plant J. 24, 543–550 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Zhou, X., Shi, C., Zhao, P. & Sun, M. Isolation of living apical and basal cell lineages of early proembryos for transcriptome analysis. Plant Reprod. 32, 105–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Figueiredo, D. D., Batista, R. A., Roszak, P. J., Hennig, L. & Kohler, C. Auxin production in the endosperm drives seed coat development in Arabidopsis. eLife https://doi.org/10.7554/eLife.20542 (2016).

  68. Truernit, E. et al. High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. Plant Cell 20, 1494–1503 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Molder, F. et al. Sustainable data analysis with Snakemake. F1000Research 10, 33 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gietz, R. D. & Woods, R. A. Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol. Biol. 313, 107–120 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Crespi and T. Blein for helpful discussions; B. Scheres for critical reading of the manuscript; H. Morin, C. Troadec, A. d. B. d. Granrut, all FLOCAD team members, the imaging platform and greenhouse teams at the Institute of Plant Sciences Paris-Saclay (IPS2) for technical support; and the Eurasian Arabidopsis Stock Centre (uNASC) for sharing research materials. This work was supported by the European Research Council (ERC-SEXYPARTH, 341076), the ANR (EPISEX, ANR-17-CE20-0019), and the LabEx Saclay Plant Sciences-SPS (ANR-10-LABX-40-SPS). M.V.G.R. was supported by the Intra-European Fellowships for Career Development (IEF) (Grant PIEF-GA-2012-330908).

Author information

Authors and Affiliations

Authors

Contributions

Y.D. and A. Bendahmane conceptualized the project; Y.D. and A. Bendahmane developed the methodology; A. Boualem and M.V. conducted formal analysis; Y.D., M.V.G.R., A.H., N.H. and F.I. conducted the investigations; Y.D., A.H. and F.I. procured resources; Y.D. wrote the original draft; Y.D., M.V.G.R., A. Boualem, M.V. and A. Bendahmane reviewed and edited the draft; Y.D. and A. Bendahmane supervised the project; A. Bendahmane acquired funding and administered the project.

Corresponding authors

Correspondence to Yujuan Du or Abdelhafid Bendahmane.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 WIP genes regulate root cell division orientation.

a, Overview of wild type, wip245 (nww), wip2-4wip45 and wip2-3wip45 seedlings at 7 day-post-germination (d.p.g.). wip2-3 allele: SM_3_16705; wip2-4 allele: SM_3_23211. Scale bar: 1 cm. b-j, Images of wip245 and wip123456 embryonic roots at indicated stages. The number presented at the bottom of each image represents the counts of indicated phenotype (left) versus the total counts (right). G1: early-globular stage; G2: late-globular stage; H1: early-heart stage; H2: late-heart stage; ME: matured embryo. Magenta and blue frames: the zoom-in areas. White arrows in j indicate COL layer; white asterisks in j mark the newly formed COL cells; colored asterisks in h-i indicate possible cell division patterns from H1 to H2. Cyan: hypophysis/QC lineage; yellow: COL initial lineage; orange: COL layers; grey: delayed/failed layer formation; light purple: ground tissue initials; olive green: Epi/LRC initials; pink: vascular initials. QC: quiescent center; COL: columella; Epi: epidermis; LRC: lateral root cap. Scale bars: 50 μm. Related to Fig. 1.

Extended Data Fig. 2 Cell fate specification in wip123456 and wip245 embryonic roots.

a-e, Images of embryos, suspensors and primary roots expressing indicated reporters in wild type, wip245 and wip123456 mutants. Scale bars: 50 μm. h, Frequency and counts of the suspensors with or without DR5::GFP expression in their basal cells. Wild type, wip245, wip136 and wip123456 suspensors between globular and heart stage were sampled. Data in the frequency (the upper panel) represents mean ± s.d. from four biological replicates; sample size per replicate (n) =20. P values were calculated with two-tailed unpaired Student’s t test, mutant versus wild type: ***P < 0.005. Data in the suspensor counts (the lower panel) represents total number of examined suspensors, including but not restricting to the one used in the frequency experiments. Red lines in d,e highlight cell outlines of the wip245 hypophyseal derivatives; white arrows indicate the DR5::GFP expression in basal cells of the suspensor; white frames highlight cell outlines of the hypophyseal derivatives. Cyan dots: cells in hypophysis/QC lineage; yellow dots: cells in COL initial lineage; orange dots: cells in COL layers; grey dots: cells in delayed/failed layer formation. PR: primary root at 3 d.p.g.; QC: quiescent center; COL: columella. The experiments in a,b,f,d,e and c,g were repeated four and three times respectively, with similar results. Related to Fig. 2.

Source data

Extended Data Fig. 3 WIP1, WIP3 and WIP6 are maternally expressed.

a-d, Images of wild type, wip1 and proWIP1::cWIP1:VENUS complemented wip1 (L-12 and L-14) seeds. Scale bars: 1 mm. e-j, Images of wild type embryos, suspensors and their surrounding maternal tissues expressing indicated WIP reporters. Scale bars for e-h,j: 50 μm; scale bar for i: 1 mm. k-m, Images of wip2+/−45 siliques and developing seeds expressing indicated WIP reporters. Scale bar for k: 50 μm; scale bars for the silique panel in l,m: 1 mm; scale bars for the seed panel in l: 100 μm. n, RT-qPCR analysis of WIP1 and WIP3 transcription in wild type and wip2+/−45 siliques containing embryos between globular and heart stage. Data represents mean ± s.e.m. from three biological replicates, within each three technical repeats were included. P values were calculated with two-tailed unpaired Student’s t test, mutant versus wild type: *P < 0.05, **P < 0.01. o-q, Images of wip245 embryos and suspensors expressing indicated WIP reporters. Scale bars: 50 μm. White arrow in g: the proWIP3::gWIP3:VENUS signal. Cyan dots: cells in hypophysis/QC lineage; yellow dots: cells in COL initial lineage; orange dots: cells in COL layers. M: micropylar end; C: chalazal end; oi2: outer integument 2; oi1: outer integument 1 and ii1: inner integument 1 (endothelium); QC: quiescent center; COL: columella. The experiments in e-m and o-q were repeated three times, with similar results. Related to Fig. 2.

Source data

Extended Data Fig. 4 Embryonic expression of WIP genes promotes root formation.

a, GUS-staining of proWIP4::GUS in wild type siliques and developing seeds. Scale bar for the silique panel: 1 mm; scale bar for the seed panel: 100 μm. b, Images of wild type embryos, suspensors and primary roots expressing proWIP4::erCFP. Scale bars: 50 μm. c, Images of proWIP4::gWIP4:VENUS complemented wip245 embryonic and primary roots. Scale bar: 50 μm. d, Overview of wild type, wip245 and proWIP4::gWIP4:VENUS complemented wip245 (L-1 and L-5) seedlings at 7d.p.g.. Scale bars: 1 cm. e, Overview of wild type, wip245, proWIP4::cWIP1:VENUS complemented wip245 (L-5 and L-4) seedings at 7d.p.g.. Scale bars: 1 cm. Yellow frame and arrows: the proWIP4::gWIP4:VENUS signal in the uppermost suspensor cell; white frames highlight cell outlines of the hypophyseal derivatives. Cyan dots: cells in hypophysis/QC lineage; yellow dots: cells in COL initial lineage; orange dots: cells in COL layers. M: micropylar end; C: chalazal end; PR: primary root at 3 d.p.g.; QC: quiescent center; COL: columella. The experiments in a and b-e were repeated two and three times respectively, with similar results. Related to Fig. 2.

Extended Data Fig. 5 WIP1 inhibits plant growth via SRO family members.

a, Overview of wild type, rcd1-4, pOp6::cWIP1, 35::LhGR, DEX:WIP1, q195 and rcd1-4 DEX:WIP1 seedlings germinated on 1/2 MS medium supplemented with 30 nM DEX at 7 d.p.g.. Two biological replicates were performed. Scale bar: 1 cm. b, Left panel: overview of 35S::LhGR, DEX:WIP1, q195 and rcd1-4 DEX:WIP1 seedlings grown on 1/2 MS medium supplemented with 30 nM DEX for 48 h. Right panel: quantification of the 48h-root growth. c, Left panel: overview of 35S::LhGR, DEX:WIP1 and sro1 DEX:WIP1 seedlings grown on 1/2 MS medium supplemented with 30 nM DEX for 48 h. Right panel: quantification of the 48h-root growth. Black dots in b,c mark the root tip positions when the seedlings were freshly transferred, the 48-root growth was measured from the black dot to the root tip. Data represents mean ± s.e.m. from four biological replicates; sample size per replicate (n) =15. Mean value of the 48h-root growth on the mock medium is set to 100%. P values were calculated with two-tailed unpaired Student’s t test, 35S::LhGR, q195, rcd1-4 DEX:WIP1 and sro1 DEX:WIP1 versus DEX:WIP1 respectively: ***P < 0.005. Scale bar: 1 cm. Related to Fig. 3.

Source data

Extended Data Fig. 6 RCD1 and SRO1 expression.

a, RT-qPCR analysis of RCD1 and SRO1 transcription in wild type siliques containing embryos between globular and heart stage. Data represents mean ± s.e.m. from two biological replicates, within each three technical repeats were included. P values were calculated with two-tailed unpaired Student’s t test, RCD1 versus SRO1: ***P < 0.005. b-e, Images of wild type siliques, developing seeds, embryos, suspensors and primary roots expressing indicated RCD1 and SRO1 reporters. Scale bars for b,d: 1 mm; scale bars for c,e: 50 μm. f-g, Images of proRCD1::gRCD1:VENUS complemented rcd1-4 and proSRO1::gSRO1:VENUS complemented sro1 embryos and primary roots. Scale bars: 50 μm. h, Frequency of wild type and rcd1-4sro1 roots with or without periclinally divided QC cells at indicated stages. Data represents mean ± s.d.; biological replicates (N) and sample size per replicate (n) are listed in Supplementary Table 6. P values were calculated with two-tailed unpaired Student’s t test, rcd1-4sro1 versus wild type: ***P < 0.005, P1 = 0.00098, P2 = 7.67E-05, P3 = 8.05E-05. H1: early-heart stage; H2: late-heart stage; ME: mature embryo. The experiments in b-g were repeated three times, with similar results. Related to Fig. 3.

Source data

Extended Data Fig. 7 The maternal WIPs act through SRO members to inhibit embryonic root formation.

a, mPS-PI staining of amyloplasts in wild type and rcd1-4wip245 primary roots. Scale bar: 100 μm. b, Quantification of COL layer numbers in wild type, rcd1-4wip245 and sro1wip245 mature embryos and primary roots. Data represents mean ± s.e.m.; biological replicates (N) and sample size per replicate (n) are listed in Supplementary Table 7. P values were calculated with two-tailed unpaired Student’s t test, mutant versus wild type: ***P < 0.005. c-e, sro1wip245 embryonic roots at indicated stages. The number presented at the bottom of each image represents the counts of indicated phenotype (left) versus the total counts (right). G1: early-globular stage; G2: late-globular stage; H1: early-heart stage; H2: late-heart stage; ME: matured embryo. Scale bars: 50 μm. f-h, Images of sro1wip245 embryos, suspensors and primary roots expressing indicated markers. White frames highlight cell outlines of the hypophyseal derivatives. Cyan dots: cells in hypophysis/QC lineage; yellow dots: cells in COL initial lineage; grey dots: cells in delayed/failed layer formation. Scale bars: 50 μm. Cyan: hypophysis/QC lineage; yellow: COL lineage; orange: COL layers; grey: delayed/failed layer formation; light purple: ground tissue initials; olive green: Epi/LRC initials. PR: primary root at 3 d.p.g.; QC: quiescent center; COL: columella; Epi: epidermis; LRC: lateral root cap. The experiments in a, f-g and h were repeated two, four and three times respectively, with similar results. Related to Fig. 4.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Tables 1–8.

Reporting Summary

Supplementary Table

Supplementary Table 4 RNA-seq analysis of wild type and wip123456 primary root meristems. Supplementary Table 5 Frequency of embryonic roots with normal or delayed/failed layer formation. Supplementary Table 6 Frequency of wild type and rcd1-4sro1 roots with or without periclinally divided QC cells. Supplementary Table 7 Quantification of COL layer numbers. Supplementary Table 8 Source data for supplementary figures.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Roldan, M.V.G., Haraghi, A. et al. Spatially expressed WIP genes control Arabidopsis embryonic root development. Nat. Plants 8, 635–645 (2022). https://doi.org/10.1038/s41477-022-01172-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-022-01172-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing