Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development

An Author Correction to this article was published on 01 June 2022

This article has been updated

Abstract

Homogalacturonan (HG) is the most abundant pectin subtype in plant cell walls. Although it is a linear homopolymer, its modification states allow for complex molecular encoding. HG metabolism affects its structure, chemical properties, mobility and binding capacity, allowing it to interact dynamically with other polymers during wall assembly and remodelling and to facilitate anisotropic cell growth, cell adhesion and separation, and organ morphogenesis. HGs have also recently been found to function as signalling molecules that transmit information about wall integrity to the cell. Here we highlight recent advances in our understanding of the dual functions of HG as a dynamic structural component of the cell wall and an initiator of intrinsic and environmental signalling. We also predict how HG might interconnect the cell wall, plasma membrane and intracellular components with transcriptional networks to regulate plant growth and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HG molecular structure and metabolism.
Fig. 2: Functions of HG in wall integrity signalling.
Fig. 3: The many roles of pectic HG in plant development.

Similar content being viewed by others

Change history

References

  1. Vaahtera, L., Schulz, J. & Hamann, T. Cell wall integrity maintenance during plant development and interaction with the environment. Nat. Plants 5, 924–932 (2019).

    Article  PubMed  Google Scholar 

  2. Caffall, K. H. & Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344, 1879–1900 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11, 266–277 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Ralet, M. C. et al. Mapping sugar beet pectin acetylation pattern. Phytochemistry 66, 1832–1843 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Atmodjo, M. A. et al. Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase complex. Proc. Natl Acad. Sci. USA 108, 20225–20230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sterling, J. D. et al. Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc. Natl Acad. Sci. USA 103, 5236–5241 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amos, R. A. et al. A two-phase model for the non-processive biosynthesis of homogalacturonan polysaccharides by the GAUT1:GAUT7 complex. J. Biol. Chem. 293, 19047–19063 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Voiniciuc, C. et al. Identification of key enzymes for pectin synthesis in seed mucilage. Plant Physiol. 178, 1045–1064 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bouton, S. et al. QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 14, 2577–2590 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Persson, S. et al. The Arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. Plant Cell 19, 237–255 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, L. et al. Arabidopsis galacturonosyltransferase (GAUT) 13 and GAUT14 have redundant functions in pollen tube growth. Mol. Plant 6, 1131–1148 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Biswal, A. K. et al. Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nat. Biotechnol. 36, 249–257 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Xiao, C. W. & Anderson, C. T. Roles of pectin in biomass yield and processing for biofuels. Front. Plant Sci. 4, 67 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ishikawa, M., Kuroyama, H., Takeuchi, Y. & Tsumuraya, Y. Characterization of pectin methyltransferase from soybean hypocotyls. Planta 210, 782–791 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Du, J. et al. Mutations in the pectin methyltransferase QUASIMODO2 influence cellulose biosynthesis and wall integrity in Arabidopsis. Plant Cell 32, 3576–3597 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, S. J., Held, M. A., Zemelis, S., Wilkerson, C. & Brandizzi, F. CGR2 and CGR3 have critical overlapping roles in pectin methylesterification and plant growth in Arabidopsis thaliana. Plant J. 82, 208–220 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Krupkova, E., Immerzeel, P., Pauly, M. & Schmulling, T. The TUMOROUS SHOOT DEVELOPMENT2 gene of Arabidopsis encoding a putative methyltransferase is required for cell adhesion and co-ordinated plant development. Plant J. 50, 735–750 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Miao, Y., Li, H. Y., Shen, J., Wang, J. & Jiang, L. QUASIMODO 3 (QUA3) is a putative homogalacturonan methyltransferase regulating cell wall biosynthesis in Arabidopsis suspension-cultured cells. J. Exp. Bot. 62, 5063–5078 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mouille, G. et al. Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain. Plant J. 50, 605–614 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Chiniquy, D. et al. PMR5, an acetylation protein at the intersection of pectin biosynthesis and defense against fungal pathogens. Plant J. 100, 1022–1035 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Bringmann, M. et al. POM-POM2/cellulose synthase interacting1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell 24, 163–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chou, Y. H., Pogorelko, G. & Zabotina, O. A. Xyloglucan xylosyltransferases XXT1, XXT2, and XXT5 and the glucan synthase CSLC4 form Golgi-localized multiprotein complexes. Plant Physiol. 159, 1355–1366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gou, M., Ran, X., Martin, D. W. & Liu, C. J. The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes. Nat. Plants 4, 299–310 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Lei, L. et al. The jiaoyao1 mutant is an allele of korrigan1 that abolishes endoglucanase activity and affects the organization of both cellulose microfibrils and microtubules in Arabidopsis. Plant Cell 26, 2601–2616 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jorgensen, K. et al. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8, 280–291 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Voxeur, A. et al. Oligogalacturonide production upon Arabidopsis thalianaBotrytis cinerea interaction. Proc. Natl Acad. Sci. USA 116, 19743–19752 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang, Y., Anderson, C. T. & Cao, J. POLYGALACTURONASE45 cleaves pectin and links cell proliferation and morphogenesis to leaf curvature in Arabidopsis thaliana. Plant J. 106, 1493–1508 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, X. et al. Imaging single glycans. Nature 582, 375–378 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Cai, Y. et al. A solid-state nanopore-based single-molecule approach for label-free characterization of plant polysaccharides. Plant Commun. 2, 100106 (2021).

    Article  PubMed  Google Scholar 

  30. Pauly, M., Albersheim, P., Darvill, A. & York, W. S. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J. 20, 629–639 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Park, Y. B. & Cosgrove, D. J. Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol. 56, 180–194 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Dick-Perez, M. et al. Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50, 989–1000 (2011).

    Article  Google Scholar 

  33. Haas, K. T., Wightman, R., Meyerowitz, E. M. & Peaucelle, A. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science 367, 1003–1007 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, T., Park, Y. B., Cosgrove, D. J. & Hong, M. Cellulose–pectin spatial contacts are inherent to never-dried Arabidopsis primary cell walls: evidence from solid-state nuclear magnetic resonance. Plant Physiol. 168, 871–884 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lopez-Sanchez, P. et al. Pectin impacts cellulose fibre architecture and hydrogel mechanics in the absence of calcium. Carbohydr. Polym. 153, 236–245 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Griffiths, J. S. et al. Unidirectional movement of cellulose synthase complexes in Arabidopsis seed coat epidermal cells deposit cellulose involved in mucilage extrusion, adherence, and ray formation. Plant Physiol. 168, 502–520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. His, I., Driouich, A., Nicol, F., Jauneau, A. & Hofte, H. Altered pectin composition in primary cell walls of korrigan, a dwarf mutant of Arabidopsis deficient in a membrane-bound endo-1,4-beta-glucanase. Planta 212, 348–358 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Bischoff, V., Cookson, S. J., Wu, S. & Scheible, W. R. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. J. Exp. Bot. 60, 955–965 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoneda, A. et al. Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules. Plant J. 64, 657–667 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Broxterman, S. E. & Schols, H. A. Characterisation of pectin–xylan complexes in tomato primary plant cell walls. Carbohydr. Polym. 197, 269–276 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Popper, Z. A. & Fry, S. C. Xyloglucan–pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall. Planta 227, 781–794 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Gallego-Giraldo, L. et al. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1) releases latent defense signals in stems with reduced lignin content. Proc. Natl Acad. Sci. USA 117, 3281–3290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hao, Z. et al. Loss of Arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition. Front. Plant Sci. 5, 357 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xiao, C. et al. Activation tagging of Arabidopsis POLYGALACTURONASE INVOLVED IN EXPANSION2 promotes hypocotyl elongation, leaf expansion, stem lignification, mechanical stiffening, and lodging. Plant J. 89, 1159–1173 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Lairez, D. et al. Aggregation during coniferyl alcohol polymerization in pectin solution: a biomimetic approach of the first steps of lignification. Biomacromolecules 6, 763–774 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Robinson, S. et al. Mechanical control of morphogenesis at the shoot apex. J. Exp. Bot. 64, 4729–4744 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Bidhendi, A. J. & Geitmann, A. Finite element modeling of shape changes in plant cells. Plant Physiol. 176, 41–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Carter, R. et al. Stomatal opening involves polar, not radial, stiffening of guard cells. Curr. Biol. 27, 2974–2983 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yi, H. et al. Mechanical effects of cellulose, xyloglucan, and pectins on stomatal guard cells of Arabidopsis thaliana. Front. Plant Sci. 9, 1566 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cosgrove, D. J. & Anderson, C. T. Plant cell growth: do pectins drive lobe formation in Arabidopsis pavement cells? Curr. Biol. 30, R660–R662 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Rui, Y. et al. Synergistic pectin degradation and guard cell pressurization underlie stomatal pore formation. Plant Physiol. 180, 66–77 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rui, Y. et al. POLYGALACTURONASE INVOLVED IN EXPANSION3 functions in seedling development, rosette growth, and stomatal dynamics in Arabidopsis thaliana. Plant Cell 29, 2413–2432 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Palin, R. & Geitmann, A. The role of pectin in plant morphogenesis. Biosystems 109, 397–402 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, Y. et al. Molecular insights into the complex mechanics of plant epidermal cell walls. Science 372, 706–711 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Verger, S., Long, Y., Boudaoud, A. & Hamant, O. A tension–adhesion feedback loop in plant epidermis. eLife 7, e34460 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zamil, M. S. & Geitmann, A. The middle lamella—more than a glue. Phys. Biol. 14, 015004 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Mathur, J., Mathur, N., Kernebeck, B. & Hulskamp, M. Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15, 1632–1645 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Neumetzler, L. et al. The FRIABLE1 gene product affects cell adhesion in Arabidopsis. PLoS ONE 7, e42914 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Verger, S., Chabout, S., Gineau, E. & Mouille, G. Cell adhesion in plants is under the control of putative O-fucosyltransferases. Development 143, 2536–2540 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rounds, C. M., Hepler, P. K. & Winship, L. J. The apical actin fringe contributes to localized cell wall deposition and polarized growth in the lily pollen tube. Plant Physiol. 166, 139–151 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ogawa, M., Kay, P., Wilson, S. & Swain, S. M. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell 21, 216–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheung, A. Y. & Wu, H. M. THESEUS 1, FERONIA and relatives: a family of cell wall-sensing receptor kinases? Curr. Opin. Plant Biol. 14, 632–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Dunser, K. et al. Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J. 38, e100353 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Feng, W. et al. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr. Biol. 28, 666–675 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ferrari, S. et al. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 4, 49 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schoenaers, S. et al. The auxin-regulated CrRLK1L kinase ERULUS controls cell wall composition during root hair tip growth. Curr. Biol. 28, 722–732 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Baluska, F., Samaj, J., Wojtaszek, P., Volkmann, D. & Menzel, D. Cytoskeleton–plasma membrane–cell wall continuum in plants: emerging links revisited. Plant Physiol. 133, 482–491 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, C., Wu, H. M. & Cheung, A. Y. FERONIA and her pals: functions and mechanisms. Plant Physiol. 171, 2379–2392 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nissen, K. S., Willats, W. G. T. & Malinovsky, F. G. Understanding CrRLK1L function: cell walls and growth control. Trends Plant Sci. 21, 516–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Shih, H. W., Miller, N. D., Dai, C., Spalding, E. P. & Monshausen, G. B. The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr. Biol. 24, 1887–1892 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, C. et al. Pollen PCP-B peptides unlock a stigma peptide-receptor kinase gating mechanism for pollination. Science 372, 171–175 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Lindner, H., Muller, L. M., Boisson-Dernier, A. & Grossniklaus, U. CrRLK1L receptor-like kinases: not just another brick in the wall. Curr. Opin. Plant Biol. 15, 659–669 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Verger, S. & Hamant, O. Plant physiology: FERONIA defends the cell walls against corrosion. Curr. Biol. 28, R215–R217 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Lin, W. et al. Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Curr. Biol. 32, 497–507.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Duan, Q. H. et al. FERONIA controls pectin- and nitric oxide-mediated male–female interaction. Nature 579, 561–566 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Simpson, S. D., Ashford, D. A., Harvey, D. J. & Bowles, D. J. Short chain oligogalacturonides induce ethylene production and expression of the gene encoding aminocyclopropane 1-carboxylic acid oxidase in tomato plants. Glycobiology 8, 579–583 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. De Lorenzo, G., Brutus, A., Savatin, D. V., Sicilia, F. & Cervone, F. Engineering plant resistance by constructing chimeric receptors that recognize damage-associated molecular patterns (DAMPs). FEBS Lett. 585, 1521–1528 (2011).

    Article  PubMed  Google Scholar 

  78. Brutus, A., Sicilia, F., Macone, A., Cervone, F. & De Lorenzo, G. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc. Natl Acad. Sci. USA 107, 9452–9457 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kwon, T., Sparks, J. A., Liao, F. Q. & Blancaflor, E. B. ERULUS is a plasma membrane-localized receptor-like kinase that specifies root hair growth by maintaining tip-focused cytoplasmic calcium oscillations. Plant Cell 30, 1173–1177 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Braybrook, S. A. & Peaucelle, A. Mechano-chemical aspects of organ formation in Arabidopsis thaliana: the relationship between auxin and pectin. PLoS ONE 8, e5781 (2013).

    Article  Google Scholar 

  81. Monshausen, G. B. & Haswell, E. S. A force of nature: molecular mechanisms of mechanoperception in plants. J. Exp. Bot. 64, 4663–4680 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Amanda, D. et al. DEFECTIVE KERNEL1 (DEK1) regulates cell walls in the leaf epidermis. Plant Physiol. 172, 2204–2218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tran, D. et al. A mechanosensitive Ca(2+) channel activity is dependent on the developmental regulator DEK1. Nat. Commun. 8, 1009 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Johnson, K. L., Faulkner, C., Jeffree, C. E. & Ingram, G. C. The phytocalpain defective kernel 1 is a novel Arabidopsis growth regulator whose activity is regulated by proteolytic processing. Plant Cell 20, 2619–2630 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wolf, S., Mravec, J., Greiner, S., Mouille, G. & Hofte, H. Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Curr. Biol. 22, 1732–1737 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Cosgrove, D. J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Hayashi, T. & Kaida, R. Functions of xyloglucan in plant cells. Mol. Plant 4, 17–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Peaucelle, A. et al. Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr. Biol. 18, 1943–1948 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Peaucelle, A., Wightman, R. & Hofte, H. The control of growth symmetry breaking in the Arabidopsis hypocotyl. Curr. Biol. 25, 1746–1752 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Daher, F. B. et al. Anisotropic growth is achieved through the additive mechanical effect of material anisotropy and elastic asymmetry. eLife 7, e38161 (2018).

    Article  Google Scholar 

  91. Wachsman, G., Zhang, J., Moreno-Risueno, M. A., Anderson, C. T. & Benfey, P. N. Cell wall remodeling and vesicle trafficking mediate the root clock in Arabidopsis. Science 370, 819–823 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jonsson, K. et al. Mechanochemical feedback mediates tissue bending required for seedling emergence. Curr. Biol. 31, 1154–1164 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Wu, Q. et al. Touch-induced seedling morphological changes are determined by ethylene-regulated pectin degradation. Sci. Adv. 6, eabc9294 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, X., Wilson, L. & Cosgrove, D. J. Pectin methylesterase selectively softens the onion epidermal wall yet reduces acid-induced creep. J. Exp. Bot. 71, 2629–2640 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, T., Tang, H., Vavylonis, D. & Cosgrove, D. J. Disentangling loosening from softening: insights into primary cell wall structure. Plant J. 100, 1101–1117 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Cruz-Valderrama, J. E. et al. Degree of pectin methyl esterification in endosperm cell walls is involved in embryo bending in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 495, 639–645 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Sechet, J., Marion-Poll, A. & North, H. M. Emerging functions for cell wall polysaccharides accumulated during eudicot seed development. Plants (Basel) 7, 81 (2018).

    Article  CAS  Google Scholar 

  98. Muller, K. et al. Demethylesterification of cell wall pectins in Arabidopsis plays a role in seed germination. Plant Physiol. 161, 305–316 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Saez-Aguayo, S. et al. PECTIN METHYLESTERASE INHIBITOR6 promotes Arabidopsis mucilage release by limiting methylesterification of homogalacturonan in seed coat epidermal cells. Plant Cell 25, 308–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Francoz, E. et al. Pectin demethylesterification generates platforms that anchor peroxidases to remodel plant cell wall domains. Dev. Cell 48, 261–276 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Hongo, S., Sato, K., Yokoyama, R. & Nishitani, K. Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the Arabidopsis stem. Plant Cell 24, 2624–2634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wen, F., Zhu, Y. & Hawes, M. C. Effect of pectin methylesterase gene expression on pea root development. Plant Cell 11, 1129–1140 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xiao, C., Somerville, C. & Anderson, C. T. POLYGALACTURONASE INVOLVED IN EXPANSION1 functions in cell elongation and flower development in Arabidopsis. Plant Cell 26, 1018–1035 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bidhendi, A. J., Altartouri, B., Gosselin, F. P. & Geitmann, A. Mechanical stress initiates and sustains the morphogenesis of wavy leaf epidermal cells. Cell Rep. 28, 1237–1250 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Majda, M. et al. Mechanochemical polarization of contiguous cell walls shapes plant pavement cells. Dev. Cell 43, 290–304 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Lee, Y. et al. A lignin molecular brace controls precision processing of cell walls critical for surface integrity in Arabidopsis. Cell 173, 1468–1480 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Biswal, A. K. et al. Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock. Biotechnol. Biofuels 8, 41 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Siedlecka, A. et al. Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol. 146, 554–565 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Francis, K. E., Lam, S. Y. & Copenhaver, G. P. Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol. 142, 1004–1013 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Leroux, C. et al. PECTIN METHYLESTERASE48 is involved in Arabidopsis pollen grain germination. Plant Physiol. 167, 367–380 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Phan, H. A., Iacuone, S., Li, S. F. & Parish, R. W. The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell 23, 2209–2224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tian, G. W., Chen, M. H., Zaltsman, A. & Citovsky, V. Pollen-specific pectin methylesterase involved in pollen tube growth. Dev. Biol. 294, 83–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Solis, M. T., Berenguer, E., Risueno, M. C. & Testillano, P. S. BnPME is progressively induced after microspore reprogramming to embryogenesis, correlating with pectin de-esterification and cell differentiation in Brassica napus. BMC Plant Biol. 16, 176 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Louvet, R. et al. Major changes in the cell wall during silique development in Arabidopsis thaliana. Phytochemistry 72, 59–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Orfila, C. et al. Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening. Planta 215, 440–447 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Orfila, C. et al. Altered middle lamella homogalacturonan and disrupted deposition of (1–>5)-alpha-L-arabinan in the pericarp of Cnr, a ripening mutant of tomato. Plant Physiol. 126, 210–221 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Krieger, E. K. et al. The Flavr Savr tomato, an early example of RNAi technology. Hortscience 43, 962–964 (2008).

    Article  Google Scholar 

  118. Payasi, A., Mishra, N. N., Chaves, A. L. & Singh, R. Biochemistry of fruit softening: an overview. Physiol. Mol. Biol. Plants 15, 103–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Atkinson, R. G. et al. Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus × domestica) fruit. BMC Plant Biol. 12, 129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Quesada, M. A. et al. Antisense down-regulation of the FaPG1 gene reveals an unexpected central role for polygalacturonase in strawberry fruit softening. Plant Physiol. 150, 1022–1032 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Uluisik, S. et al. Genetic improvement of tomato by targeted control of fruit softening. Nat. Biotechnol. 34, 950–952 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Hocq, L., Pelloux, J. & Lefebvre, V. Connecting homogalacturonan-type pectin remodeling to acid growth. Trends Plant Sci. 22, 20–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Senechal, F., Wattier, C., Rusterucci, C. & Pelloux, J. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J. Exp. Bot. 65, 5125–5160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Amos, R. A. et al. A two-phase model for the non-processive biosynthesis of homogalacturonan polysaccharides by the GAUT1:GAUT7 complex. J. Biol. Chem. 293, 19047–19063 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Purushotham, P., Ho, R. & Zimmer, J. Architecture of a catalytically active homotrimeric plant cellulose synthase complex. Science 369, 1089–1094 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Xiao, Y. et al. Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature 572, 270–274 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Xiao Lab, the Anderson Lab and the Center for Lignocellulose Structure and Formation for insightful discussions. This work was supported by the Fundamental Research Funds for the Central Universities (grant no. SCU2021D006) and the Institutional Research Fund from Sichuan University (grant no. 2020SCUNL302) to C.X., and the Joint Science and Technology Support Program of Sichuan University and Panzhihua City to J.D. (grant no. 2019CDPZH-19). The contributions of C.T.A. to this work were supported as part of the Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0001090.

Author information

Authors and Affiliations

Authors

Contributions

J.D., C.T.A. and C.X. contributed to the writing and editing of the manuscript and the generation of the figures.

Corresponding author

Correspondence to Chaowen Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Alexis Peaucelle, Jérôme Pelloux and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Anderson, C.T. & Xiao, C. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development. Nat. Plants 8, 332–340 (2022). https://doi.org/10.1038/s41477-022-01120-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-022-01120-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing