Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular properties of epimutation hotspots

Abstract

Mistakes in the maintenance of CG methylation are a source of heritable epimutations in plants. Multigenerational surveys indicate that the rate of these stochastic events varies substantially across the genome, with some regions harbouring localized ‘epimutation hotspots’. Using Arabidopsis as a model, we show that epimutation hotspots are indexed by a specific set of chromatin states that map to subregions of gene body methylation genes. Although these regions comprise only ~12% of all CGs in the genome, they account for ~63% of all epimutation events per unit time. Molecular profiling revealed that these regions contain unique sequence features, harbour steady-state intermediate methylation levels and act as putative targets of antagonistic DNA methylation pathways. We further demonstrate that experimentally induced shifts in steady-state methylation in these hotspot regions are sufficient to significantly alter local epimutation intensities. Our work lays the foundation for dissecting the molecular mechanisms and evolutionary consequences of epimutation hotspots in plants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of analysis strategy.
Fig. 2: CS-specific epimutation rate estimates.
Fig. 3: Model-based predictions of mCG divergence and epimutation hotspots.
Fig. 4: Molecular characterization of SPMRs.
Fig. 5: Repatterning of epimutation hotspots in mutant backgrounds.

Similar content being viewed by others

Data availability

Previously published sequencing data (GSE64463, GSE153055 and GSE51304) used in this study are specified in the Methods. The WGBS data generated in this study have been deposited in the Gene Expression Omnibus database under the accession number GSE178684. Source data are provided with this paper.

Code availability

All code used to identify DMRs can be accessed from the GitHub repository at https://github.com/jlab-code/jDMR.

References

  1. Kawakatsu, T. et al. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166, 492–505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dubin, M. J. et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife 4, e05255 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang, Y., Wendte, J. M., Ji, L. & Schmitz, R. J. Natural variation in DNA methylation homeostasis and the emergence of epialleles. Proc. Natl Acad. Sci. USA 117, 4874–4884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu, G. et al. Evolutionary and functional genomics of DNA methylation in maize domestication and improvement. Nat. Commun. 11, 5539 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vaughn, M. W. et al. Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 5, e174 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Schmitz, R. J. et al. Patterns of population epigenomic diversity. Nature 495, 193–198 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Graaf, A. et al. Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc. Natl Acad. Sci. USA 112, 6676–6681 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hagmann, J. et al. Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genet. 11, e1004920 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Johannes, F. & Schmitz, R. J. Spontaneous epimutations in plants. N. Phytol. https://doi.org/10.1111/nph.15434 (2018).

  10. Hofmeister, B. T. et al. A genome assembly and the somatic genetic and epigenetic mutation rate in a wild long-lived perennial Populus trichocarpa. Genome Biol. 21, 259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shahryary, Y. et al. AlphaBeta: computational inference of epimutation rates and spectra from high-throughput DNA methylation data in plants. Genome Biol. 21, 260 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmitz, R. J. et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334, 369–373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ganguly, D. R., Crisp, P. A., Eichten, S. R. & Pogson, B. J. The Arabidopsis DNA methylome is stable under transgenerational drought stress. Plant Physiol. 175, 1893–1912 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng, X. et al. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci. Rep. 7, 39843 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang, C. et al. Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations. Genome Res. 24, 1821–1829 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hofmeister, B. T., Lee, K., Rohr, N. A., Hall, D. W. & Schmitz, R. J. Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol. 18, 155 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Yadav, N. S. et al. Multigenerational exposure to heat stress induces phenotypic resilience, and genetic and epigenetic variations in Arabidopsis thaliana offspring. Preprint at bioRxiv https://doi.org/10.1101/2020.11.30.405365 (2020).

  18. Denkena, J., Johannes, F. & Colomé-Tatché, M. Region-level epimutation rates in Arabidopsis thaliana. Heredity (Edinb). 127, 190–202 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161 (1999).

    CAS  PubMed  Google Scholar 

  20. Manning, K. et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38, 948–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Ong-Abdullah, M. et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525, 533–537 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vidalis, A. et al. Methylome evolution in plants. Genome Biol. 17, 264 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zhang, H., Lang, Z. & Zhu, J.-K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489–506 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Stroud, H., Greenberg, M. V. C., Feng, S., Bernatavichute, Y. V. & Jacobsen, S. E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Habig, M., Lorrain, C., Feurtey, A., Komluski, J. & Stukenbrock, E. H. Epigenetic modifications affect the rate of spontaneous mutations in a pathogenic fungus. Nat. Commun. 12, 5869 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, Y. et al. PCSD: a plant chromatin state database. Nucleic Acids Res. 46, D1157–D1167 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Roudier, F. et al. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 30, 1928–1938 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, C. et al. Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res. 25, 246–256 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480, 245–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Picard, C. L. & Gehring, M. Proximal methylation features associated with nonrandom changes in gene body methylation. Genome Biol. 18, 73 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Horvath, R., Laenen, B., Takuno, S. & Slotte, T. Single-cell expression noise and gene-body methylation in Arabidopsis thaliana. Heredity (Edinb.) 123, 81–91 (2019).

    Article  CAS  Google Scholar 

  32. Takuno, S. & Gaut, B. S. Gene body methylation is conserved between plant orthologs and is of evolutionary consequence. Proc. Natl Acad. Sci. USA 110, 1797–1802 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takuno, S., Ran, J.-H. & Gaut, B. S. Evolutionary patterns of genic DNA methylation vary across land plants. Nat. Plants 2, 15222 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Williams, B. P., Bechen, L. A., Pohlmann, D. A. & Gehring, M. Somatic DNA demethylation generates tissue-specific methylation states and impacts flowering time. Preprint at bioRxiv https://doi.org/10.1101/2021.03.29.437569 (2021).

  35. Lindroth, A. M. et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292, 2077–2080 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Bewick, A. J., Zhang, Y., Wendte, J. M., Zhang, X. & Schmitz, R. J. Evolutionary and experimental loss of gene body methylation and its consequence to gene expression. G3 (Bethesda) 9, 2441–2445 (2019).

    Article  CAS  Google Scholar 

  37. Kiefer, C. et al. Interspecies association mapping links reduced CG to TG substitution rates to the loss of gene-body methylation. Nat. Plants 5, 846–855 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Kakutani, T., Jeddeloh, J. A., Flowers, S. K., Munakata, K. & Richards, E. J. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc. Natl Acad. Sci. USA 93, 12406–12411 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reinders, J. et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23, 939–950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ginno, P. A. et al. A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nat. Commun. 11, 2680 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Williams, B. P., Pignatta, D., Henikoff, S. & Gehring, M. Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet. 11, e1005142 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Stroud, H. et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21, 64–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Ito, T. et al. Genome-wide negative feedback drives transgenerational DNA methylation dynamics in Arabidopsis. PLoS Genet. 11, e1005154 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhang, Y. et al. Heterochromatin is a quantitative trait associated with spontaneous epiallele formation. Nat. Commun. 12, 6958 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shaw, F. H., Geyer, C. J. & Shaw, R. G. A comprehensive model of mutations affecting fitness and inferences for Arabidopsis thaliana. Evolution 56, 453–463 (2002).

    Article  PubMed  Google Scholar 

  46. Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J. & Ecker, J. R. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat. Protoc. 10, 475–483 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shahryary, Y., Hazarika, R. R. & Johannes, F. MethylStar: a fast and robust pre-processing pipeline for bulk or single-cell whole-genome bisulfite sequencing data. BMC Genomics 21, 479 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taudt, A. et al. METHimpute: imputation-guided construction of complete methylomes from WGBS data. BMC Genomics 19, 444 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics 27, 1571–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  51. Lawrence, M. et al. Software for computing and annotating genomic ranges. PLOS Comput. Biol. 9, e1003118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Liu, C., Cheng, Y. J., Wang, J. W. & Weigel, D. Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat. Plants 3, 742–748 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Williams and M. Gehring for sharing the drdd data with us. F.J., R.R.H. and R.J.S. acknowledge support from the Technical University of Munich Institute for Advanced Study, funded by the German Excellence Initiative and the European Seventh Framework Programme under grant agreement no. 291763. Z.Z. holds a fellowship from the China Scholarship Council (no. CSC202006380020). This work was supported by the National Institutes of Health (grant no. R01GM134682 to R.J.S.).

Author information

Authors and Affiliations

Authors

Contributions

R.R.H., M.S. and Z.Z. performed the data processing and analysis under the supervision of F.J. Y.Z. and R.J.S. generated the MA mutant data. F.J. and R.R.H. conceptualized the project and wrote the manuscript. All authors edited the manuscript.

Corresponding authors

Correspondence to Robert J. Schmitz or Frank Johannes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Global genomic coverage and epimutation rates of 36 Chromatin States.

(a) Genomic coverage of 36 CS. (b) CG epimutation gain (α) and loss (β) rates of the 36 CS. The estimates represent a weighted average for MA1_1 and MA1_2 lines. Data in the bar plots are represented as CG epimutation rate estimates ± 95% confidence intervals. The highest and lowest rates for α and β are indicated by a rectangle. (c) Correlation of α, β and divergence values between MA1_1 and MA1_2. The plots indicate that the results of MA1_1 and MA1_2 are highly concordant.

Extended Data Fig. 2 Model selection and selection of highly divergent mCG regions.

(a) Best-prediction model for mCG divergence in pericentromeric regions and chromosome arms. (b) Distribution of observed mCG divergence values of 10Kb regions of MA1_1 and MA1_2 lines at Δt=62. The top 10% mCG divergence values are highlighted in grey.

Source data

Extended Data Fig. 3 Example JBrowse screenshot of a typical gbM gene showing location of SPMRs and non-SPMRs.

SPMRs harbour a mixture of methylated and unmethylated CGs yielding intermediate methylation levels (0.2 to 0.8). On the other hand, non-SPMRs are either fully methylated or unmethylated.

Extended Data Fig. 4 mCG divergence and epimutation rates after removal of redCS SPMRs.

mCG divergence over Δt (generations) (left panels) and CG epimutation gain (α) and loss (β) rates in MA1_1 and MA1_2 (right panels) after removal of SPMRs from all red states, SPMRs associated with gbM genes in all red states and hotspot associated SPMRs (CS4, CS5, CS6) as compared to global. Data in the barplots are represented as CG epimutation rates ± 95% confidence intervals. Sample variation can be observed in the fitted lines in the mCG divergence versus Δt plots (left panel).

Extended Data Fig. 5 Epimutation rates in hypo- and hyper- methylated redCS SPMRs.

Heatmaps showing hypo- and hyper- methylated redCS SPMRs in gbM genes of MA3_wt versus MA_suvh4/5/6 (left) and MA_cmt3 (right). All redCS SPMRs were divided into quartiles (redCS4, redCS3, redCS3 and redCS1) and arranged in descending order of methylation level in mutants. The barplots show the α and β rates of the redCS SPMRs in each of the quartiles in the heatmap. Data in the barplots are represented as CG epimutation rates ± 95% confidence intervals.

Source data

Extended Data Fig. 6 A molecular model for epimutation hotspots.

(a) Schematic representation showing a possible mechanism of interaction between heterochromatin and gbM-SPMRs and how they affect local epimutation rates. (b) CG and non-CG DRDD targets in MA_suvh/4/5/6 (generation 16, lineage 8) and MA_cmt3 (generation 16, lineage 8) are hypomethylated. (c) Venn diagram showing all-contexts DMR overlaps of drdd hyper-DMRs with hypo-DMRs of MA_suvh4/5/6 and MA_cmt3. Asterisks represent significance levels (*** indicates highly significant overlaps (P = 9.9E-05). (d) RNA-Seq analysis in suvh4/5/6 and cmt3 shows a significant downregulation of DML3, and a similar, non-significant trend, for DML2, DME and ROS1 genes. (e) Distribution of total sequence space (base pair) taken up by redCS-SPMRs. The bottom 10% (low sequence space) and top 10% (high sequence space) fraction of all gbM genes are highlighted (top right panel). Violin plots showing gbM frequency of the top 10% and bottom 10% subsets from the histogram (bottom right panel).

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Tables 1–10.

Reporting Summary

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazarika, R.R., Serra, M., Zhang, Z. et al. Molecular properties of epimutation hotspots. Nat. Plants 8, 146–156 (2022). https://doi.org/10.1038/s41477-021-01086-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-01086-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing