Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration

Abstract

In plant tissue culture, callus forms from detached explants in response to a high-auxin-to-low-cytokinin ratio on callus-inducing medium. Callus is a group of pluripotent cells because it can regenerate either roots or shoots in response to a low level of auxin on root-inducing medium or a high-cytokinin-to-low-auxin ratio on shoot-inducing medium, respectively1. However, our knowledge of the mechanism of pluripotency acquisition during callus formation is limited. On the basis of analyses at the single-cell level, we show that the tissue structure of Arabidopsis thaliana callus on callus-inducing medium is similar to that of the root primordium or root apical meristem, and the middle cell layer with quiescent centre-like transcriptional identity exhibits the ability to regenerate organs. In the middle cell layer, WUSCHEL-RELATED HOMEOBOX5 (WOX5) directly interacts with PLETHORA1 and 2 to promote TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 expression for endogenous auxin production. WOX5 also interacts with the B-type ARABIDOPSIS RESPONSE REGULATOR12 (ARR12) and represses A-type ARRs to break the negative feedback loop in cytokinin signalling. Overall, the promotion of auxin production and the enhancement of cytokinin sensitivity are both required for pluripotency acquisition in the middle cell layer of callus for organ regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-cell RNA-seq analysis of callus.
Fig. 2: WOX5/7 promote auxin production in callus.
Fig. 3: WOX5/7 promote cytokinin signalling in callus.
Fig. 4: Overexpression of WOX5 or WOX7 promotes shoot regeneration.

Similar content being viewed by others

Data availability

The sequence data can be accessed at the Arabidopsis Genome Initiative (https://www.arabidopsis.org/) under the following accession numbers: WOX11 (AT3G03660), WOX5 (AT3G11260), WOX7 (AT5G05770), PLT1 (AT3G20840), PLT2 (AT1G51190), SCR (AT3G54220), ARR5 (AT3G48100), ARR7 (AT1G19050), ARR12 (AT2G25180), ARR2 (AT4G16110), WUS (AT2G17950), JKD (AT5G03150), TAA1 (AT1G70560), TAR2 (AT4G24670), KCS6 (AT1G68530), PDF1 (AT2G42840), ATML1 (AT4G21750), BDG1 (AT1G64670), PIN2 (AT5G57090), SCZ (AT1G46264), NPY4 (AT2G23050), HAN (AT3G50870), SMXL3 (AT3G52490), TMO5 (AT3G25710), WAT1 (AT1G75500), ANT (AT4G37750), ATHB8 (AT4G32880), 4CL1 (AT1G51680), PXY (AT5G61480), bHLH068 (AT4G29100), TAN1 (AT3G05330) and HIK (AT1G18370). The RNA-seq and single-cell RNA-seq data have been deposited in the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under the accession numbers GSE156990, GSE178354 and GSE156991. The RNA-seq and single-cell RNA-seq data can be accessed using the online tool (http://xulinlab.cemps.ac.cn/), and gene IDs can be used to search for gene expression patterns. The data that support the findings of this study are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Ikeuchi, M. et al. Molecular mechanisms of plant regeneration. Annu. Rev. Plant Biol. 70, 377–406 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    Article  CAS  Google Scholar 

  3. Sugimoto, K., Jiao, Y. & Meyerowitz, E. M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev. Cell 18, 463–471 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Trinh, D.-C. et al. PUCHI regulates very long chain fatty acid biosynthesis during lateral root and callus formation. Proc. Natl Acad. Sci. USA 116, 14325–14330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abe, M., Takahashi, T. & Komeda, Y. Identification of a cis-regulatory element for L1 layer-specific gene expression, which is targeted by an L1-specific homeodomain protein. Plant J. 26, 487–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Kurdyukov, S. et al. The epidermis-specific extracellular BODYGUARD controls cuticle development and morphogenesis in Arabidopsis. Plant Cell 18, 321–339 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sessions, A., Weigel, D. & Yanofsky, M. F. The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant J. 20, 259–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003).

    Article  PubMed  Google Scholar 

  9. Di Laurenzio, L. et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86, 423–433 (1996).

    Article  PubMed  Google Scholar 

  10. ten Hove, C. A. et al. SCHIZORIZA encodes a nuclear factor regulating asymmetry of stem cell divisions in the Arabidopsis root. Curr. Biol. 20, 452–457 (2010).

    Article  PubMed  CAS  Google Scholar 

  11. Welch, D. et al. Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev. 21, 2196–2204 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aida, M. et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119, 109–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811–814 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Efroni, I., Ip, P.-L., Nawy, T., Mello, A. & Birnbaum, K. D. Quantification of cell identity from single-cell gene expression profiles. Genome Biol. 16, 9 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Brady, S. M. et al. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318, 801–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. De Rybel, B. et al. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev. Cell 24, 426–437 (2013).

    Article  PubMed  CAS  Google Scholar 

  18. Cheng, Y., Qin, G., Dai, X. & Zhao, Y. NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis. Proc. Natl Acad. Sci. USA 105, 21017–21022 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nawy, T. et al. The GATA factor HANABA TARANU is required to position the proembryo boundary in the early Arabidopsis embryo. Dev. Cell 19, 103–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Wallner, E.-S. et al. Strigolactone- and karrikin-independent SMXL proteins are central regulators of phloem formation. Curr. Biol. 27, 1241–1247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smetana, O. et al. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565, 485–489 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Baima, S. et al. The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121, 4171–4182 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Etchells, J. P. & Turner, S. R. The PXY–CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137, 767–774 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, D., Ellard, M., Wanner, L. A., Davis, K. R. & Douglas, C. J. The Arabidopsis thaliana 4-coumarate:CoA ligase (4CL) gene: stress and developmentally regulated expression and nucleotide sequence of its cDNA. Plant Mol. Biol. 28, 871–884 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Ranocha, P. et al. WALLS ARE THIN 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast-localized protein required for secondary wall formation in fibers. Plant J. 63, 469–483 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y. et al. Two types of bHLH transcription factor determine the competence of the pericycle for lateral root initiation. Nat. Plants 7, 633–643 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, J. et al. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 26, 1081–1093 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanaka, H. et al. The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells 9, 1199–1211 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Walker, K. L., Müller, S., Moss, D., Ehrhardt, D. W. & Smith, L. G. Arabidopsis TANGLED identifies the division plane throughout mitosis and cytokinesis. Curr. Biol. 17, 1827–1836 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gordon, S. P. et al. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134, 3539–3548 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Kurihara, D., Mizuta, Y., Sato, Y. & Higashiyama, T. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142, 4168–4179 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhai, N. & Xu, L. CRE/LOX-based analysis of cell lineage during root formation and regeneration in Arabidopsis. aBIOTECH 1, 153–156 (2020).

    Article  Google Scholar 

  33. Burkart, R. C. et al. PLETHORA and WOX5 interaction and subnuclear localisation regulates Arabidopsis root stem cell maintenance. Preprint at bioRxiv https://doi.org/10.1101/818187 (2019).

  34. Kareem, A. et al. PLETHORA genes control regeneration by a two-step mechanism. Curr. Biol. 25, 1017–1030 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, J.-Y. et al. Epigenetic reprogramming by histone acetyltransferase HAG1/AtGCN5 is required for pluripotency acquisition in Arabidopsis. EMBO J. 37, e98726 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Santuari, L. et al. The PLETHORA gene regulatory network guides growth and cell differentiation in Arabidopsis roots. Plant Cell 28, 2937–2951 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kieber, J. J. & Schaller, G. E. Cytokinins. Arabidopsis Book 12, e0168 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. To, J. P. C. et al. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16, 658–671 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, Z. et al. The type-B cytokinin response regulator ARR1 inhibits shoot regeneration in an ARR12-dependent manner in Arabidopsis. Plant Cell 32, 2271–2291 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dai, X. et al. ARR12 promotes de novo shoot regeneration in Arabidopsis thaliana via activation of WUSCHEL expression. J. Integr. Plant Biol. 59, 747–758 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Meng, W. J. et al. Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell 29, 1357–1372 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, T.-Q. et al. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell 29, 1073–1087 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matosevich, R. et al. Local auxin biosynthesis is required for root regeneration after wounding. Nat. Plants 6, 1020–1030 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Matosevich, R. & Efroni, I. The quiescent center and root regeneration. J. Exp. Bot. https://doi.org/10.1093/jxb/erab319 (2021).

  45. Cheng, Z. J. et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiol. 161, 240–251 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Radhakrishnan, D. et al. A coherent feed forward loop drives vascular regeneration in damaged aerial organs growing in normal developmental-context. Development 147, dev185710 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Leibfried, A. et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438, 1172–1175 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Ishihara, H. et al. Primed histone demethylation regulates shoot regenerative competency. Nat. Commun. 10, 1786 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yang, W., Choi, M.-H., Noh, B. & Noh, Y.-S. De novo shoot regeneration controlled by HEN1 and TCP3/4 in Arabidopsis. Plant Cell Physiol. 61, 1600–1613 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Ikeuchi, M., Sugimoto, K. & Iwase, A. Plant callus: mechanisms of induction and repression. Plant Cell 25, 3159–3173 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu, X. & Xu, L. Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiol. 172, 2363–2373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kanei, M., Horiguchi, G. & Tsukaya, H. Stable establishment of cotyledon identity during embryogenesis in Arabidopsis by ANGUSTIFOLIA3 and HANABA TARANU. Development 139, 2436–2446 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Huang, X. et al. The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Mol. Plant 11, 970–982 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Stepanova, A. N. et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Zürcher, E. et al. A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol. 161, 1066–1075 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wang, Q. et al. A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants. Nat. Commun. 11, 679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. He, C., Chen, X., Huang, H. & Xu, L. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genet. 8, e1002911 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K. & Scheible, W.-R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Taniguchi, M., Sasaki, N., Tsuge, T., Aoyama, T. & Oka, A. ARR1 directly activates cytokinin response genes that encode proteins with diverse regulatory functions. Plant Cell Physiol. 48, 263–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Wu, F. H. et al. Tape–Arabidopsis sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Shimotohno, A., Heidstra, R., Blilou, I. & Scheres, B. Root stem cell niche organizer specification by molecular convergence of PLETHORA and SCARECROW transcription factor modules. Genes Dev. 32, 1085–1100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, G. et al. Jasmonate-mediated wound signalling promotes plant regeneration. Nat. Plants 5, 491–497 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  64. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Haga, N. et al. Mutations in MYB3R1 and MYB3R4 cause pleiotropic developmental defects and preferential down-regulation of multiple G2/M-specific genes in Arabidopsis. Plant Physiol. 157, 706–717 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kobayashi, K. et al. Transcriptional repression by MYB3R proteins regulates plant organ growth. EMBO J. 34, 1992–2007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank ABRC, T. Xu and J.-W. Wang for providing mutant seeds and marker lines. This work was supported by grants from the National Natural Science Foundation of China (no. 31630007), the Strategic Priority Research Program of the Chinese Academy of Sciences (no. XDB27030103), Youth Innovation Promotion Association CAS (no. 2014241) and the National Key Laboratory of Plant Molecular Genetics to L.X.

Author information

Authors and Affiliations

Authors

Contributions

N.Z. and L.X. designed the research, analysed the data and wrote the article. N.Z. performed the experiments.

Corresponding author

Correspondence to Lin Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Kalika Prasad, Pil Joon Seo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, legend of Video 1, legends of Tables 1–7 and references.

Reporting Summary

Supplementary Video 1

WOX5 expression pattern in callus on CIM.

Supplementary Tables

Supplementary Table 1. List of cell clusters 0 to 9. Supplementary Table 2. GO analysis of cell cluster 2. Supplementary Table 3. List of genes in RNA-seq analysis of Col-0 and wox5-1wox7-1 calli. Supplementary Table 4. List of genes in RNA-seq analysis of Col-0 and plt1-21plt2-21 calli. Supplementary Table 5. List of genes regulated by WOX5/7 and PLT1/2. Supplementary Table 6. List of primers used in this study. Supplementary Table 7. List of genes related to the cell cycle.

Source data

Source Data Fig. 2

Unprocessed western blots for Fig.2b.

Source Data Fig. 3

Unprocessed western blots for Fig.3e.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, N., Xu, L. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nat. Plants 7, 1453–1460 (2021). https://doi.org/10.1038/s41477-021-01015-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-01015-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing