Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome structural evolution in Brassica crops

Abstract

The cultivated Brassica species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the Brassica species. With organizational errors (such as misplaced genome segments) corrected, we showed that the fundamental structure of each of the genomes is the same, irrespective of the species in which it occurs. This enabled us to clarify genome evolutionary pathways, including updating the Ancestral Crucifer Karyotype (ACK) block organization and providing support for the Brassica mesohexaploidy having occurred via a two-step process. We then constructed genus-wide pan-genomes, drawing from genes present in any species in which the respective genome occurs, which enabled us to provide a global gene nomenclature system for the cultivated Brassica species and develop a methodology to cost-effectively elucidate the genomic impacts of alien introgressions. Our advances not only underpin knowledge-based approaches to the more efficient breeding of Brassica crops but also provide an exemplar for the study of other polyploids.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: GOGGs for the Brassica A, B and C genomes as represented in allotetraploid species.
Fig. 2: Collinearity of Brassica A, B and C genomes.
Fig. 3: Inferred structure of chromosomes in the nascent triplicated ancestral genome.
Fig. 4: Visualization of genomic impacts of alien introgression into allotetraploid Brassica species.

Data availability

The raw sequence reads of the R. sativus introgression samples can be found under NCBI BioProject accession ID PRJNA507350. The raw sequence reads of the B. fruticulosa introgression samples can be found under NCBI BioProject accession ID PRJNA673122. The raw genome resequencing reads for the B. carinata mapping population YWDH can be found under NCBI BioProject accession ID PRJNA722822. R-o-18 genome assembly information can be found under NCBI BioProject ID PRJNA649364.

Code availability

The R script Genome_Sequence_Reorganise has been deposited on GitHub (https://github.com/hezhesi/Genome_Sequence_Reorganise).

References

  1. 1.

    USDA Oilseeds: World Markets and Trade (USDA-FAS, 2020).

  2. 2.

    Murat, F. et al. Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol. 16, 262 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Nagaharu, U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J. Bot. 7, 389–452 (1935).

    Google Scholar 

  4. 4.

    Wang, X. et al. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 1035–1039 (2011).

    CAS  PubMed  Google Scholar 

  5. 5.

    Liu, S. et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 5, 3930 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Parkin, I. et al. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 15, R77 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Chalhoub, B. et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950–953 (2014).

    CAS  PubMed  Google Scholar 

  8. 8.

    Yang, J. et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat. Genet. 48, 1225–1232 (2016).

    CAS  PubMed  Google Scholar 

  9. 9.

    Lagercrantz, U. & Lydiate, D. J. Comparative genome mapping in Brassica. Genetics 144, 1903–1910 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    O’Neill, C. M. & Bancroft, I. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J. 23, 233–243 (2000).

    PubMed  Google Scholar 

  11. 11.

    Yang, T.-J. et al. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18, 1339–1347 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Town, C. D. et al. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18, 1348–1359 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Parkin, I. A., Sharpe, A. G., Keith, D. J. & Lydiate, D. J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38, 1122–1131 (1995).

    CAS  PubMed  Google Scholar 

  14. 14.

    Rana, D. et al. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J. 40, 725–733 (2004).

    CAS  PubMed  Google Scholar 

  15. 15.

    Cheung, F. et al. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21, 1912–1928 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Trick, M., Long, Y., Meng, J. & Bancroft, I. Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol. J. 7, 334–346 (2009).

    CAS  PubMed  Google Scholar 

  17. 17.

    Bancroft, I. et al. Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat. Biotechnol. 29, 762–766 (2011).

    CAS  PubMed  Google Scholar 

  18. 18.

    He, Z. & Bancroft, I. Organization of the genome sequence of the polyploid crop species Brassica juncea. Nat. Genet. 50, 1496–1497 (2018).

    CAS  PubMed  Google Scholar 

  19. 19.

    Vernikos, G., Medini, D., Riley, D. R. & Tettelin, H. Ten years of pan-genome analyses. Curr. Opin. Microbiol. 23, 148–154 (2015).

    CAS  PubMed  Google Scholar 

  20. 20.

    Golicz, A. A. et al. The pangenome of an agronomically important crop plant Brassica oleracea. Nat. Commun. 7, 13390 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Dolatabadian, A. et al. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. Plant Biotechnol. J. 18, 969–982 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005).

    PubMed  Google Scholar 

  23. 23.

    Arnold, M. L. Transfer and origin of adaptations through natural hybridization: were Anderson and Stebbins right? Plant Cell 16, 562–570 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Zamir, D. Improving plant breeding with exotic genetic libraries. Nat. Rev. Genet. 2, 983–989 (2001).

    CAS  PubMed  Google Scholar 

  25. 25.

    Delourme, R., Horvais, R., Vallée, P. & Renard, M. Double low restored F1 hybrids can be produced with the Ogu-INRA CMS in rapeseed. In Proc. 10th International Rapeseed Congress 26–29 (ACT, 1999).

  26. 26.

    Brown, G. G. et al. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J. 35, 262–272 (2003).

    CAS  PubMed  Google Scholar 

  27. 27.

    Hu, X. et al. Mapping of the Ogura fertility restorer gene Rfo and development of Rfo allele-specific markers in canola (Brassica napus L.). Mol. Breed. 22, 663–674 (2008).

    CAS  Google Scholar 

  28. 28.

    Feng, J. et al. Physical localization and genetic mapping of the fertility restoration gene Rfo in canola (Brassica napus L.). Genome 52, 401–407 (2009).

    CAS  PubMed  Google Scholar 

  29. 29.

    Yang, J., Ji, C., Liu, D., Wang, X. & Zhang, M. Reply to: ‘Organization of the genome sequence of the polyploid crop species Brassica juncea’. Nat. Genet. 50, 1497–1498 (2018).

    CAS  PubMed  Google Scholar 

  30. 30.

    He, Z. et al. Extensive homoeologous genome exchanges in allopolyploid crops revealed by mRNAseq-based visualization. Plant Biotechnol. J. 15, 594–604 (2017).

    CAS  PubMed  Google Scholar 

  31. 31.

    Crown, K. N., Miller, D. E., Sekelsky, J. & Hawley, R. S. Local inversion heterozygosity alters recombination throughout the genome. Curr. Biol. 28, 2984–2990.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Bancroft, I., Fraser, F., Morgan, C. & Trick, M. Collinearity analysis of Brassica A and C genomes based on an updated inferred unigene order. Data Brief 3, 51–55 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Schranz, M., Lysak, M. & Mitchell-Olds, T. The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci. 11, 535–542 (2006).

    CAS  PubMed  Google Scholar 

  34. 34.

    Lysak, M. A., Mandáková, T. & Schranz, M. E. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr. Opin. Plant Biol. 30, 108–115 (2016).

    PubMed  Google Scholar 

  35. 35.

    Cheng, F. et al. Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25, 1541–1554 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Belser, C. et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat. Plants 4, 879–887 (2018).

    CAS  PubMed  Google Scholar 

  37. 37.

    Perumal, S. et al. A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. Nat. Plants 6, 929–941 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Higgins, J., Magusin, A., Trick, M., Fraser, F. & Bancroft, I. Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. BMC Genom. 13, 247 (2012).

    CAS  Google Scholar 

  39. 39.

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Google Scholar 

  40. 40.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Zhang, L. et al. Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic. Res. 5, 50 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Zou, J. et al. Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnol. J. 17, 1998–2010 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Song, J.-M. et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6, 34–45 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Lee, H. et al. Chromosome-scale assembly of winter oilseed rape Brassica napus. Front. Plant Sci. 11, 496 (2020).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by UK Biotechnology and Biological Sciences Research Council grant nos. BB/L002124/1 and BB/R019819/1 to I.B.; National Natural Science Foundation of China grant no. 31972412 and Natural Science Foundation of Liaoning Province grant no. 2019-MS283 to R.J.; grant nos. 031B0890A from BMBF and SN14/22-1 from DFG to R.J.S. and H.T.L.; Australia Research Council Project grant no. LP160100030 to D.E.; National Natural Science Foundation of China grant no. 31970564 to J.Z.; and Indian Council of Agricultural Research grant no. F.No.27(5)/2007-HRD and Department of Biotechnology and Government of India grant no. BT/01/CEIB/12/I/03 to S.S.B.

Author information

Affiliations

Authors

Contributions

I.B. conceived the work. Z.H., R.J., L.H., I.M. and I.B. designed the experiments. Z.H., R.J., L.H., L.W., Y.L., H.T.L., J.S., C.K., J.Y., M.Z., I.A.P.P., X.W., D.E., G.J.K., J.Z., K.L., R.J.S. and S.S.B. acquired, analysed and/or interpreted the data. Z.H. and I.B. drafted the manuscript.

Corresponding author

Correspondence to Ian Bancroft.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Jue Ruan, Yongfeng Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Visualization of genomic impacts of alien introgression into allotetraploid Brassica species: using an assembled genome for the donor species.

Genome Display Tile Plots were generated based on the relative abundance of genome sequence reads mapping to three reference genome assemblies. Quantification is represented in CMYK colour space for orthologous gene triplets. The cyan component represents abundance of the Brassica A genome orthologue, the yellow component that of the Brassica C genome orthologue and the magenta component that of the radish (R) genome orthologue. Controls are included, comprising parental species and in silico combinations to render a diagnostic colour key. Three plants representing the male sterile (CMS) plants of the hybrid system (no introgression) and three plants containing the radish introgression harbouring the restorer (Rfo) gene are illustrated. (a) Plots ordered by Brassica C genome. (b) Plots ordered by radish (R) genome.

Extended Data Fig. 2 Visualization of genomic impacts of alien introgression into allotetraploid Brassica species: use of mRNAseq.

Transcriptome Display Tile Plots were generated based on the relative abundance of mRNAseq sequence reads mapping to CDS gene models from three reference genome sequence assemblies. Quantification is represented in CMYK colour space for orthologous gene triplets. The cyan component represents abundance of the Brassica A genome orthologue, the yellow component that of the Brassica C genome orthologue and the magenta component that of the radish (R) genome orthologue. The triplets are plotted in Brassica C genome order, along with controls comprising parental species and in silico combinations to render a diagnostic colour key. Four plants representing the male sterile (CMS) plants of the hybrid system (no introgression) and four plants containing the radish introgression harbouring the restorer (Rfo) gene are illustrated.

Extended Data Fig. 3 Genome-ordered graphical genotypes for the Brassica A, B and C genomes as represented in allotetraploid species: before editing of genome sequences.

Graphical genotypes are shown for transcriptome or genome SNP markers scored across three doubled haploid (DH) linkage mapping populations: (1) 119 lines of the Varuna x Heera (VHDH) mapping population for A genome B. juncea and B genome B. juncea (Heera alleles in coral, Varuna alleles in blue and missing scores in white). (2) 45 lines of the Tapidor x Ningyou 7 (TNDH) mapping population for A genome B. napus and C genome B. napus (Ningyou 7 alleles in coral, Tapidor alleles in blue and missing scores in white). (3) 93 lines of the Yellowcross x Whiteban (YWDH) mapping population for B genome B. carinata and C genome B. carinata (Whiteban alleles in coral, Yellowcross alleles in blue and missing scores in white). The multi-coloured bars are colour-coded by the top BLAST sequence similarity match to the chromosomes in Arabidopsis thaliana (left bar) and Thellungiella parvula (right bar) of the Brassica gene model in which each respective SNP is scored (light blue = chromosome 1, orange = chromosome 2, dark blue = chromosome 3, green = chromosome 4, red = chromosome 5, salmon = chromosome 6, yellow = chromosome 7, light grey = no BLAST hit with E-value < 1e-30). Red arrows indicate the positions of anomalous genome segments for confirmation and editing into a new position. Clusters of 2 or 3 red arrows indicate unanchored scaffolds originally presented at the end of the respective genome sequence.

Supplementary information

Reporting Summary

Supplementary Data

Supplementary data workbook containing spreadsheets of 15 supplementary datasets and their legends.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Z., Ji, R., Havlickova, L. et al. Genome structural evolution in Brassica crops. Nat. Plants 7, 757–765 (2021). https://doi.org/10.1038/s41477-021-00928-8

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing