Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new functional ecological model reveals the nature of early plant management in southwest Asia


The protracted domestication model posits that wild cereals in southwest Asia were cultivated over millennia before the appearance of domesticated cereals in the archaeological record. These ‘pre-domestication cultivation’ activities are widely understood as entailing annual cycles of soil tillage and sowing and are expected to select for domestic traits such as non-shattering ears. However, the reconstruction of these practices is mostly based on indirect evidence and speculation, raising the question of whether pre-domestication cultivation created arable environments that would select for domestic traits. We developed a novel functional ecological model that distinguishes arable fields from wild cereal habitats in the Levant using plant functional traits related to mechanical soil disturbance. Our results show that exploitation practices at key pre-domestication cultivation sites maintained soil disturbance conditions similar to untilled wild cereal habitats. This implies that pre-domestication cultivation did not create arable environments through regular tillage but entailed low-input exploitation practices oriented on the ecological strategies of the competitive large-seeded grasses themselves.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview over the archaeological and modern sites included in the study.
Fig. 2: DCA plot of samples (transects and plots) from modern arable and non-arable habitats.
Fig. 3: Discriminant function extracted from the DA using only flowering duration as a discriminating variable.

Data availability

All data used to perform the discriminant analyses and their outputs are given in the Supplementary Materials. The modern floristic datasets and the archaeobotanical data analysed during the current study are not publicly available due to ongoing analyses of the samples and raw data. Upon completion of all analyses the raw datasets will be made publicly available. Parts of the modern floristic datasets are available from the corresponding author on reasonable request. The raw data on which the analyses from Çatalhöyük are based are fully published and publicly accessible in Green37.


  1. Willcox, G., Fornite, S. & Herveux, L. Early Holocene cultivation before domestication in northern Syria. Veg. Hist. Archaeobot. 17, 313–325 (2008).

    Article  Google Scholar 

  2. Fuller, D. Q., Willcox, G. & Allaby, R. G. Cultivation and domestication had multiple origins: arguments against the core area hypothesis for the origins of agriculture in the Near East. World Archaeol. 43, 628–652 (2011).

    Article  Google Scholar 

  3. Ibáñez, J. J., Anderson, P. C., González-Urquijo, J. & Gibaja, J. Cereal cultivation and domestication as shown by microtexture analysis of sickle gloss through confocal microscopy. J. Archaeol. Sci. 73, 62–81 (2016).

    Article  Google Scholar 

  4. Weiss, E., Kislev, M. E. & Hartmann, A. Autonomous cultivation before domestication. Science 312, 1608–1610 (2006).

    CAS  PubMed  Article  Google Scholar 

  5. Willcox, G. Measuring grain size and identifying Near Eastern cereal domestication: evidence from the Euphrates Valley. J. Archaeol. Sci. 31, 145–150 (2004).

    Article  Google Scholar 

  6. White, C. E. & Makarewicz, C. A. Harvesting practices and early Neolithic barley cultivation at el-Hemmeh, Jordan. Veg. Hist. Archaeobot. 21, 85–94 (2012).

    Article  Google Scholar 

  7. Colledge, S., Conolly, J., Finlayson, B. & Kuijt, I. New insights on plant domestication, production intensification, and food storage: the archaeobotanical evidence from PPNA Dhra‘. Levant 50, 14–31 (2018).

    Article  Google Scholar 

  8. Kuijt, I. & Finlayson, B. Evidence for food storage and predomestication granaries 11,000 years ago in the Jordan Valley. Proc. Natl Acad. Sci. USA 106, 10966–10970 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Willcox, G. & Stordeur, D. Large-scale cereal processing before domestication during the tenth millennium cal bc in northern Syria. Antiquity 86, 99–114 (2012).

    Article  Google Scholar 

  10. Colledge, S. in The Origins of Agriculture and Crop Domestication (eds Damania, A. B. et al.) 121–131 (ICARDA, 1998).

  11. Hillman, G. C., Hedges, R., Moore, A. M. T., Colledge, S. & Pettitt, P. New evidence of Lateglacial cereal cultivation at Abu Hureyra on the Euphrates. Holocene 11, 383–393 (2001).

    Article  Google Scholar 

  12. Willcox, G. Searching for the origins of arable weeds in the Near East. Veg. Hist. Archaeobot. 21, 163–167 (2012).

    Article  Google Scholar 

  13. Snir, A. et al. The origin of cultivation and proto-weeds, long before neolithic farming. PLoS ONE 10, e0131422 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. Harris, D. R. & Fuller, D. Q. in Encyclopedia of Global Archaeology (ed. Smith, C.) 104–113 (Springer, 2014).

  15. Grime, J. P., Hodgson, J. G. & Hunt, R. Comparative Plant Ecology: A Functional Approach to Common British Species (Springer, 2014).

  16. Harlan, J. R., de Wet, J. M. J. & Price, E. G. Comparative evolution of cereals. Evolution 27, 311–325 (1973).

    PubMed  Article  Google Scholar 

  17. Fuller, D. Q. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann. Bot. 100, 903–924 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  18. Asouti, E. in Neolithic Corporate Identities. Studies in Early Near Eastern Production, Subsistence and Environment 20 (eds Benz, M. et al.) 21–53 (Ex oriente, 2017).

  19. Harris, D. R. in Foraging and Farming: the Evolution of Plant Exploitation (eds Harris, D. R. & Hillman, G.) 11–26 (Unwin Hyman, 1989).

  20. Smith, B. D. Low-level food production. J. Archaeol. Res. 9, 1–43 (2001).

    Article  Google Scholar 

  21. Rindos, D. The Origins of Agriculture: an Evolutionary Perspective (Academic, 1984).

  22. Weide, A. Towards a socio-economic model for southwest Asian cereal domestication. Agronomy 11, 2432 (2021).

    Article  Google Scholar 

  23. Hillman, G. C. & Davies, M. S. Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications. J. World Prehist. 4, 157–222 (1990).

    Article  Google Scholar 

  24. Kislev, M. E., Hartmann, A. & Weiss, E. Impetus for sowing and the beginning of agriculture: ground collecting of wild cereals. Proc. Natl Acad. Sci. USA 101, 2692–2695 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Weide, A. et al. The association of arable weeds with modern wild cereal habitats: implications for reconstructing the origins of plant cultivation in the Levant. Environ. Archaeol. (2021).

  26. Zohary, M. The segetal plant communities of Palestine. Vegetatio 2, 387–411 (1950).

    Article  Google Scholar 

  27. Abbo, S., Lev-Yadun, S. & Gopher, A. Plant domestication and crop evolution in the Near East: on events and processes. Crit. Rev. Plant Sci. 31, 241–257 (2012).

    Article  Google Scholar 

  28. Wood, D. & Lenné, J. M. A natural adaptive syndrome as a model for the origins of cereal agriculture. Proc. R. Soc. Lond. B 285, 20180277 (2018).

    Google Scholar 

  29. Bogaard, A., Palmer, C., Jones, G., Charles, M. & Hodgson, J. G. A FIBS approach to the use of weed ecology for the archaeobotanical recognition of crop rotation regimes. J. Archaeol. Sci. 26, 1211–1224 (1999).

    Article  Google Scholar 

  30. Jones, G., Bogaard, A., Charles, M. & Hodgson, J. G. Distinguishing the effects of agricultural practices relating to fertility and disturbance: a functional ecological approach in archaeobotany. J. Archaeol. Sci. 27, 1073–1084 (2000).

    Article  Google Scholar 

  31. Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    PubMed  Article  CAS  Google Scholar 

  32. Garnier, E., Navas, M.-L. & Grigulis, K. Plant Functional Diversity: Organism Traits, Community Structure, and Ecosystem Properties (Oxford Univ. Press, 2016).

  33. Bogaard, A. Neolithic Farming in Central Europe (Routledge, 2004).

  34. Bogaard, A. et al. From traditional farming in Morocco to early urban agroecology in northern Mesopotamia: combining present-day arable weed surveys and crop isotope analysis to reconstruct past agrosystems in (semi-)arid regions. Environ. Archaeol. 23, 303–322 (2018).

    Article  Google Scholar 

  35. Hamerow, H. et al. An integrated bioarchaeological approach to the medieval ‘agricultural revolution’: a case study from Stafford, England, c. ad 800–1200. Eur. J. Archaeol. 23, 585–609 (2020).

    Article  Google Scholar 

  36. Green, L., Charles, M. & Bogaard, A. Exploring the agroecology of Neolithic Çatalhöyük, Central Anatolia: an archaeobotanical approach to agricultural intensity based on functional ecological analysis of arable weed flora. Paléorient 44, 29–44 (2018).

    Google Scholar 

  37. Green, L. Assessing the Nature of Early Farming in Neolithic Western Asia: A Functional Ecological Approach to Emerging Arable Weeds. Univ. of Oxford (2017).

  38. Atran, S. Hamula organisation and masha’a tenure in Palestine. Man 21, 271–295 (1986).

    Article  Google Scholar 

  39. Palmer, C. ‘Following the plough’: the agricultural environment of northern Jordan. Levant 30, 129–165 (1998).

    Article  Google Scholar 

  40. Håkansson, S. in Biology and Ecology of Weeds (eds Holzner, W. & Numata, M.) 123–135 (Springer Netherlands, 1982).

  41. Charles, M., Bogaard, A., Jones, G., Hodgson, J. & Halstead, P. Towards the archaeobotanical identification of intensive cereal cultivation: present-day ecological investigation in the mountains of Asturias, northwest Spain. Veg. Hist. Archaeobot. 11, 133–142 (2002).

    Article  Google Scholar 

  42. Hartmann-Shenkman, A., Kislev, M. E., Galili, E., Melamed, Y. & Weiss, E. Invading a new niche: obligatory weeds at Neolithic Atlit-Yam, Israel. Veg. Hist. Archaeobot. 24, 9–18 (2015).

    Article  Google Scholar 

  43. Kuijt, I. in The Neolithic Demographic Transition and its Consequences (eds Bocquet-Appel, J.-P. & Bar-Yosef, O.) 287–313 (Springer Netherlands, 2008).

  44. Bogaard, A. et al. Private pantries and celebrated surplus: storing and sharing food at Neolithic Çatalhöyük, Central Anatolia. Antiquity 83, 649–668 (2009).

    Article  Google Scholar 

  45. Jones, G. et al. The origins of agriculture: intentions and consequences. J. Archaeol. Sci. 125, 105290 (2021).

    Article  Google Scholar 

  46. Weiss, E., Kislev, M. E., Simchoni, O., Nadel, D. & Tschauner, H. Plant-food preparation area on an Upper Paleolithic brush hut floor at Ohalo II, Israel. J. Archaeol. Sci. 35, 2400–2414 (2008).

    Article  Google Scholar 

  47. Kluyver, T. A., Charles, M., Jones, G., Rees, M. & Osborne, C. P. Did greater burial depth increase the seed size of domesticated legumes? J. Exp. Bot. 64, 4101–4108 (2013).

    CAS  PubMed  Article  Google Scholar 

  48. Preece, C., Jones, G., Rees, M. & Osborne, C. P. Fertile Crescent crop progenitors gained a competitive advantage from large seedlings. Ecol. Evol. 11, 3300–3312 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  49. Halstead, P. Two Oxen Ahead: Pre-mechanized Farming in the Mediterranean (Wiley, 2014).

  50. Anderson, P. C. in The Origins of Agriculture and Crop Domestication (eds Damania, A. B. et al.) 145–159 (ICARDA, 1998).

  51. Mercuri, A. M., Fornaciari, R., Gallinaro, M., Vanin, S. & di Lernia, S. Plant behaviour from human imprints and the cultivation of wild cereals in Holocene Sahara. Nat. Plants 4, 71–81 (2018).

    PubMed  Article  Google Scholar 

  52. Spengler, R. N. & Mueller, N. G. Grazing animals drove domestication of grain crops. Nat. Plants 5, 656–662 (2019).

    PubMed  Article  Google Scholar 

  53. Smith, B. D. General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies. Phil. Trans. R. Soc. Lond. B 366, 836–848 (2011).

    Article  Google Scholar 

  54. Bogaard, A. et al. Reconsidering domestication from a process archaeology perspective. World Archaeol. (2021).

  55. Coqueugniot, E. in Espace Naturel, Espace Habité En Syrie Du Nord (10e–2e millénaires av. J.-C.) (eds M. Fortin & O. Aurenche) 109–114 (Maison de l’Orient et de la Méditerranée, 1998).

  56. Douché, C. Émergence et développement des sociétés agricoles au Néolithique acéramique (Xe-VIIIe millénaires av. n. ère) étude archéobotanique de Dja’de El-Mughara et Tell Aswad, Syrie. PhD thesis (Archaeological Mission of Dja’de el Mughara, 2018).

  57. Noy, T. Gilgal I: a pre-pottery Neolithic site, Israel. The 1985–1987 seasons. Paléorient 15, 11–18 (1989).

    Article  Google Scholar 

  58. Bar-Yosef, O. & Gopher, A. in An Early Neolithic Village in the Jordan Valley (eds Bar-Yosef, O. & Gopher, A.) 41–69 (Harvard Univ., 1997).

  59. Wright, K. I. The social origins of cooking and dining in early villages of western Asia. Proc. Prehist. Soc. 66, 89–121 (2000).

    Article  Google Scholar 

  60. Finlayson, B. Egalitarian societies and the earliest Neolithic of southwest Asia. Prehist. Archaeol. J. Interdiscip. Stud. 3, 27–43 (2020).

    Article  Google Scholar 

  61. Bowles, S. & Choi, J.-K. The Neolithic agricultural revolution and the origins of private property. J. Polit. Econ. 127, 2186–2228 (2019).

    Article  Google Scholar 

  62. Kuijt, I. The Neolithic refrigerator on a Friday night: how many people are coming to dinner and just what should I do with the slimy veggies in the back of the fridge? Environ. Archaeol. 20, 321–336 (2015).

    Article  Google Scholar 

  63. Danin, A. Flora and vegetation of Israel and adjacent areas. Zoogeogr. Isr. 30, 251–276 (1988).

    Google Scholar 

  64. Noy-Meir, I., Gutman, M. & Kaplan, Y. Responses of Mediterranean grassland plants to grazing and protection. J. Ecol. 77, 290–310 (1989).

    Article  Google Scholar 

  65. Noy-Meir, I. The effect of grazing on the abundance of wild wheat, barley and oat in Israel. Biol. Conserv. 51, 299–310 (1990).

    Article  Google Scholar 

  66. Jones, G., Bogaard, A., Halstead, P., Charles, M. & Smith, H. Identifying the intensity of crop husbandry practices on the basis of weed floras. Annu. Br. Sch. Athens 94, 167–189 (1999).

    Article  Google Scholar 

  67. Sternberg, M., Gutman, M., Perevolotsky, A., Ungar, E. D. & Kigel, J. Vegetation response to grazing management in a Mediterranean herbaceous community: a functional group approach. J. Appl. Ecol. 37, 224–237 (2000).

    Article  Google Scholar 

  68. Sternberg, M. et al. Testing the limits of resistance: a 19-year study of Mediterranean grassland response to grazing regimes. Glob. Change Biol. 21, 1939–1950 (2015).

    Article  Google Scholar 

  69. Calev, A. et al. High-intensity thinning treatments in mature Pinus halepensis plantations experiencing prolonged drought. Eur. J. For. Res. 135, 551–563 (2016).

    Article  Google Scholar 

  70. Osem, Y., Perevolotsky, A. & Kigel, J. Grazing effect on diversity of annual plant communities in a semi-arid rangeland: interactions with small-scale spatial and temporal variation in primary productivity. J. Ecol. 90, 936–946 (2002).

    Article  Google Scholar 

  71. Temper, L. Creating facts on the ground: agriculture in Israel and Palestine (1882–2000). Hist. Agrar. 48, 75–110 (2009).

    Google Scholar 

  72. Dan, J., Yaalon, D., Koyumdjisky, H. & Raz, Z. The soil association map of Israel (1:1,000,000). Isr. J. Earth Sci. 21, 29–49 (1970).

    Google Scholar 

  73. Sans, F. X. & Masalles, R. M. Phenological patterns in an arable land weed community related to disturbance. Weed Res. 35, 321–332 (1995).

    Article  Google Scholar 

  74. Zohary, M. & Feinbrun-Dothan, N. Flora Palaestina Vol. 1–4 (Israel Academy of Sciences and Humanities, 1966).

  75. Davis, P. Flora of Turkey and the East Aegean Islands Vol. 1–10 (Edinburgh Univ. Press, 1965).

  76. Mortimer, A. M. in Weed Control Handbook: Principles (eds Hance, R. J. & Holly, K.) 1–42 (Blackwell, 1990).

  77. Douché, C. & Willcox, G. New archaeobotanical data from the Early Neolithic sites of Dja’de el-Mughara and Tell Aswad (Syria): a comparison between the northern and the southern Levant. Paléorient 44, 45–58 (2018).

    Google Scholar 

  78. Jones, G. The application of present-day cereal processing studies to charred archaeobotanical remains. Circaea 6, 91–96 (1990).

    Google Scholar 

  79. Bogaard, A., Jones, G. & Charles, M. The impact of crop processing on the reconstruction of crop sowing time and cultivation intensity from archaeobotanical weed evidence. Veg. Hist. Archaeobot. 14, 505–509 (2005).

    Article  Google Scholar 

  80. Bogaard, A. et al. in Humans and Landscapes of Çatalhöyük: Reports from the 2000–2008 Seasons (ed. Hodder, I.) 93–128 (Cotsen Institute of Archaeology/British Institute at Ankara, 2013).

  81. Filipović, D. Early Farming in Central Anatolia: an Archaeobotanical Study of Crop Husbandry, Animal Diet and Land Use at Neolithic Çatalhöyük (British Archaeological Reports, 2014).

  82. Helmer, D. et al. in New Methods and the First Steps of Mammal Domestication (eds Vigne, J.-D. et al.) 86–95 (Oxbow Books, 2005).

  83. Charles, M. Fodder from dung: the recognition and interpretation of dung-derived plant material from archaeological sites. Environ. Archaeol. 1, 111–122 (1998).

    Article  Google Scholar 

  84. Kislev, M. E. in An Early Neolithic Village in the Jordan Valley (eds Ofer Bar-Yosef & Avi Gopher) 209–236 (Harvard Univ., 1997).

  85. Kislev, M. E. et al. in Gilgal: Early Neolithic Occupations in the Lower Jordan Valley. The Excavations of Tamar Noy (eds Bar-Yosef, O. et al.) 251–257 (Oxbow Books, 2010).

  86. Snir, A., Nadel, D. & Weiss, E. Plant-food preparation on two consecutive floors at Upper Paleolithic Ohalo II, Israel. J. Archaeol. Sci. 53, 61–71 (2015).

    Article  Google Scholar 

  87. Jones, G., Charles, M., Bogaard, A. & Hodgson, J. Crops and weeds: the role of weed functional ecology in the identification of crop husbandry methods. J. Archaeol. Sci. 37, 70–77 (2010).

    Article  Google Scholar 

  88. Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using CANOCO 5 (Cambridge Univ. Press, 2014).

  89. Galili, E. et al. Atlit-Yam: a Prehistoric site on the sea floor off the Israeli coast. J. Field Archaeol. 20, 133–157 (1993).

    Google Scholar 

  90. Brenet, M., Sanchez-Priego, J. & Ibáñez-Estévez, J. J. in Préhistoire et Approche Expérimentale (eds Bourguignon, L. et al.) 121–164 (Monique Mergoil, 2001).

  91. Bar-Yosef, O., Gopher, A., Goring-Morris, A. N. & Kozlowski, S. K. in Gilgal: Early Neolithic Occupations in the Lower Jordan Valley. The Excavations of Tamar Noy (eds Bar-Yosef, O. et al.) 11–26 (Oxbow Books, 2010).

Download references


We thank H. Leschner, N. Manela, Y. Melamed and T. Avin-Wittenberg for their great support in the preparation and realization of the vegetation surveys that represent the basis of this study. We also thank S. Bowles and G. Larson for valuable comments on previous drafts of this article. This research was supported by an AHRC studentship (2013–2016; L.G.) and a Marie Skłodowska-Curie Individual Fellowship from the European Commission (grant number 838395; A.W.).

Author information

Authors and Affiliations



A.W. developed the original ideas and designed the study. A.W., J.G.H., J.W. and A.B. conducted field work and collected the plant functional-trait data. G.D. and Y.O. contributed survey data and gave permission for their use. L.G., C.D. and M.T. provided archaeobotanical data and gave permission for their use. A.W. performed the data analysis and wrote the paper with the help of A.B. All authors were involved in the interpretation of the results and commented on the manuscript.

Corresponding author

Correspondence to Alexander Weide.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Anna Maria Mercuri, Robert Spengler and Burhan Ulas for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Reporting Summary

Supplementary Data 1

Supplementary Tables 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weide, A., Green, L., Hodgson, J.G. et al. A new functional ecological model reveals the nature of early plant management in southwest Asia. Nat. Plants 8, 623–634 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing