Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms

Abstract

Inferring the intrinsic and extrinsic drivers of species diversification and phenotypic disparity across the tree of life is a major challenge in evolutionary biology. In green plants, polyploidy (or whole-genome duplication, WGD) is known to play a major role in microevolution and speciation, but the extent to which WGD has shaped macroevolutionary patterns of diversification and phenotypic innovation across plant phylogeny remains an open question. Here, we examine the relationship of various facets of genomic evolution—including gene and genome duplication, genome size, and chromosome number—with macroevolutionary patterns of phenotypic innovation, species diversification, and climatic occupancy in gymnosperms. We show that genomic changes, such as WGD and genome-size shifts, underlie the origins of most major extant gymnosperm clades, and notably, our results support an ancestral WGD in the gymnosperm lineage. Spikes of gene duplication typically coincide with major spikes of phenotypic innovation, while increased rates of phenotypic evolution are typically found at nodes with high gene-tree conflict, representing historic population-level dynamics during speciation. Most shifts in gymnosperm diversification since the rise of angiosperms are decoupled from putative WGDs and instead are associated with increased rates of climatic occupancy evolution, particularly in cooler and/or more arid climatic conditions, suggesting that ecological opportunity, especially in the later Cenozoic, and environmental heterogeneity have driven a resurgence of gymnosperm diversification. Our study provides critical insight on the processes underlying diversification and phenotypic evolution in gymnosperms, with important broader implications for the major drivers of both micro- and macroevolution in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcriptome species tree showing major genomic events.
Fig. 2: Gene duplications versus phenotypic innovation.
Fig. 3: Gene-tree conflict versus phenotypic rates.
Fig. 4: Climatic and diversification shifts across gymnosperms.

Similar content being viewed by others

Data availability

The newly generated raw sequence data are available at the NCBI Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) under BioProject PRJNA726756 (transcriptomic samples) and PRJNA726638 (genome skimming samples). The newly assembled plastid genomes are also available at NCBI (https://www.ncbi.nlm.nih.gov); see Supplementary Table 2 for sample accession numbers. Sequence alignments, phylogenies, Ks plots, phenotypic trait data and other data analysed (chromosome counts, C-values) are available on figshare (https://doi.org/10.6084/m9.figshare.14547354).

Code availability

The code used to calculate and plot rates and levels of phenotypic evolution can be found on figshare (https://figshare.com/articles/dataset/pf_stull_smith_tgz/13190816/2).

References

  1. Otto, S. P. & Whitton, J. Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Wood, T. E. et al. The frequency of polyploid speciation in vascular plants. Proc. Natl Acad. Sci. USA 106, 13875–13879 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stebbins, G. L. Variation and Evolution in Plants (Columbia Univ. Press, 1950).

  4. Levin, D. A. Polyploidy and novelty in flowering plants. Am. Nat. 122, 1–25 (1983).

    Article  Google Scholar 

  5. Tank, D. C. et al. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol. 207, 454–467 (2015).

    Article  PubMed  Google Scholar 

  6. Landis, J. B. et al. Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J. Bot. 105, 348–363 (2018).

    Article  PubMed  Google Scholar 

  7. Smith, S. A. et al. Disparity, diversity and duplications in the Caryophyllales. New Phytol. 217, 836–854 (2017).

    Article  PubMed  CAS  Google Scholar 

  8. Walden, N. et al. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat. Commun. 11, 3795 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soltis, P. S. & Soltis, D. E. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Genet. Dev. 30, 159–165 (2016).

    Google Scholar 

  10. Guo, J. et al. Phylotranscriptomics in Cucurbitaceae reveal multiple whole-genome duplications and key morphological and molecular innovations. Mol. Plant 13, 1117–1133 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Sheehan, H. et al. Evolution of L-DOPA 4,5-dioxygenase activity allows for recurrent specialization to betalain pigmentation in Caryophyllales. New Phytol. 227, 914–929 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47, 507–532 (2016).

    Article  Google Scholar 

  13. Parins-Fukuchi, C., Stull, G. W. & Smith, S. A. Phylogenomic conflict coincides with rapid morphological innovation. Proc. Natl Acad. Sci. USA 118, e2023058118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cantino, P. D. et al. Towards a phylogenetic nomenclature of Tracheophyta. Taxon 56, E1–E44 (2007).

  15. Doyle, J. A. Phylogenetic analyses and morphological innovations in land plants. Annu. Plant Rev. 45, 1–50 (2013).

    Google Scholar 

  16. DiMichele, W. A., Pfefferkorn, H. W. & Gastaldo, R. A. Response of Late Carboniferous and early Permian plant communities to climate change. Annu. Rev. Earth Planet. Sci. 29, 461–487 (2001).

    Article  CAS  Google Scholar 

  17. Behrensmeyer, A. K. et al. Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals (Univ. Chicago Press, 1992).

  18. Crane, P. R. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann. Mo. Bot. Gard. 72, 716–793 (1985).

    Article  Google Scholar 

  19. Taylor, E. L., Taylor, T. N. & Krings, M. Paleobotany: The Biology and Evolution of Fossil Plants (Academic Press, 2009).

  20. Nagalingum, N. S. et al. Recent synchronous radiation of a living fossil. Science 334, 796–799 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Leslie, A. B. et al. Hemisphere-scale differences in conifer evolutionary dynamics. Proc. Natl Acad. Sci. USA 109, 16217–16221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, Z. et al. Early genome duplications in conifers and other seed plants. Sci. Adv. 1, e1501084 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guan, R. et al. Draft genome of the living fossil Ginkgo biloba. GigaScience 5, 49 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Farhat, P. et al. Polyploidy in the conifer genus Juniperus: an unexpectedly high rate. Front. Plant Sci. 10, 676 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ickert-Bond, S. M. et al. Polyploidy in gymnosperms—insights into the genomic and evolutionary consequences of polyploidy in Ephedra. Mol. Phylogenet. Evol. 147, 106786 (2020).

    Article  PubMed  Google Scholar 

  26. Khoshoo, T. N. Polyploidy in gymnosperms. Evolution 13, 24–39 (1959).

    Article  Google Scholar 

  27. Lewis, W. H. Polyploidy—Biological Relevance (Plenum Press, 1980).

  28. Yang, Y. et al. Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. New Phytol. 217, 855–870 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Roodt, D. et al. Evidence for an ancient whole-genome duplication in the cycad lineage. PLoS ONE 12, e0184454 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ruprecht, C. et al. Revisiting ancestral polyploidy in plants. Sci. Adv. 3, e1603195 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Leebens-Mack, J. H. et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019).

    Article  CAS  Google Scholar 

  33. Scott, A. D., Stenz, N. W. M., Ingvarsson, P. K. & Baum, D. A. Whole-genome duplication in coast redwood (Sequoia sempervirens) and its implications for explaining the rarity of polyploidy in conifers. New Phytol. 211, 186–193 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Rabosky, D. L. Automatic detection of key innovations, rate shifts and diversity‐dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ohno, S. Evolution by Gene Duplication (Springer Verlag, 1970).

  36. Rensing, S. A. Gene duplication as a driver of plant morphogenetic evolution. Curr. Opin. Plant Biol. 14, 43–48 (2014).

    Article  CAS  Google Scholar 

  37. Marques, D. A., Meier, J. I. & Seehausen, O. A combinatorial view on speciation and adaptive radiation. Trends Ecol. Evol. 34, 531–544 (2019).

    Article  PubMed  Google Scholar 

  38. de la Torre, A. R., Li, Z., van de Peer, Y. & Ingvarsson, P. K. Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol. Biol. Evol. 34, 1363–1377 (2017).

    Article  CAS  Google Scholar 

  39. Ran, J.-H., Shen, T.-T., Wang, M.-M. & Wang, X.-Q. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. Proc. R. Soc. B 285, 20181012 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Oliver, J. C. Microevolutionary processes generate phylogenomic discordance at ancient divergences. Evolution 67, 1823–1839 (2013).

    Article  PubMed  Google Scholar 

  41. Farjon, A. A Natural History of Conifers (Timber Press, 2008).

  42. Pellicer, J., Hidalgo, O., Dodsworth, S. & Leitch, I. J. Genome size diversity and its impact on land plants. Genes 9, 88 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  43. Otto, S. P. The evolutionary consequences of polyploidy. Cell 131, 452–462 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Bond, W. J. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 36, 227–249 (1989).

    Article  Google Scholar 

  46. Lupia, R., Ligard, S. & Crane, P. R. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology 25, 305–340 (1999).

    Article  Google Scholar 

  47. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Wing, S. L. & Boucher, L. D. Ecological aspects of the Cretaceous flowering plant radiation. Annu Rev. Earth Planet. Sci. 26, 379–421 (1998).

    Article  CAS  Google Scholar 

  49. Tiffney, B. H. Seed size, dispersal syndromes and the rise of the angiosperms: evidence and hypothesis. Ann. Mo. Bot. Gard. 71, 551–576 (1984).

    Article  Google Scholar 

  50. Rice, A. et al. The chromosome counts database (CCDB)—a community resource of plant chromosome numbers. New Phytol. 206, 19–26 (2015).

    Article  PubMed  Google Scholar 

  51. Pellicer, J. & Leitch, I. J. The plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytol. 226, 301–305 (2020).

    Article  PubMed  Google Scholar 

  52. Biffin, E. et al. Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation. Proc. R. Soc. B 279, 341–348 (2012).

    Article  PubMed  Google Scholar 

  53. Brodribb, T. J., McAdam, S. A., Jordan, G. J. & Martins, S. C. Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proc. Natl Acad. Sci. USA 111, 14489–14493 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. English, J. M. & Johnson, S. T. The Laramide orogeny: what were the driving forces? Int. Geol. Rev. 46, 833–838 (2004).

    Article  Google Scholar 

  55. Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fragnière, Y., Bétrisey, S., Cardinaux, L., Stoffel, M. & Kozlowski, G. Fighting their last stand? A global analysis of the distribution and conservation status of gymnosperms. J. Biogeogr. 42, 809–820 (2015).

    Article  Google Scholar 

  57. Forest, F. et al. Gymnosperms on the EDGE. Sci. Rep. 8, 6053 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Rundel, P. W. A Neogene heritage: conifer distributions and endemism in Mediterranean-climate ecosystems. Front. Ecol. Evol. 7, 364 (2019).

    Article  Google Scholar 

  59. Jin, W.-T. et al. Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proc. Natl Acad. Sci. USA 118, e2022302118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zwaenepoel, A. & van de Peer, Y. Inference of ancient whole-genome duplications and the evolution of gene duplication and loss rates. Mol. Biol. Evol. 36, 1384–1404 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, 1178–1186 (2012).

    Article  CAS  Google Scholar 

  62. Mendes, F. K. & Hahn, M. W. Gene tree discordance causes apparent substitution rate variation. Syst. Biol. 65, 711–721 (2016).

    Article  PubMed  Google Scholar 

  63. Walker, J. F., Walker-Hale, N., Vargas, O. M., Larson, D. A. & Stull, G. W. Characterizing gene tree conflict in plastome-inferred phylogenies. PeerJ 7, e7747 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhong, B., Yonezawa, T., Zhong, Y. & Hasegawa, M. The position of Gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics. Mol. Biol. Evol. 27, 2855–2863 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).

    Google Scholar 

  70. Jin, J.-J. et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Qu, X. J., Moore, M. J., Li, D. Z. & Yi, T. S. PGA: a software package for rapid, accurate and flexible batch annotation of plastomes. Plant Methods 15, 50 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Walker, J. F. et al. From cacti to carnivores: improved phylotranscriptomic sampling and hierarchical homology inference provide further insights into the evolution of Caryophyllales. Am. J. Bot. 105, 446–462 (2018).

    Article  PubMed  Google Scholar 

  75. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang, Y. & Smith, S. A. Orthology inference in non-model organisms using transcriptomes and low-coverage genomes: improving accuracy and matrix occupancy for phylogenomics. Mol. Biol. Evol. 31, 3081–3092 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brown, J. W., Walker, J. F. & Smith, S. A. Phyx: phylogenetic tools for unix. Bioinformatics 33, 1886–1888 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, C. et al. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19, 153 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Junier, T. & Zdobnov, E. M. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26, 1669–1670 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Smith, S. A., Moore, M. J., Brown, J. W. & Yang, Y. Analysis of phylogenomic datasets reveals conflict, concordance and gene duplications with examples from animals and plants. BMC Evol. Biol. 15, 150 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Walker, J. F. et al. Widespread paleopolyploidy, gene tree conflict and recalcitrant relationships among the carnivorous Caryophyllales. Am. J. Bot. 104, 858–867 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Smith, S. A. & Walker, J. F. PyPHLAWD: a python tool for phylogenetic dataset construction. Methods Ecol. Evol. 10, 104–108 (2019).

    Article  Google Scholar 

  86. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).

    CAS  PubMed  Google Scholar 

  88. Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Glick, L. & Mayrose, I. ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Mol. Biol. Evol. 31, 1914–1922 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); https://www.R-project.org

  92. Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  93. Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).

    Article  PubMed  CAS  Google Scholar 

  94. Rabosky, D. L. et al. BAMM tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).

    Article  Google Scholar 

  95. Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).

    Article  Google Scholar 

  96. Hart, J. A. A cladistics analysis of conifers: preliminary results. J. Arnold Arbor. 68, 269–307 (1987).

    Article  Google Scholar 

  97. Hilton, J. & Bateman, R. M. Pteridosperms are the backbone of seed-plant phylogeny. J. Torrey Bot. Soc. 133, 119–168 (2006).

    Article  Google Scholar 

  98. Mao, K. et al. Distribution of living Cupressaceae reflects the breakup of Pangea. Proc. Natl Acad. Sci. USA 109, 7793–7798 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Escapa, I. H. & Catalano, S. A. Phylogenetic analysis of Araucariaceae: integrating molecules, morphology and fossils. Int. J. Plant Sci. 174, 1153–1170 (2013).

    Article  Google Scholar 

  100. Coiro, M. & Pott, C. Eobowenia gen. nov. from the Early Cretaceous of Patagonia: indication for an early divergence of Bowenia? BMC Evol. Biol. 17, 97 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Herrera, F. et al. Cupressaceae conifers from the Early Cretaceous of Mongolia. Int. J. Plant Sci. 178, 19–41 (2017).

    Article  Google Scholar 

  102. Herrera, F. et al. Reconstructing Krassilovia mongolica supports recognition of a new and unusual group of Mesozoic conifers. PLoS ONE 15, e0226779 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gernandt, D. S. et al. Incorporating fossils into the Pinaceae tree of life. Am. J. Bot. 105, 1329–1344 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Andruchow-Colombo, A., Wilf, P. & Escapa, I. H. A South American fossil relative of Phyllocladus: Huncocladus laubenfelsii gen. et sp. nov. (Podocarpaceae) from the early Eocene of Laguna del Hunco, Patagonia, Argentina. Aust. Syst. Bot. 32, 290–309 (2019).

    Google Scholar 

  105. Nixon, K. C., Crepet, W. L., Stevenson, D. & Friis, E. M. A reevaluation of seed-plant phylogeny. Ann. Mo. Bot. Gard. 81, 484–533 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Germplasm Bank of Wild Species at the Kunming Institute of Botany (KIB) for facilitating this study, and the curators and staff of the Kunming Botanical Garden of the Kunming Institute of Botany, the University of California Botanical Garden at Berkeley, the Arnold Arboretum of Harvard University, the Missouri Botanical Garden, the Royal Botanic Garden Edinburgh and the Royal Botanical Gardens Kew for providing fresh and silica-dried leaves and DNA samples. This work was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (grant no. XDB31000000 to D.-Z.L. and T.-S.Y.), CAS’s large-scale scientific facilities (grant no. 2017-LSF-GBOWS-02 to D.-Z.L., J.-B.Y. and T.-S.Y.), the National Natural Science Foundation of China (key international (regional) cooperative research project no. 31720103903 to T.-S.Y. and D.E.S.), the Yunling International High-end Experts Program of Yunnan Province (grant nos. YNQR-GDWG-2017-002 to P.S.S. and T.-S.Y., and YNQR-GDWG-2018-012 to D.E.S. and T.-S.Y.) and the Natural Science Foundation of Shandong Province (ZR2020QC022 to X.-J.Q.). G.W.S. acknowledges support from the CAS President’s International Fellowship Initiative (no. 2020PB0009) and the China Postdoctoral Science Foundation (CPSF) International Postdoctoral Exchange Program.

Author information

Authors and Affiliations

Authors

Contributions

G.W.S., D.-Z.L., S.A.S. and T.-S.Y. conceived the study; X.-J.Q., Y.-Y.Y., T.-S.Y., Y.H., J.-B.Y., Z.-Y.Y. and H.M. collected and prepared samples for transcriptome and plastome sequencing; G.W.S. generated the trait dataset and compiled publicly available data for the supermatrix and comparative analyses; G.W.S. conducted analyses with help from C.P.-F., S.A.S. and X.-J.Q; G.W.S, C.P.-F., P.S.S., D.E.S., S.A.S. and T.-S.Y. interpreted the results; G.W.S. wrote the manuscript, with contributions from C.P.-F., P.S.S., D.E.S., S.A.S. and T.-S.Y. All authors approved the manuscript.

Corresponding authors

Correspondence to De-Zhu Li, Stephen A. Smith or Ting-Shuang Yi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Plots of synonymous substitutions per site (Ks) for within-taxon paralog pairs (black lines) and between-taxon orthologue pairs (blue lines).

The relative positions of orthologue vs. paralog Ks spikes help clarify the phylogenetic positions of possible WGD events. The seed plant WGD event (GINK-α) is labelled. Ks peaks corresponding to an inferred WGD for gymnosperms are highlighted with an asterisk. The taxa compared capture the root nodes of (A, B) seed plants and gymnosperms, (C) the ‘ginkad’ clade, (D) conifers, (E) the cupressophyte clade, and (F) the Taxaceae-Cupressaceae clade. Orthologue and paralog Ks plots were generated using the pipelines of Walker et al.84 and Yang et al.28, respectively.

Extended Data Fig. 2 Plots of synonymous substitutions per site (Ks) for within-taxon paralog pairs of representatives of the ‘ginkad’ clade.

The seed plant WGD event (GINK-α) is labelled. Ks peaks corresponding to an inferred WGD for gymnosperms are highlighted with an asterisk.

Extended Data Fig. 3 Genome size evolution in gymnosperms.

Ancestral reconstruction of genome size (C-value) on the pruned supermatrix phylogeny, showing BAMM rate shifts (red circles) and jumps (that is, extreme differences in ancestor-descendent values; transparent circles) in genome size evolution, as well as BAMM diversification shifts (larger black circles). Supplementary Fig. 15 shows this figure with species tip labels.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1 and 3, results and discussion, and Figs. 1–35.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stull, G.W., Qu, XJ., Parins-Fukuchi, C. et al. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nat. Plants 7, 1015–1025 (2021). https://doi.org/10.1038/s41477-021-00964-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00964-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing