Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An atlas of Arabidopsis protein S-acylation reveals its widespread role in plant cell organization and function

Abstract

S-acylation is the addition of a fatty acid to a cysteine residue of a protein. While this modification may profoundly alter protein behaviour, its effects on the function of plant proteins remains poorly characterized, largely as a result of the lack of basic information regarding which proteins are S-acylated and where in the proteins the modification occurs. To address this gap in our knowledge, we used an optimized acyl-resin-assisted capture assay to perform a comprehensive analysis of plant protein S-acylation from six separate tissues. In our high- and medium-confidence groups, we identified 1,849 cysteines modified by S-acylation, which were located in 1,640 unique peptides from 1,094 different proteins. This represents around 6% of the detectable Arabidopsis proteome and suggests an important role for S-acylation in many essential cellular functions including trafficking, signalling and metabolism. To illustrate the potential of this dataset, we focus on cellulose synthesis and confirm the S-acylation of a number of proteins known to be involved in cellulose synthesis and trafficking of the cellulose synthase complex. In the secondary cell walls, cellulose synthesis requires three different catalytic subunits (CESA4, CESA7 and CESA8) that all exhibit striking sequence similarity and are all predicted to possess a RING-type zinc finger at their amino terminus composed of eight cysteines. For CESA8, we find evidence for S-acylation of these cysteines that is incompatible with any role in coordinating metal ions. We show that while CESA7 may possess a RING-type domain, the same region of CESA8 appears to have evolved a very different structure. Together, the data suggest that this study represents an atlas of S-acylation in Arabidopsis that will facilitate the broader study of this elusive post-translational modification in plants as well as demonstrating the importance of further work in this area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the Arabidopsis acylome.
Fig. 2: Validation of S-acylated proteins using acyl-RAC assays and immunoblotting.
Fig. 3: S-acylation of KOR1.
Fig. 4: Differential S-acylation of CESA isoforms.
Fig. 5: Analysis of RING domain cysteines in CESA7, CESA4 and CESA8.

Similar content being viewed by others

Data availability

All processed data are included with the manuscript as supplementary tables. The unprocessed MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE63 partner repository with the dataset identifier PXD031348 and https://doi.org/10.6019/PXD031348. All figures have associated raw data, which will be provided upon request. Araport11 (https://www.arabidopsis.org/index.jsp) and E. coli UP000000625 were used as the protein databases for Arabidopsis and E. coli for performing MS database searches. Source data are provided with this paper.

References

  1. Chamberlain, L. H. & Shipston, M. J. The physiology of protein S-acylation. Physiol. Rev. 95, 341–376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hurst, C. H. & Hemsley, P. A. Current perspective on protein S-acylation in plants: more than just a fatty anchor? J. Exp. Bot. 66, 1599–1606 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Blanc, M., David, F. P. A. & van der Goot, F. G. in Protein Lipidation: Methods and Protocols (ed. Linder, M. E.) 203–214 (Springer New York, 2019).

  4. Batistic, O. Genomics and localization of the Arabidopsis DHHC-cysteine-rich domain S-acyltransferase protein family. Plant Physiol. 160, 1597–1612 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Verardi, R., Kim, J. S., Ghirlando, R. & Banerjee, A. Structural basis for substrate recognition by the ankyrin repeat domain of human DHHC17 palmitoyltransferase. Structure 25, 1337–1347 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodenburg, R. N. P. et al. Stochastic palmitoylation of accessible cysteines in membrane proteins revealed by native mass spectrometry. Nat. Commun. https://doi.org/10.1038/s41467-017-01461-z (2017).

  7. Hemsley, P. A., Weimar, T., Lilley, K. S., Dupree, P. & Grierson, C. S. A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis. N. Phytol. 197, 805–814 (2013).

    Article  CAS  Google Scholar 

  8. Srivastava, V., Weber, J. R., Malm, E., Fouke, B. W. & Bulone, V. Proteomic analysis of a poplar cell suspension culture suggests a major role of protein S-acylation in diverse cellular processes. Front. Plant. Sci. https://doi.org/10.3389/fpls.2016.00477 (2016).

  9. Collins, M. O., Woodley, K. T. & Choudhary, J. S. Global, site-specific analysis of neuronal protein S-acylation. Sci. Rep. https://doi.org/10.1038/s41598-017-04580-1 (2017).

  10. Thinon, E., Fernandez, J. P., Molina, H. & Hang, H. C. Selective enrichment and direct analysis of protein S-palmitoylation sites. J. Proteome Res. 17, 1907–1922 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, X. Q. et al. Ultradeep palmitoylomics enabled by dithiodipyridine-functionalized magnetic nanoparticles. Anal. Chem. 90, 6161–6168 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Zareba-Koziol, M. et al. Stress-induced changes in the S-palmitoylation and S-nitrosylation of synaptic proteins. Mol. Cell. Proteom. 18, 1916–1938 (2019).

    Article  Google Scholar 

  13. Zheng, L., Liu, P., Liu, Q., Wang, T. & Dong, J. Dynamic protein S-acylation in plants. Int. J. Mol. Sci. 20, 560 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  14. Hemsley, P. A. An outlook on protein S-acylation in plants: what are the next steps? J. Exp. Bot. 68, 3155–3164 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Turnbull, D. & Hemsley, P. A. Fats and function: protein lipid modifications in plant cell signalling. Curr. Opin. Plant Biol. 40, 63–70 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Kumar, M. et al. S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization. Science 353, 166–169 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Li, Y. X. & Qi, B. X. Progress toward understanding protein S-acylation: prospective in plants. Front. Plant. Sci. https://doi.org/10.3389/fpls.2017.00346 (2017).

  18. Forrester, M. T. et al. Site-specific analysis of protein S-acylation by resin-assisted capture. J. Lipid Res. 52, 393–398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Méchin, V., Damerval, C. & Zivy, M. Plant Proteomics: Methods and Protocols (eds Thiellement, H., Zivy, M., Damerval, C. and Méchin, V.) 1–8 (Humana, 2007).

  20. Taylor, N. G., Gardiner, J. C., Whiteman, R. & Turner, S. R. Cellulose synthesis in the Arabidopsis secondary cell wall. Cellulose 11, 329–338 (2004).

    Article  CAS  Google Scholar 

  21. Mergner, J. et al. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 579, 509–14 (2020).

    Article  CAS  Google Scholar 

  22. Kall, L., Krogh, A. & Sonnhammer, E. L. L. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res. 35, W429–W432 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hooper, C. M., Castleden, I. R., Tanz, S. K., Aryamanesh, N. & Millar, A. H. SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res. 45, D1064–D1074 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Schwacke, R. et al. MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol. Plant 12, 879–892 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Winge, P., Brembu, T., Kristensen, R. & Bones, A. M. Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana. Genetics 156, 1959–1971 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sorek, N. et al. An S-acylation switch of conserved G domain cysteines is required for polarity signaling by ROP GTPases. Curr. Biol. 20, 1326–1326 (2010).

    Article  CAS  Google Scholar 

  27. Yalovsky, S. Protein lipid modifications and the regulation of ROP GTPase function. J. Exp. Bot. 66, 1617–1624 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Lavy, M. & Yalovsky, S. Association of Arabidopsis type-II ROPs with the plasma membrane requires a conserved C-terminal sequence motif and a proximal polybasic domain. Plant J. 46, 934–947 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, H. S. et al. The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. Proc. Natl Acad. Sci. USA 102, 6496–6501 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Konrad, S. S. A. et al. S-acylation anchors remorin proteins to the plasma membrane but does not primarily determine their localization in membrane microdomains. N. Phytol. 203, 758–769 (2014).

    Article  CAS  Google Scholar 

  31. Gagne, J. M. & Clark, S. E. The Arabidopsis stem cell factor POLTERGEIST is membrane localized and phospholipid stimulated. Plant Cell 22, 729–743 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, X. W. et al. Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol. Biol. Cell 13, 767–781 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zeng, Q., Wang, X. J. & Running, M. P. Dual lipid modification of Arabidopsis G gamma-subunits is required for efficient plasma membrane targeting. Plant Physiol. 143, 1119–1131 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ren, J. et al. CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng. Des. Sel. 21, 639–644 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumari, B., Kumar, R. & Kumar, M. Identifying residues that determine palmitoylation using association rule mining. Bioinformatics 35, 2887–2890 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Hurst, C. H. et al. Juxta-membrane S-acylation of plant receptor-like kinases is likely fortuitous and does not necessarily impact upon function. Sci. Rep. https://doi.org/10.1038/s41598-019-49302-x (2019).

  37. Zulawski, M., Schulze, G., Braginets, R., Hartmann, S. & Schulze, W. X. The Arabidopsis kinome: phylogeny and evolutionary insights into functional diversification. BMC Genomics https://doi.org/10.1186/1471-2164-15-548 (2014).

  38. Saito, S. et al. N‐myristoylation and S‐acylation are common modifications of Ca2+‐regulated Arabidopsis kinases and are required for activation of the SLAC1 anion channel. N. Phytol. 218, 1504–1521 (2018).

    Article  CAS  Google Scholar 

  39. Hemsley, P. A. S-acylation in plants: an expanding field. Biochem. Soc. Trans. 48, 529–536 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Endler, A. et al. A mechanism for sustained cellulose synthesis during salt stress. Cell 162, 1353–1364 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Vain, T. et al. The cellulase KORRIGAN is part of the cellulose synthase complex. Plant Physiol. 165, 1521–1532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anderson, C. T. & Kieber, J. J. Dynamic construction, perception, and remodeling of plant cell walls. Annu. Rev. Plant Biol. 71, 8.1–8.31 (2020).

    Article  CAS  Google Scholar 

  43. Hemsley, P. A., Taylor, L. & Grierson, C. S. Assaying protein palmitoylation in plants. Plant Methods 4, 2 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Percher, A. et al. Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation. Proc. Natl Acad. Sci. USA 113, 4302–4307 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kumar, M. & Turner, S. Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochemistry 112, 91–99 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. He, F. et al. Solution structure of RING-finger in the catalytic subunit (IRX3) of cellulose synthase. Worldwide Protein Data Bank https://doi.org/10.2210/pdb1weo/pdb (2004).

  47. Kumar, M., Atanassov, I. & Turner, S. Functional analysis of cellulose synthase (CESA) protein class specificity. Plant Physiol. 173, 970–983 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Kurek, I., Kawagoe, Y., Jacob-Wilk, D., Doblin, M. & Delmer, D. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc. Natl Acad. Sci. USA 99, 11109–11114 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar, M. et al. Exploiting CELLULOSE SYNTHASE (CESA) class specificity to probe cellulose microfibril biosynthesis. Plant Physiol. 177, 151–167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kumar, M. & Turner, S. Protocol: a medium-throughput method for determination of cellulose content from single stem pieces of Arabidopsis thaliana. Plant Methods 11, 46 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brown, D. M., Zeef, L. A. H., Ellis, J., Goodacre, R. & Turner, S. R. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17, 2281–2295 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, Z. et al. Cellulose–microtubule uncoupling proteins prevent lateral displacement of microtubules during cellulose synthesis in Arabidopsis. Dev. Cell 38, 305–315 (2016).

    Article  PubMed  CAS  Google Scholar 

  53. Gu, Y. et al. Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc. Natl Acad. Sci. USA 107, 12866–12871 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nicol, F. et al. A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 17, 5563–5576 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Norkunas, K., Harding, R., Dale, J. & Dugdale, B. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods https://doi.org/10.1186/s13007-018-0343-2 (2018).

  56. Hurst, C. H., Turnbull, D., Plain, F., Fuller, W. & Hemsley, P. A. Maleimide scavenging enhances determination of protein S-palmitoylation state in acyl-exchange methods. BioTechniques 62, 69–75 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cheng, A., Grant, C. E., Noble, W. S. & Bailey, T. L. MoMo: discovery of statistically significant post-translational modification motifs. Bioinformatics 35, 2774–2782 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Xie, Y. B. et al. GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites. Sci. Rep. https://doi.org/10.1038/srep28249 (2016).

  59. Atanassov, I., Atanassov, I., Etchells, J. P. & Turner, S. A simple, flexible and efficient PCR-fusion/Gateway cloning procedure for gene fusion, site-directed mutagenesis, short sequence insertion and domain deletions and swaps. Plant Methods 5, 14 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Taylor, N. G., Laurie, S. & Turner, S. R. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12, 2529–2539 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Taylor, N. G., Howells, R. M., Huttly, A. K., Vickers, K. & Turner, S. R. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc. Natl Acad. Sci. USA 100, 1450–1455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Szyjanowicz, P. M. J. et al. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J. 37, 730–740 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the BBSRC (reference no. BB/P01013X/1) and Leverhulme Trust (no. RPG-2020-257). We acknowledge help provided by S. Warwood, J. Selley, R. O’cualain, D. Knight and E. Keevill at the Bio-MS core facility, RRID: SCR_020987, University of Manchester, for the proteomic analysis. We thank S. Persson for providing the cmu1cmu2, cc1cc2 and csi1 mutants, S. Vernhettes for providing the kor1-1 mutants, and T. Nuhse and O. Quinn for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.K. and S.T. conceived and planned the experiments. M.K. and P.C. carried out the experiments. M.K. and S.T. interpreted the results and wrote the manuscript.

Corresponding author

Correspondence to Simon R. Turner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Herman Hofte, Ying Gu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12.

Reporting Summary

Supplementary Table 1

Supplementary Table 1.

Supplementary Tables 2–8

Supplementary Tables 2–8.

Source data

Source Data Fig. 2

Full-length blot images.

Source Data Fig. 3

Full-length blot images.

Source Data Fig. 4

Full-length blot images.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Carr, P. & Turner, S.R. An atlas of Arabidopsis protein S-acylation reveals its widespread role in plant cell organization and function. Nat. Plants 8, 670–681 (2022). https://doi.org/10.1038/s41477-022-01164-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-022-01164-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing