Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of the Physcomitrium patens photosystem I reveals a unique Lhca2 paralogue replacing Lhca4

Abstract

The moss Physcomitrium patens diverged from green algae shortly after the colonization of land by ancient plants. This colonization posed new environmental challenges, which drove evolutionary processes. The photosynthetic machinery of modern flowering plants is adapted to the high light conditions on land. Red-shifted Lhca4 antennae are present in the photosystem I light-harvesting complex of many green-lineage plants but absent in P. patens. The cryo-EM structure of the P. patens photosystem I light-harvesting complex I supercomplex (PSI–LHCI) at 2.8 Å reveals that Lhca4 is replaced by a unique Lhca2 paralogue in moss. This PSI–LHCI supercomplex also retains the PsaM subunit, present in Cyanobacteria and several algal species but lost in vascular plants, and the PsaO subunit responsible for binding light-harvesting complex II. The blue-shifted Lhca2 paralogue and chlorophyll b enrichment relative to flowering plants make the P. patens PSI–LHCI spectroscopically unique among other green-lineage supercomplexes. Overall, the structure represents an evolutionary intermediate PSI with the crescent-shaped LHCI common in vascular plants, and contains a unique Lhca2 paralogue that facilitates the moss’s adaptation to low-light niches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The overall structure of the moss PSI–LHCI complex.
Fig. 2: The P. patens Lhca2b occupies the plant Lhca4 position in the LHCI antenna.
Fig. 3: Antennae specificity in LHCI.
Fig. 4: Structural differences in Chl coordination between higher plants and moss.
Fig. 5: Comparison of Chl b positions between P. patens and P. sativum PSI–LHCI.
Fig. 6: Red Chl content in the LHCI antenna in the green lineage.

Similar content being viewed by others

Data availability

The models and maps of the final model (PDB ID: 7SKQ; EMDB: EMD-23023); the PSI–LHCI model, excluding PsaO (PDB ID: 7KUX; EMDB: EMD-23040); and the PsaO alone (PDB ID: 7KU5; EMDB: EMD-23034) are all deposited in the Protein Databank and Electron Microscopy Database, respectively. Source data are provided with this paper.

References

  1. Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44, 647–683 (2016).

    Article  CAS  Google Scholar 

  2. Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G. & Bhattacharya, D. A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21, 809–818 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Heckman, D. S. et al. Molecular evidence for the early colonization of land by fungi and plants. Science 293, 1129–1133 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Alboresi, A., Caffarri, S., Nogue, F., Bassi, R. & Morosinotto, T. In silico and biochemical analysis of Physcomitrella patens photosynthetic antenna: identification of subunits which evolved upon land adaptation. PLoS ONE 3, e2033 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Alboresi, A., Gerottob, C., Giacomettib, G. M., Bassia, R. & Morosinotto, T. Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proc. Natl Acad. Sci. USA 107, 11128–11133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blankenship, R. E. Molecular Mechanisms of Photosynthesis 2nd edn (Wiley-Blackwell, 2014).

  8. Nelson, N. & Junge, W. Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu. Rev. Biochem. 84, 659–683 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Paul, M. Photosynthesis. Plastid biology, energy conversion and carbon assimilation. Ann. Bot. 111, ix (2013).

    Article  Google Scholar 

  10. Nelson, N. & Ben-Shem, A. The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 5, 971–982 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Amunts, A., Toporik, H., Borovikova, A. & Nelson, N. Structure determination and improved model of plant photosystem I. J. Biol. Chem. 285, 3478–3486 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Mazor, Y., Borovikova, A., Caspy, I. & Nelson, N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nat. Plants 3, 17014 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Caspy, I. & Nelson, N. Structure of the plant photosystem I. Biochem. Soc. Trans. 46, 285–294 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Croce, R. & van Amerongen, H. Light-harvesting in photosystem I. Photosynth. Res. 116, 153–166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jansson, S. A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci. 4, 236–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Busch, A. & Hippler, M. The structure and function of eukaryotic photosystem I. Biochim. Biophys. Acta Bioenerg. 1807, 864–877 (2011).

    Article  CAS  Google Scholar 

  17. Rochaix, J. D. & Bassi, R. LHC-like proteins involved in stress responses and biogenesis/repair of the photosynthetic apparatus. Biochem. J. 476, 581–593 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Jensen, P. E. et al. Structure, function and regulation of plant photosystem I. Biochim. Biophys. Acta Bioenerg. 1767, 335–352 (2007).

    Article  CAS  Google Scholar 

  19. Pan, X. et al. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science 360, 1109–1113 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Qin, X., Suga, M., Kuang, T. & Shen, J.-R. Photosynthesis. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348, 989–995 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Croce, R., Morosinotto, T., Castelletti, S., Breton, J. & Bassi, R. The Lhca antenna complexes of higher plants photosystem I. Biochim. Biophys. Acta 1556, 29–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Ganeteg, U., Klimmek, F. & Jansson, S. Lhca5—an LHC-type protein associated with photosystem I. Plant Mol. Biol. 54, 641–651 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Kato, Y., Odahara, M., Fukao, Y. & Shikanai, T. Stepwise evolution of supercomplex formation with photosystem I is required for stabilization of chloroplast NADH dehydrogenase-like complex: Lhca5-dependent supercomplex formation in Physcomitrella patens. Plant J. 96, 937–948 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Otani, T., Kato, Y. & Shikanai, T. Specific substitutions of light‐harvesting complex I proteins associated with photosystem I are required for supercomplex formation with chloroplast NADH dehydrogenase‐like complex. Plant J. 94, 122–130 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Otani, T., Yamamoto, H. & Shikanai, T. Stromal loop of Lhca6 is responsible for the linker function required for the NDH–PSI supercomplex formation. Plant Cell Physiol. 58, 851–861 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Ballottari, M., Dall’Osto, L., Morosinotto, T. & Bassi, R. Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J. Biol. Chem. 282, 8947–8958 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Wientjes, E., Oostergetel, G. T., Jansson, S., Boekema, E. J. & Croce, R. The role of Lhca complexes in the supramolecular organization of higher plant photosystem I. J. Biol. Chem. 284, 7803–7810 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kubota-Kawai, H. et al. Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii. J. Biol. Chem. 294, 4304–4314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ozawa, S. I. et al. Configuration of ten light-harvesting chlorophyll a/b complex I subunits in Chlamydomonas reinhardtii photosystem I. Plant Physiol. 178, 583–595 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mozzo, M. et al. Functional analysis of photosystem I light-harvesting complexes (Lhca) gene products of Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1797, 212–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Perez-Boerema, A. et al. Structure of a minimal photosystem I from the green alga Dunaliella salina. Nat. Plants 6, 321–327 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Caspy, I. et al. Structure and energy transfer pathways of the Dunaliella salina photosystem I supercomplex. Biochim. Biophys. Acta Bioenerg. 1861, 148253 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Suga, M. et al. Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. Nat. Plants 5, 626–636 (2019).

    Article  PubMed  Google Scholar 

  34. Su, X. et al. Antenna arrangement and energy transfer pathways of a green algal photosystem-I-LHCI supercomplex. Nat. Plants 5, 273–281 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Qin, X. et al. Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. Nat. Plants 5, 263–272 (2019).

    Article  PubMed  Google Scholar 

  36. Busch, A. et al. Composition and structure of photosystem I in the moss Physcomitrella patens. J. Exp. Bot. 64, 2689–2699 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iwai, M. & Yokono, M. Light-harvesting antenna complexes in the moss Physcomitrella patens: implications for the evolutionary transition from green algae to land plants. Curr. Opin. Plant Biol. 37, 94–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Neilson, J. A. D. & Durnford, D. G. Evolutionary distribution of light-harvesting complex-like proteins in photosynthetic eukaryotes. Genome 53, 68–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Neilson, J. A. D. & Durnford, D. G. Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth. Res. 106, 57–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Pinnola, A. et al. A LHCB9-dependent photosystem I megacomplex induced under low light in Physcomitrella patens. Nat. Plants 4, 910–919 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Iwai, M., Grob, P., Nogales, E. & Niyogi, K. A unique supramolecular organization of photosystem I in the moss Physcomitrella patens. Nat. Plants 4, 904–909 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iwai, M. et al. Light-harvesting complex Lhcb9 confers a green alga-type photosystem I supercomplex to the moss Physcomitrella patens. Nat. Plants 1, 14008 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Croce, R. et al. The low-energy forms of photosystem I light-harvesting complexes: spectroscopic properties and pigment–pigment interaction characteristics. Biophys. J. 93, 2418–2428 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gobets, B. et al. Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: a unified compartmental model. Biophys. J. 81, 407–424 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alboresi, A., Ballottari, M., Hienerwadel, R., Giacometti, G. M. & Morosinotto, T. Antenna complexes protect Photosystem I from photoinhibition. BMC Plant Biol. 9, 71 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Carbonera, D., Agostini, G., Morosinotto, T. & Bassi, R. Quenching of chlorophyll triplet states by carotenoids in reconstituted Lhca4 subunit of peripheral light-harvesting complex of photosystem I. Biochemistry 44, 8337–8346 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Rivadossi, A., Zucchelli, G., Garlaschi, F. M. & Jennings, R. C. The importance of PS I chlorophyll red forms in light-harvesting by leaves. Photosynth. Res. 60, 209–215 (1999).

    Article  CAS  Google Scholar 

  48. Castelletti, S. et al. Recombinant LHca2 and LHca3 subunits of the photosystem I antenna system. Biochemistry 42, 4226–4234 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Morosinotto, T., Castelletti, S., Breton, J., Bassi, R. & Croce, R. Mutation analysis of Lhca1 antenna complex: low energy absorption forms originate from pigment–pigment interactions. J. Biol. Chem. 277, 36253–36261 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Wientjes, E. & Croce, R. The light-harvesting complexes of higher-plant photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers. Biochem. J. 433, 477–485 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Antoshvili, M., Caspy, I., Hippler, M. & Nelson, N. Structure and function of photosystem I in Cyanidioschyzon merolae. Photosynth. Res. 139, 499–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Pi, X. et al. Unique organization of photosystem I–light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc. Natl Acad. Sci. USA 115, 4423–4428 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morosinotto, T., Breton, J., Bassi, R. & Croce, R. The nature of a chlorophyll ligand in Lhca proteins determines the far-red fluorescence emission typical of photosystem I. J. Biol. Chem. 278, 49223–49229 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Morosinotto, T., Mozzo, M., Bassi, R. & Croce, R. Pigment–pigment interactions in Lhca4 antenna complex of higher plants photosystem I. J. Biol. Chem. 280, 20612–20619 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Mazor, Y., Borovikova, A. & Nelson, N. The structure of plant photosystem I super-complex at 2.8 Å resolution. Elife 4, e07433 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Natali, A., Roy, L. M. & Croce, R. In vitro reconstitution of light-harvesting complexes of plants and green algae. J. Vis. Exp. https://doi.org/10.3791/51852 (2014).

  57. Boardman, N. K. Comparative photosynthesis of sun and shade plants. Annu. Rev. Plant Physiol. https://doi.org/10.1146/annurev.pp.28.060177.002035 (1977).

  58. Hobe, S., Fey, H., Rogl, H. & Paulsen, H. Determination of relative chlorophyll binding affinities in the major light-harvesting chlorophyll a/b complex. J. Biol. Chem. 278, 5912–5919 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Naithani, S., Hou, J. M. & Chitnis, P. R. Targeted inactivation of the psaK1, psaK2 and psaM genes encoding subunits of photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth. Res. 63, 225–236 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Iwai, M., Grob, P., Iavarone, A. T., Nogales, E. & Niyogi, K. K. A unique supramolecular organization of photosystem I in the moss Physcomitrella patens. Nat. Plants https://doi.org/10.1038/s41477-018-0271-1 (2018).

  61. Yan, Q. et al. Antenna arrangement and energy-transfer pathways of PSI–LHCI from the moss Physcomitrella patens. Cell Discov. 7, 10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cunningham, A., Ramage, L. & McKee, D. Relationships between inherent optical properties and the depth of penetration of solar radiation in optically complex coastal waters. J. Geophys. Res. Ocean. 118, 2310–2317 (2013).

    Article  Google Scholar 

  63. FJ, K. et al. Decreasing the chlorophyll a/b ratio in reconstituted LHCII: structural and functional consequences. Biochemistry 38, 6587–6596 (1999).

    Article  Google Scholar 

  64. Pagano, A., Cinque, G. & Bassi, R. In vitro reconstitution of the recombinant photosystem II light-harvesting complex CP24 and its spectroscopic characterization. J. Biol. Chem. https://doi.org/10.1074/jbc.273.27.17154 (1998).

  65. Sakuraba, Y., Yokono, M., Akimoto, S., Tanaka, R. & Tanaka, A. Deregulated chlorophyll b synthesis reduces the energy transfer rate between photosynthetic pigments and induces photodamage in Arabidopsis thaliana. Plant Cell Physiol. https://doi.org/10.1093/pcp/pcq050 (2010).

  66. Leong, T. Y. & Anderson, J. M. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll-protein complexes. Photosynth. Res. https://doi.org/10.1007/bf00028524 (1984).

  67. Ben-Shem, A., Frolow, F. & Nelson, N. Crystal structure of plant photosystem I. Nature https://doi.org/10.1038/nature02200 (2003).

  68. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. https://doi.org/10.1093/nar/gkh340 (2004).

  69. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview version 2-A multiple sequence alignment editor and analysis workbench. Bioinformatics https://doi.org/10.1093/bioinformatics/btp033 (2009).

  70. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msy096 (2018).

  71. de las Rivas, J., Abadía, A. & Abadía, J. A new reversed phase-HPLC method resolving all major higher plant photosynthetic pigments. Plant Physiol. https://doi.org/10.1104/pp.91.1.190 (1989).

  72. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. https://doi.org/10.1016/j.jsb.2005.07.007 (2005).

  74. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife https://doi.org/10.7554/eLife.42166 (2018).

  77. Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ https://doi.org/10.1107/S205225251801463X (2019).

  78. Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ https://doi.org/10.1107/s2052252520000081 (2020).

  79. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods https://doi.org/10.1038/nmeth.2727 (2014).

  80. Naydenova, K. & Russo, C. J. Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy. Nat. Commun. https://doi.org/10.1038/s41467-017-00782-3 (2017).

  81. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. https://doi.org/10.1107/s2059798319011471 (2019).

  82. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. N. Ohad and Dr R. Yaari for help with moss strains, cultivation and protocols; the Arizona State University for use of the Titan Krios at the Erying Materials Center; and the National Science Foundation (No. MRI 1531991) for funding of this instrument. This study was funded by a startup grant from Arizona State University and supported by grant number 2034021 from the National Science Foundation to Y.M.

Author information

Authors and Affiliations

Authors

Contributions

C.G. and R.R. performed sample preparation and measurements. Z. Da and Z. Dobson performed measurements. D.W. performed cryo-EM data acquisition. Y.M., C.G. and R.R. analysed the data and performed structural modelling. C.G., H.T., R.R. and Y.M. planned the experiments and wrote the manuscript.

Corresponding author

Correspondence to Y. Mazor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Toshiharu Shikanai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, uncropped blots for Fig. 5c and Tables 1–3.

Reporting Summary

Source data

Source Data Fig. 1

Fig. 1d,e source data – absorption and emission data.

Source Data Fig. 5

Fig. 5c,d source data – HPLC chromatograms and absorption data.

Source Data Table 1

Table 1 source data – HPLC chromatograms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorski, C., Riddle, R., Toporik, H. et al. The structure of the Physcomitrium patens photosystem I reveals a unique Lhca2 paralogue replacing Lhca4. Nat. Plants 8, 307–316 (2022). https://doi.org/10.1038/s41477-022-01099-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-022-01099-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing