Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of microRNA processing by Dicer-like 1

Abstract

MicroRNAs (miRNAs) are short non-coding RNAs that inhibit the expression of target genes by directly binding to their mRNAs. In animals, pri-miRNAs are cleaved by Drosha to generate pre-miRNAs, which are subsequently cleaved by Dicer to generate mature miRNAs. Instead of being cleaved by two different enzymes, both cleavages in plants are performed by Dicer-like 1 (DCL1). With a similar domain architecture as human Dicer, it is mysterious how DCL1 recognizes pri-miRNAs and performs two cleavages sequentially. Here, we report the single-particle cryo-electron microscopy structures of Arabidopsis DCL1 complexed with a pri-miRNA and a pre-miRNA, respectively, in cleavage-competent states. These structures uncover the plasticity of the PAZ domain, which is critical for the recognition of both pri-miRNA and pre-miRNA. These structures suggest that the helicase module serves as an engine that transfers the substrate between two sequential cleavage events. This study lays a foundation for dissecting the regulation mechanism of miRNA biogenesis in plants and provides insights into the dicing state of human Dicer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structures of DCL1 in complex with pri-miRNA and pre-miRNA.
Fig. 2: Cryo-EM structures capture DCL1 in dicing states.
Fig. 3: PAZ domain changes conformation to accommodate pri-miRNA and pre-miRNA.
Fig. 4: Both pri-miRNA and pre-miRNA thread through the helicase module as dsRNA.
Fig. 5: Proposed model of canonical miRNA processing by DCL1.
Fig. 6: Structural comparison of Arabidopsis DCL1, human Dicer and Drosophila Dicer-2 unveils both common and distinct structural features.

Similar content being viewed by others

Data availability

The accession codes for the cryo-EM density maps reported in this paper are Electron Microscopy Data Bank: EMD-31181 (https://www.emdataresource.org/EMD-31181) (DCL1–pri-miRNA complex) and EMD-31182 (https://www.emdataresource.org/EMD-31182) (DCL1–pre-miRNA complex). The accession codes for the atomic coordinates reported in this paper are Protein Data Bank: 7ELD (https://doi.org/10.2210/pdb7ELD/pdb) (DCL1–pri-miRNA complex) and 7ELE (https://doi.org/10.2210/pdb7ELE/pdb) (DCL1–pre-miRNA complex). The accession codes for the atomic coordinates used in this study are PDB 4NHA (https://doi.org/10.2210/pdb4NHA/pdb), PDB 5ZAK (https://doi.org/10.2210/pdb5ZAK/pdb), PDB 5ZAL (https://doi.org/10.2210/pdb5ZAL/pdb), PDB 6BU9 (https://doi.org/10.2210/pdb6BU9/pdb) and PDB 6LXD (https://doi.org/10.2210/pdb6LXD/pdb). Source data are provided with this paper. Other data are available from the corresponding author on reasonable request..

References

  1. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gebert, L. F. R. & MacRae, I. J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 20, 21–37 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O’Brien, J., Hayder, H., Zayed, Y. & Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9, 402 (2018).

    Article  Google Scholar 

  4. Treiber, T., Treiber, N. & Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 20, 5–20 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cai, X., Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E. & Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Z. et al. Cryo-EM structure of human Dicer and its complexes with a pre-miRNA substrate. Cell 173, 1549–1550 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Bologna, N. G. & Voinnet, O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu. Rev. Plant Biol. 65, 473–503 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Yu, Y., Jia, T. & Chen, X. The ‘how’ and ‘where’ of plant microRNAs. New Phytol. 216, 1002–1017 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, J., Mei, J. & Ren, G. Plant microRNAs: biogenesis, homeostasis, and degradation. Front. Plant Sci. 10, 360 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Margis, R. et al. The evolution and diversification of Dicers in plants. FEBS Lett. 580, 2442–2450 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Golden, T. A. et al. SHORT INTEGUMENTS1/SUSPENSOR1/CARPEL FACTORY, a Dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant Physiol. 130, 808–822 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tagami, Y., Motose, H. & Watanabe, Y. A dominant mutation in DCL1 suppresses the hyl1 mutant phenotype by promoting the processing of miRNA. RNA 15, 450–458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, C., Axtell, M. J. & Fedoroff, N. V. The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during microRNA biogenesis. Plant Physiol. 159, 748–758 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Willmann, M. R., Mehalick, A. J., Packer, R. L. & Jenik, P. D. MicroRNAs regulate the timing of embryo maturation in Arabidopsis. Plant Physiol. 155, 1871–1884 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jacobsen, S. E., Running, M. P. & Meyerowitz, E. M. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126, 5231–5243 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Kurihara, Y. & Watanabe, Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl Acad. Sci. USA 101, 12753–12758 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu, H. et al. Bidirectional processing of pri-miRNAs with branched terminal loops by Arabidopsis Dicer-like1. Nat. Struct. Mol. Biol. 20, 1106–1115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dong, Z., Han, M. H. & Fedoroff, N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc. Natl Acad. Sci. USA 105, 9970–9975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kwon, S. C. et al. Structure of human Drosha. Cell 164, 81–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Sinha, N. K., Iwasa, J., Shen, P. S. & Bass, B. L. Dicer uses distinct modules for recognizing dsRNA termini. Science 359, 329–334 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Macrae, I. J. et al. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Fang, Y. & Spector, D. L. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr. Biol. 17, 818–823 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burdisso, P. et al. Second double-stranded RNA binding domain of dicer-like ribonuclease 1: structural and biochemical characterization. Biochemistry 51, 10159–10166 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Q. et al. Complementation of HYPONASTIC LEAVES1 by double-strand RNA-binding domains of DICER-LIKE1 in nuclear dicing bodies. Plant Physiol. 163, 108–117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tian, Y. et al. A phosphate-binding pocket within the platform-PAZ-connector helix cassette of human Dicer. Mol. Cell 53, 606–616 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Partin, A. C. et al. Cryo-EM structures of human Drosha and DGCR8 in complex with primary microRNA. Mol. Cell 78, 411–422 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jin, W., Wang, J., Liu, C. P., Wang, H. W. & Xu, R. M. Structural basis for pri-miRNA recognition by Drosha. Mol. Cell 78, 423–433 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Park, J. E. et al. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475, 201–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kowalinski, E. et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147, 423–435 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Luo, D. et al. Structural insights into RNA recognition by RIG-I. Cell 147, 409–422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bologna, N. G., Mateos, J. L., Bresso, E. G. & Palatnik, J. F. A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J. 28, 3646–3656 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, L. et al. NOT2 proteins promote polymerase II-dependent transcription and interact with multiple MicroRNA biogenesis factors in Arabidopsis. Plant Cell 25, 715–727 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Machida, S., Chen, H. Y. & Yuan, Y. A. Molecular insights into miRNA processing by Arabidopsis thaliana SERRATE. Nucleic Acids Res. 39, 7828–7836 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu, B. et al. The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc. Natl Acad. Sci. USA 105, 10073–10078 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qin, H. et al. Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein–protein interaction. RNA 16, 474–481 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, S. W. et al. Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing. Structure 18, 594–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma, E., MacRae, I. J., Kirsch, J. F. & Doudna, J. A. Autoinhibition of human Dicer by its internal helicase domain. J. Mol. Biol. 380, 237–243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, H., Kolb, F. A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tsutsumi, A., Kawamata, T., Izumi, N., Seitz, H. & Tomari, Y. Recognition of the pre-miRNA structure by Drosophila Dicer-1. Nat. Struct. Mol. Biol. 18, 1153–1158 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Jiang, F. et al. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev. 19, 1674–1679 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Cenik, E. S. et al. Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease. Mol. Cell 42, 172–184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sinha, N. K., Trettin, K. D., Aruscavage, P. J. & Bass, B. L. Drosophila Dicer-2 cleavage is mediated by helicase- and dsRNA termini-dependent states that are modulated by Loquacious-PD. Mol. Cell 58, 406–417 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  52. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J. Struct. Biol. 184, 226–236 (2013).

    Article  PubMed  Google Scholar 

  56. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shi, J. et al. Transcription activation by a sliding clamp. Nat. Commun. 12, 1131 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shi, J. et al. Structural basis of Mfd-dependent transcription termination. Nucleic Acids Res. 48, 11762–11772 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Chang at the Center of Cryo Electron Microscopy in Zhejiang University School of Medicine for help with cryo-EM data collection. We are thankful for technical support by the Core Facilities, Zhejiang University School of Medicine. This work was funded by National Natural Science Foundation of China (grant nos. 31970040 to Y.F. and 32000025 to J.S.) and Natural Science Foundation of Zhejiang Province (grant no. LR21C010002 to Y.F.).

Author information

Authors and Affiliations

Authors

Contributions

X.W., H.K., A.W., B.G. and J.S. performed the experiments. Y.F. supervised the experiments. All authors contributed to the analysis of the data and the interpretation of the results. Y.F. wrote the manuscript with contributions from the other authors.

Corresponding author

Correspondence to Yu Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Seong Wook Yang, Peng Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Purification and characterization of Arabidopsis DCL1.

a, SDS–PAGE of full-length (FL) and nuclear localization signal truncated (ΔNLS) DCL1. Experiments were repeated independently three times with similar results. b, Electrophoretic mobility shift assay shows that Arabidopsis DCL1 binds to pri-miRNA 166f. The assay is performed in 20 μL reaction mixtures containing 1 μM DCL1, 1 μM pri-miRNA, 20 mM Tris-HCl, pH 7.0, 50 mM NaCl and 2 mM DTT. Experiments were repeated independently three times with similar results. c, Arabidopsis DCL1 cuts pri-miRNA 166f efficiently. The positions of the substrate and cleavage products are indicated. Bottom, schematic illustration of the final cleavage products of pri-miRNA 166f. Cleavage sites are indicated by black triangles. Experiments were repeated independently three times with similar results.

Source data

Extended Data Fig. 2

Data processing pipeline for the dataset of DCL1–pri-miRNA complex.

Extended Data Fig. 3 Data validation for DCL1–pri-miRNA complex.

a, A representative micrograph of DCL1–pri-miRNA complex. 4,759 micrographs were collected with similar results. b, Typical 2D class averages of DCL1–pri-miRNA complex. 100 classes were obtained with similar results. c, The gold-standard FSC of DCL1–pri-miRNA complex. The gold-standard FSC is calculated by comparing the two independently determined half-maps from RELION. The dashed line represents the 0.143 FSC cutoff. d, Cryo-EM density map coloured by local resolution. View orientations as in Fig. 1c. e, Angular distribution of particle projections. View orientations as in Fig. 1c.

Extended Data Fig. 4

Data processing pipeline for the dataset of DCL1–pre-miRNA complex.

Extended Data Fig. 5 Data validation for DCL1–pre-miRNA complex.

a, A representative micrograph of DCL1–pre-miRNA complex. 2,145 micrographs were collected with similar results. b, Typical 2D class averages of DCL1–pre-miRNA complex. 100 classes were obtained with similar results. c, The gold-standard FSC of DCL1–pre-miRNA complex. The gold-standard FSC is calculated by comparing the two independently determined half-maps from RELION. The dashed line represents the 0.143 FSC cutoff. d, Cryo-EM density map coloured by local resolution. View orientations as in Fig. 1d. e, Angular distribution of particle projections. View orientations as in Fig. 1d.

Extended Data Fig. 6 Sequence alignment of the RNase III domains.

At, Arabidopsis thaliana; Hs, Homo sapiens; Dm, Drosophila melanogaster; Gi, Giardia intestinalis; Aa, Aquifex aeolicus. The sequences were aligned using Clustal Omega and the figure was prepared using ESPript 3.0. Black triangles indicate the conserved catalytic residues.

Extended Data Fig. 7 Representative gel images of in vitro cleavage assay and electrophoretic mobility shift assay.

a, Representative gel images of in vitro cleavage assay with pri-miRNA. Experiments were repeated independently three times with similar results. b, Representative gel images of in vitro cleavage assay with pre-miRNA. Experiments were repeated independently three times with similar results. c, Representative gel images of electrophoretic mobility shift assay with pri-miRNA. Experiments were repeated independently three times with similar results. d, Representative gel images of electrophoretic mobility shift assay with pre-miRNA. Experiments were repeated independently three times with similar results.

Source data

Extended Data Fig. 8 Sequence alignment of DCL1 PAZ domains.

At, Arabidopsis thaliana; Os, Oryza sativa; Tu, Triticum urartu; Zm, Zea mays; Mp, Mucuna pruriens; Na, Nicotiana attenuate; Sl, Solanum lycopersicum; Ht, Helianthus tuberosus; Sm, Salvia miltiorrhiza; Dc, Dendrobium catenatum; Pt, Pinus tabuliformis. The sequences were aligned using Clustal Omega and the figure was prepared using ESPript 3.0. Black triangles indicate the conserved residues of the internal loop binding groove.

Extended Data Fig. 9 Sequence alignment of the RIG-I helicase module.

At, Arabidopsis thaliana; Hs, Homo sapiens; Dm, Drosophila melanogaster; Ap, Anas platyrhynchos. The sequences were aligned using Clustal Omega and the figure was prepared using ESPript 3.0. Black triangles indicate the conserved Walker A and Walker B residues.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Unprocessed gels.

Source Data Extended Data Fig. 7

Unprocessed gels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Ke, H., Wen, A. et al. Structural basis of microRNA processing by Dicer-like 1. Nat. Plants 7, 1389–1396 (2021). https://doi.org/10.1038/s41477-021-01000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-01000-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing