Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Crucial factors for the feasibility of commercial hybrid breeding in food crops

Abstract

There is an ongoing societal debate about plant breeding systems and their impact on stakeholders in food systems. Hybrid breeding and hybrid seed have become controversial topics as they are believed to mostly serve high-tech agricultural systems. This article focuses on the perspective of commercial plant breeders when developing new cultivars of food crops. Arguably, hybrid breeding is the most effective breeding system for genetic improvement of crops, enhancing yields, improving product quality and increasing resistance against (a)biotic stresses. Nonetheless, hybrid breeding is not commercially applied in all crops. We analyse how biological and economic factors determine whether a commercial plant breeder opts for the hybrid system or not. We show that the commercial feasibility of hybrid breeding depends on the crop and business case. In conclusion, the commercial application of hybrid breeding in crops seems to be hampered mostly by high costs of seed production. Case studies regarding the hybrid transitions in maize, wheat and potato are included to illustrate these findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Variation in the occurrence of sexual organs in plants.
Fig. 2: Plant breeding cycle for the development of new cultivars.
Fig. 3: Formal legal framework guiding commercial plant breeding.
Fig. 4: Development of homozygous inbred lines.
Fig. 5: Global seed markets.
Fig. 6: Maize yield increases in the United States since 1866.

Similar content being viewed by others

References

  1. Labroo, M. R., Studer, A. J. & Rutkoski, J. E. Heterosis and hybrid crop breeding: a multidisciplinary review. Front. Genet. 12, 643761 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mackay, I. J., Cockram, J., Howell, P. & Powell, W. Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnol. J. 19, 26–34 (2021).

    Article  PubMed  Google Scholar 

  3. Béné, C. et al. Understanding food systems drivers: a critical review of the literature. Glob. Food Sec. 23, 149–159 (2019).

    Article  Google Scholar 

  4. Clapp, J. Food 3rd edn (Polity, 2020).

  5. Lammerts van Bueren, E. T., Struik, P. C., van Eekeren, N. & Nuijten, E. Towards resilience through systems-based plant breeding: a review. Agron. Sustain. Dev. 38, 42 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kantar, M. B. et al. The many‐faced Janus of plant breeding. Plants People Planet 1, 306–309 (2019).

    Article  Google Scholar 

  7. Lammerts van Bueren, E. T. et al. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: a review. NJAS 58, 193–205 (2011).

    Google Scholar 

  8. Chahal, G. S. & Gosal, S. S. Principles and Procedures of Plant Breeding: Biotechnological and Conventional Approaches (Alpha Science International, 2002).

  9. Brown, J. & Caligari, P. D. S. An Introduction to Plant Breeding (Blackwell, 2008).

  10. Rijk, B., van Ittersum, M. & Withagen, J. Genetic progress in Dutch crop yields. Field Crops Res. 149, 262–268 (2013).

    Article  Google Scholar 

  11. Rudolf-Pilih, K. et al. Proposal of a new hybrid breeding method based on genotyping, inter-pollination, phenotyping and paternity testing of selected elite F1 hybrids. Front. Plant Sci. 10, 1111 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lindhout, P. et al. Towards F1 hybrid seed potato breeding. Potato Res. 54, 301–312 (2011).

    Article  Google Scholar 

  13. Bélanger, J. & Pilling, D. The State of the World’s Biodiversity for Food and Agriculture (FAO, 2019).

  14. Priyadarshan, P. M. Plant Breeding: Classical to Modern (Springer, 2019).

  15. World Food and Agriculture Statistical Pocketbook 2019 (FAO, 2019).

  16. Acquaah, G. Principles of Plant Genetics and Breeding 3rd edn (Wiley, 2020).

  17. Sterck, L., Rombauts, S., Vandepoele, K., Rouze, P. & Vandepeer, Y. How many genes are there in plants (…and why are they there)? Curr. Opin. Plant Biol. 10, 199–203 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Crouch, D. J. M. & Bodmer, W. F. Polygenic inheritance, GWAS, polygenic risk scores, and the search for functional variants. Proc. Natl Acad. Sci. USA 117, 18924–18933 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bernardo, R. Reinventing quantitative genetics for plant breeding: something old, something new, something borrowed, something BLUE. Heredity 125, 375–385 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhao, Y. et al. Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat. Sci. Adv. 7, eabf9106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barrett, S. C. H. Mating strategies in flowering plants: the outcrossing–selfing paradigm and beyond. Phil. Trans. R. Soc. Lond. B 358, 991–1004 (2003).

    Article  Google Scholar 

  22. Charlesworth, D., Vekemans, X., Castric, V. & Glémin, S. Plant self‐incompatibility systems: a molecular evolutionary perspective. N. Phytol. 168, 61–69 (2005).

    Article  CAS  Google Scholar 

  23. Whitehead, M. R., Lanfear, R., Mitchell, R. J. & Karron, J. D. Plant mating systems often vary widely among populations. Front. Ecol. Evol. 6, 38 (2018).

    Article  Google Scholar 

  24. Lande, R. & Schemske, D. W. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39, 24–40 (1985).

    PubMed  Google Scholar 

  25. Porcher, E. & Lande, R. The evolution of self-fertilization and inbreeding depression under pollen discounting and pollen limitation: pollination biology and evolution of selfing. J. Evol. Biol. 18, 497–508 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Husband, B. C. & Schemske, D. W. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50, 54–70 (1996).

    Article  PubMed  Google Scholar 

  27. Harlan, J. R. & Wet, J. M. J. Toward a rational classification of cultivated plants. TAXON 20, 509–517 (1971).

    Article  Google Scholar 

  28. Palmer, R. G. & Hymowitz, T. in Reference Module in Food Science B9780081005965002146 (Elsevier, 2016).

  29. Tourrette, E., Falque, M. & Martin, O. C. Enhancing backcross programs through increased recombination. Genet. Sel. Evol. 53, 25 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brock, R. D. The role of induced mutations in plant improvement. Radiat. Bot. 11, 181–196 (1971).

    Article  CAS  Google Scholar 

  31. Ahloowalia, B. S., Maluszynski, M. & Nichterlein, K. Global impact of mutation-derived varieties. Euphytica 135, 187–204 (2004).

    Article  Google Scholar 

  32. Louwaars, N. Seeds of Confusion: The Impact of Policies on Seed Systems (Wageningen University and Research, 2007).

  33. Jamali, S. H., Cockram, J. & Hickey, L. T. Is plant variety registration keeping pace with speed breeding techniques? Euphytica 216, 131 (2020).

    Article  Google Scholar 

  34. De Jonge, B., Salazar, R. & Visser, B. How regulatory issues surrounding new breeding technologies can impact smallholder farmer breeding: a case study from the Philippines. Plants People Planet 4, 96–105 (2022).

    Article  Google Scholar 

  35. Almekinders, C. J. M., Hebinck, P., Marinus, W., Kiaka, R. D. & Waswa, W. W. Why farmers use so many different maize varieties in West Kenya. Outlook Agric. 50, 406–417 (2021).

    Article  Google Scholar 

  36. Kaeppler, S. Heterosis: many genes, many mechanisms—end the search for an undiscovered unifying theory. ISRN Bot. 2012, 682824 (2012).

    Google Scholar 

  37. Virmani, S. S., Sun, Z. X., Mou, T. M., Ali, A. J. & Mao, C. X. Two-Line Hybrid Rice Breeding Manual (International Rice Research Institute, 2003).

  38. Lindhout, P. et al. in Burleigh Dodds Series in Agricultural Science: Achieving Sustainable Cultivation of Potatoes (ed. Wang-Pruski, G.) 99–122 (Burleigh Dodds Science, 2018).

  39. Nienhuis, J. & Sills, G. in Reproductive Biology and Plant Breeding (eds Dattée, Y. et al.) 387–396 (Springer Berlin Heidelberg, 1992).

  40. Singh, S. & Gupta, S. K. Formation of heterotic pools and understanding relationship between molecular divergence and heterosis in pearl millet [Pennisetum glaucum (L.) R. Br.]. PLoS ONE 14, e0207463 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Allard, R. W. History of plant population genetics. Annu. Rev. Genet. 33, 1–27 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Gupta, P. K. et al. Hybrid wheat: past, present and future. Theor. Appl. Genet. 132, 2463–2483 (2019).

    Article  PubMed  Google Scholar 

  43. Xiao, Z. et al. Overcoming cabbage crossing incompatibility by the development and application of self-compatibility-QTL-specific markers and genome-wide background analysis. Front. Plant Sci. 10, 189 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen, L. & Liu, Y.-G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 65, 579–606 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Peet, M. M. & Welles, G. in Tomatoes (ed. Heuvelink, E.) 257–304 (CABI, 2005).

  46. Erenstein, O. & Kassie, G. T. Seeding eastern Africa’s maize revolution in the post-structural adjustment era: a review and comparative analysis of the formal maize seed sector. Int. Food Agribus. Manage. Rev. 21, 39–52 (2018).

    Article  Google Scholar 

  47. Crow, J. Anecdotal, historical and critical commentaries on genetics. Genetics 148, 923–928 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duvick, D. N. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 86, 83–145 (2005).

    Article  Google Scholar 

  49. Andorf, C. et al. Technological advances in maize breeding: past, present and future. Theor. Appl. Genet. 132, 817–849 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Troyer, A. F. Adaptedness and heterosis in corn and mule hybrids. Crop Sci. 46, 528–543 (2006).

    Article  Google Scholar 

  51. Longin, C. F. H., Reif, J. C. & Würschum, T. Long-term perspective of hybrid versus line breeding in wheat based on quantitative genetic theory. Theor. Appl. Genet. 127, 1635–1641 (2014).

    Article  PubMed  Google Scholar 

  52. Jiang, Y., Schmidt, R. H., Zhao, Y. & Reif, J. C. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat. Genet. 49, 1741–1746 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Voss-Fels, K. P. et al. Breeding improves wheat productivity under contrasting agrochemical input levels. Nat. Plants 5, 706–714 (2019).

    Article  PubMed  Google Scholar 

  54. Boeven, P. H. G., Würschum, T., Rudloff, J., Ebmeyer, E. & Longin, C. F. H. Hybrid seed set in wheat is a complex trait but can be improved indirectly by selection for male floral traits. Euphytica 214, 110 (2018).

    Article  CAS  Google Scholar 

  55. Boeven, P. H. G., Longin, C. F. H. & Würschum, T. A unified framework for hybrid breeding and the establishment of heterotic groups in wheat. Theor. Appl. Genet. 129, 1231–1245 (2016).

    Article  PubMed  Google Scholar 

  56. Douches, D. S., Maas, D., Jastrzebski, K. & Chase, R. W. Assessment of potato breeding progress in the USA over the last century. Crop Sci. 36, 1544–1552 (1996).

    Article  Google Scholar 

  57. Jansky, S. H. et al. Reinventing potato as a diploid inbred line-based crop. Crop Sci. 56, 1412–1422 (2016).

    Article  CAS  Google Scholar 

  58. Zhang, C. et al. Genome design of hybrid potato. Cell 184, 3873–3883.e3812 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Su, Y. et al. Introgression of genes for resistance against Phytophthora infestans in diploid potato. Am. J. Potato Res. 97, 33–42 (2020).

    Article  Google Scholar 

  60. Hutten, R. C. B. Basic Aspects of Potato Breeding via the Diploid Level (Wageningen University and Research, 1994).

  61. Stockem, J., de Vries, M., van Nieuwenhuizen, E., Lindhout, P. & Struik, P. C. Contribution and stability of yield components of diploid hybrid potato. Potato Res. https://doi.org/10.1007/s11540-019-09444-x (2020).

  62. Steenhuijsen Piters, B. D. et al. Global Scoping Study on Fruits and Vegetables: Results from Literature and Data Analysis (Wageningen Economic Research, 2021).

  63. Access to Seeds Index (Access to Seeds Foundation, 2019); https://www.accesstoseeds.org/

  64. Yuan, L. P. Hybrid rice in China. Chin. J. Rice Sci. 1, 8–18 (1986).

    Google Scholar 

  65. Cheng, S. H., Zhuang, J. Y., Fan, Y. Y., Du, J. H. & Cao, L. Y. Progress in research and development on hybrid rice: a super-domesticate in China. Ann. Bot. 100, 959–966 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Miedaner, T. & Laidig, F. in Advances in Plant Breeding Strategies: Cereals (eds Al-Khayri, J. M. et al.) 343–372 (Springer International, 2019).

  67. McGrath, J. M. & Panella, L. in Plant Breeding Reviews (ed. Goldman, I.) 167–218 (Wiley, 2018).

  68. Oliver, E. & Shoham, J. Analysis of Sales and Profitability within the Seed Sector (IHS Markit, 2019); https://cdn.ihsmarkit.com/www/pdf/0320/202001-Seedsectorsale-Analysis-LD-Unknown-Version001-pdf.pdf

  69. Nielsen, R. L. Historical Corn Grain Yields in the U.S. (Purdue Univ., 2021); https://www.agry.purdue.edu/ext/corn/news/timeless/yieldtrends.html

Download references

Acknowledgements

N. Louwaars, O. de Ponti, K. Reinink, T. Schotte and J. Trouw are acknowledged for reviewing the manuscript and providing input for Table 2. H. Buerstmayr and V. Korzun are acknowledged for providing input for the wheat case study. C. Bachem and E. Jacobsen are acknowledged for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.M.S.t.S. and P.L. were the lead authors working on the analysis, drafting and revision of the manuscript. P.C.S. and R.G.F.V. helped improve the analysis and took on an editorial role in revising the manuscript.

Corresponding authors

Correspondence to Emily M. S. ter Steeg or Pim Lindhout.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Ryan Whitford, Xiang-Yuan Wan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ter Steeg, E.M.S., Struik, P.C., Visser, R.G.F. et al. Crucial factors for the feasibility of commercial hybrid breeding in food crops. Nat. Plants 8, 463–473 (2022). https://doi.org/10.1038/s41477-022-01142-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-022-01142-w

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene