Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport and photoprotection

Abstract

In photosynthetic thylakoid membranes the proton motive force (pmf) not only drives ATP synthesis, in addition it is central to controlling and regulating energy conversion. As a consequence, dynamic fine-tuning of the two pmf components, electrical (Δψ) and chemical (ΔpH), is an essential element for adjusting photosynthetic light reactions to changing environmental conditions. Good evidence exists that the Δψ/ΔpH partitioning is controlled by thylakoid potassium and chloride ion transporters and channels. However, a detailed mechanistic understanding of how these thylakoid ion transporter/channels control pmf partitioning is lacking. Here, we combined functional measurements on potassium and chloride ion transporter and channel loss-of-function mutants with extended mathematical simulations of photosynthetic light reactions in thylakoid membranes to obtain detailed kinetic insights into the complex interrelationship between membrane energization and ion fluxes across thylakoid membranes. The data reveal that potassium and chloride fluxes in the thylakoid lumen determined by the K+/H+ antiporter KEA3 and the voltage-gated Cl channel VCCN1/Best1 have distinct kinetic responses that lead to characteristic and light-intensity-dependent Δψ/ΔpH oscillations. These oscillations fine-tune photoprotective mechanisms and electron transport which are particularly important during the first minutes of illumination and under fluctuating light conditions. By employing the predictive power of the model, we unravelled the functional consequences of changes in KEA3 and VCCN1 abundance and regulatory/enzymatic parameters on membrane energization and photoprotection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NPQ characteristics in KEA3, VCCN1 and Clce mutants.
Fig. 2: Testing the independence of KEA3, VCCN1 and ClCe functionality.
Fig. 3: Computer model of photosynthetic light harvesting coupled to CO2 fixation in the Calvin–Benson cycle.
Fig. 4: Specific role of KEA3 and VCCN1 for thylakoid energization and ion fluxes calculated from our mathematical model.
Fig. 5: Computer simulation for the functional characterization and regulation of KEA3 and VCCN1.

Similar content being viewed by others

Data availability

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The computer code for our model is available online. A link is provided in Supplementary Information.

References

  1. Mitchell, P. Coupling of photophosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191, 144–148 (1961).

    Article  CAS  PubMed  Google Scholar 

  2. Williams, R. J. P. Possible functions of chains of catalysts. J. Theor. Biol. 1, 1–13 (1961).

    Article  CAS  PubMed  Google Scholar 

  3. Williams, R. J. P. Possible functions of chains of catalysts II. J. Theor. Biol. 3, 209–220 (1962).

    Article  CAS  Google Scholar 

  4. Witt, H. T. Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods: the central role of the electric field. Biochim. Biophys. Acta 505, 355–427 (1979).

    Article  CAS  PubMed  Google Scholar 

  5. Bulychev, A. A. & Vredenberg, W. J. Light-triggered electrical events in the thylakoid membrane of plant chloroplasts. Physiol. Plant. 105, 577–584 (1999).

    Article  CAS  Google Scholar 

  6. Kramer, D. M., Cruz, J. A. & Kanazawa, A. Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci. 8, 27–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Allorent, G. et al. Global spectroscopic analysis to study the regulation of the photosynthetic proton motive force: a critical reappraisal. Biochim. Biophys. Acta Bioenerg. 1859, 676–683 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Klughammer, C., Siebke, K. & Scheiber, U. Continuous ECS-indicated recording of the proton-motive charge flux in leaves. Photosynth. Res. 117, 471–487 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davis, G. A., Rutherford, A. W. & Kramer, D. M. Hacking the thylakoid proton motive force for improved photosynthesis: modulating ion flux rates that control proton motive force partitioning into Δψ and ΔpH. Philos. Trans. Roy. Soc. B 372, 20160381 (2017).

    Article  CAS  Google Scholar 

  10. Avenson, T., Cruz, J. A. & Kramer, D. Modulation of energy dependent quenching of excitons (qE) in antenna of higher plants. Proc. Natl Acad. Sci. USA 101, 5530–5535 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rumberg, B. & Siggel, U. pH changes in the inner phase of the thylakoids during photosynthesis. Z. Naturwiss 56, 130–132 (1969).

    Article  CAS  Google Scholar 

  12. Kobayashi, Y., Inoue, Y., Shibata, K. & Heber, U. Control of electron flow in intact chloroplasts by intathylakoid pH, not by the phosphorylation potential. Planta 146, 481–486 (1979).

    Article  CAS  PubMed  Google Scholar 

  13. Ruban, A. V. Light harvesting control in plants. FEBS Lett. 592, 3030–3039 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Li, Z., Wakao, S., Fischer, B. B. & Niyogi, K. K. Sensing and responding to excess light. Annu. Rev. Plant Biol. 60, 239–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Pinnola, A. & Bassi, R. Molecular mechanisms involved in plant photoprotection. Biochem. Soc. Trans. 46, 467–482 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Armbruster, U., Correa Galvis, V., Kunz, H. H. & Strand, D. D. The regulation of the chloroplast proton motive force plays a key role for photosynthesis in fluctuating light. Curr. Opin. Plant Biol. 37, 56–62 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Demmig, B. & Gimmler, H. Properties of the isolated intact chloroplast at cytoplasmic K+ concentrations in spinach chloroplasts. Plant Physiol. 73, 169–174 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinson, S. P. & Downtown, W. J. Potassium, sodium, and chloride content of isolated intact chloroplasts in relation to ionic compartmentation in leaves. Arch. Biochem. Biophys. 228, 197–206 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Schonknecht, G., Hederich, R., Junge, W. & Raschke, K. A voltage-dependent chloride channel in the photosynthetic membrane of a higher plant. Nature 336, 589–592 (1988).

    Article  Google Scholar 

  20. Enz, C., Steinkamp, T. & Wagner, R. Ion channels in the thylakoid membrane (a patch-clamp study). Biochim. Biophys. Acta 1143, 67–76 (1993).

    Article  CAS  Google Scholar 

  21. Finazzi, G. et al. Ion channels/trasnporters and chloroplast regulation. Cell Calcium 58, 86–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Spetea, C. et al. An update on the regulation of photosynthesis by thylakoid ion channels and transporters in Arabidopsis. Physiol. Plant. 161, 16–27 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Kunz, H. H. et al. Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proc. Natl Acad. Sci. USA 111, 7480–7485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duan, Z. et al. A bestrophin-like protein modulates the proton motive force across the thylakoid membrane in Arabidopsis. J. Integr. Plant Biol. 58, 848–858 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Herdean, A. et al. A voltage-dependent chloride channel fine-tunes photosynthesis in plants. Nat. Commun. 7, 11654 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herdean, A. et al. The Arabidopsis thylakoid chloride channel AtCLCe functions in chloride homeostasis and regulation of photosynthetic electron transport. Front. Plant Sci. 7, 115 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marmagne, A. et al. Two members of the Arabidopsis CLC (chloride channel) family, ATCLCe and AtCLCf, are associated with thylakoid and Golgi membranes, respectively. J. Exp. Bot. 58, 3358–3393 (2007).

    Article  CAS  Google Scholar 

  28. Carraretto, L. et al. A thylakoid-located two-pore K+ channel controls photosynthetic light utilization in plants. Science 342, 114–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Höhner, R. et al. Photosynthesis in Arabidopsis is unaffected by the function of the vacuolar K+ channel TPK3. Plant Physiol. 180, 1322–1335 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Jaslan, D. et al. Voltage-dependent gating of SV channel TPC1 confers vacuole excitability. Nat. Commun. 10, 2659 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tang, R.-J. et al. A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments. Nat. Plants 6, 384–393 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Dukic, E. et al. K+ and Cl channels/transporters independently fine-tune photosynthesis in plants. Sci. Rep. 9, 8639 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Armbruster, U. et al. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. Nat. Commun. 5, 5439 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, C. & Shikanai, T. Modification of activity of the thylakoid H+/K+ antiporter KEA3 disturbs ΔpH15 dependent regulation of photosynthesis. Plant Physiol. 181, 762–773 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tian, L. et al. pH dependence, kinetics and light-harvesting regulation of nonphotochemical quenching in Chlamydomonas. Proc. Natl Acad. Sci. USA 116, 8320–8325 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Takizawa, K., Cruz, J. A. & Kramer, D. M. Depletion of stromal inorganic phosphate induces high ‘energy-dependent’ antenna exciton quenching (qE) by decreasing proton conductivity at CFO-CF1 ATP synthase. Plant Cell Environ. 31, 235–243 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Cruz, J. A., Sacksteder, C. A., Kanazawa, A. & Kramer, D. M. Contribution of electric field (Δψ) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into Δψ and ΔpH by ionic strength. Biochemistry 40, 1226–1237 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Bailleul, B., Cardol, P., Breyton, C. & Finazzi, G. Electrochromism: a useful tool to study algal photosynthesis. Photosynth. Res. 106, 179–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Schuldiner, S., Rottenberg, H. & Avron, M. Determination of ΔpH in chloroplasts. 2. Fluorescent amines as a probe for the determination of ΔpH in chloroplasts. Eur. J. Biochem. 25, 64–70 (1972).

    Article  CAS  PubMed  Google Scholar 

  40. Johnson, M. P., Zia, A. & Ruban, A. V. Elevated ΔpH restores rapidly reversible photoprotective energy dissipation in Arabidopsis chloroplasts deficient in lutein and xanthophyll cycle activity. Planta 235, 193–204 (2011).

    Article  PubMed  CAS  Google Scholar 

  41. Jahns, P. & Holzwarth, A. R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta 1817, 182–193 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Nielkens, M. et al. Idnetification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim. Biophys. Acta 1797, 466–475 (2010).

    Article  CAS  Google Scholar 

  43. Correa Galivs, V. et al. H+ transport by K+ exchange antiporter3 promotes photosynthesis and growth in chloroplast ATP synthase mutants. Plant Physiol. 182, 2126–2142 (2020).

    Article  CAS  Google Scholar 

  44. Wang, C. et al. Fine-tuned regulation of the K+/H+ antiporter KEA3 is required to optimize photosynthesis during induction. Plant J. 89, 540–553 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Armbruster, U. et al. Regulation and levels of the thylakoid K+/H+ antiporter KEA3 shape the dynamic response of photosynthesis in fluctuating light. Plant Cell Physiol. 57, 1557–1567 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Roosild, T. P. et al. KTN (RCK) domains regulate K+ channels and transporters by controlling the dimer-hinge conformation. Structure 17, 893–903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Uflewski, M. et al. Functional characterization of proton antiport regulation in the thylakoid membrane. Plant Physiol. https://doi.org/10.1093/plphys/kiab135 (2021).

  48. Gräber, P., Junesch, U. & Schatz, G. H. Kinetics of proton-transport coupled ATP synthesis in chloroplasts. Activation of the ATPase by an artificially generated ΔpH and Δψ. Ber. Bunsenges. 88, 599–608 (1984).

    Article  Google Scholar 

  49. Schneider, D. et al. Fluctuating light experiments and semi-automated plant phenotyping enabled by self-built growth racks and simple upgrades to the IMAGING-PAM. Plant Methods 15, 156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Koochak, H., Puthiyaveetil, S., Mullendore, D. L., Li, M. & Kirchhoff, H. The structural and functional domains of plant thylakoid membranes. Plant J. 97, 412–429 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Van, T. V., Heinze, T & Rumberg, B . in Progress in Photosynthesis Research Vol. III (ed. Biggens J) (Martinus Nijhoff, 1987).

    Google Scholar 

  52. Tietz, S. et al. Functional implications of photosystem II crystal formation in photosynthetic membranes. J. Biol. Chem. 290, 14091–14106 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kramer, D. M., Johnson, G., Kiirats, O. & Edwards, G. E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth. Res 79, 209–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Puthiyaveetil, S. et al. Compartmentalization of the protein repair machinery in photosynthetic membranes. Proc. Natl Acad. Sci. USA 111, 15839–15844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Wood and Dr D. Schneider at the WSU Plant Phenomics facilities for their assistance in acquiring phenotyping data. The work was mainly supported by a US Department of Energy grant (DE-SC0017160) to H.K. and H.-H.K. Additional support from the National Science Foundation (MCB-1616982) and USDA-NIFA (#1005351 and #0119) to H.K. and by the 3rd ERA-CAPS call via the NSF PGRP programme (IOS-1847382, 1847193) to H.-H.K. and D.M.K. is acknowledged. Support for modelling work at MSU was supported by award #1847193 from the National Science Foundation. The project was also made possible thanks to a Murdock trust equipment grant (# SR-2016049) to H.-H.K. and H.K.

Author information

Authors and Affiliations

Authors

Contributions

M.L., V.S., G.D. and H.-H.K. performed experiments and analysed data. M.L. G.D., D.K. H.-H.K. and H.K. designed the study. H.K. wrote the manuscript.

Corresponding author

Correspondence to Helmut Kirchhoff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Conrad Mullineaux, Toshiharu Shikanai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Methods, Supplementary Figs. 1–10, Supplementary References.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Svoboda, V., Davis, G. et al. Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport and photoprotection. Nat. Plants 7, 979–988 (2021). https://doi.org/10.1038/s41477-021-00947-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00947-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing